
AUTOMAGICAL:
BUILDING FULLY AUTOMATED

TRADING SYSTEMS IN KDB+

Jacob Loveless

BGC Partners

Overview

 Algorithmic Trading Process

 Algo Trading Architechitures

 Component Interactions and Pitfalls

 Filters, Algorithms and Models

 Next Generation Systems
 Beyond Colocation: working with your exchange

 Order flows

 Beyond level II analysis

 Conclusion

Algorithmic Trading Process

• Strategy
Development
and Testing

• Strategy
Deployment
and
Management

• Data Storage
and Analysis

• Post Trade
Analysis and
Compliance

kdb+

Algorithmic Trading Process

 In my experience, the more homogenous the system, the better.

 It is important that your historical data schemas match your realtime

schemas.

 Historical analytics need to

match your realtime analytics.

 Intergration is unnecessary

when everything is the same

•Strategy
Development
and Testing

•Strategy
Deployment and
Management

•Data Storage
and Analysis

•Post Trade
Analysis and
Compliance

kdb+

Algo Trading Architechitures

 The basic Architechture is:

 Feedhandler: obtain data

 Analytic Engine: perform

calculations

 Order Engine: check trading

rules

 Risk Engine: confirm execution

request

 Execution Engine: execute

Feed Handler/
Execution

Engine

Analytic Engine

Order Engine

Risk Engine

Algo Trading Architechitures

 … but everyone’s is a little different

 Incorporation of flow desk

 Cross market trading

 The more communication points, the
more the need for efficent
communication.

 Race conditions ruin the data. The only
thing worse than no data at all, is
untrustworthy data

 In general, the process should be as
complicated as necessay- but no more.

 Simplify: Fools ignore
complexity, pragmatists suffer if. Some
can avoid it, genius removes it.

Feed Handler/
Execution Engine

Market Data
Engine(s)

Analytic
Engine(s)

Order Engine(s)

Internal
Crossing/
Position

Management
Engine

Risk Engine

Execution Path
Analysis Engine

Micromarket
Management

Engine

Algo Trading Architechitures

• This is an example of a production
architecture (FD Delta).

• End to End latency is ~200 us

• Used to trade multiple markets
(UST, IRF,FXF,FX Spot) via BGC
exchange.

• Uses multicast collocation feed and
API feed.

Algo Trading Architechitures

• Little Data Center in a box.

• SSDs are nice but not necessary.
Disks are of little concern (in
memory all day).

• Infiniband is necessary for any DR

• Pin Process to CPU in order of
workload

• Linux is better then Windows

• Real time Linux is better than Linux

• Intel 5160 was easy to Overclock-
and stable.

Algo Trading Architechitures

14

23

15

27

25

13

3

11

1514

1617

11

27

25

19

11

8

14

28

12

14

11

16

13

14

28

14
13

16

25

8

28

18

14

18

28

17

20

24

15

14
14

7

21

29

19

13

5

12

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0
9

:1
0

.3

0
9

:5
5

.3

1
0

:4
0

.3

1
1

:2
5

.3

1
2

:1
0

.3

1
2

:5
5

.3

1
3

:4
0

.3

1
4

:2
5

.3

1
5

:1
0

.3

1
5

:5
5

.3

1
6

:4
0

.3

1
7

:2
5

.3

1
8

:1
0

.3

1
8

:5
5

.3

1
9

:4
0

.3

2
0

:2
5

.3

2
1

:1
0

.3

2
1

:5
5

.3

2
2

:4
0

.3

2
3

:2
5

.3

%
 C

P
U

 u
s
e
d

 (
4
 c

o
re

)

Time: 15s Snapshots

total

feed1

feed2

feed3

feed4

q1

q2

q3

q4

q5

q6

q7

q8

q9

 Multi-process model (still)

 Very difficult to find use

case for multithread

 Pin process to CPU

according to usage

 Set as priority process

 Disable paging

 Multi-process allows for

simple horizontal scaling

in theory…

Algo Trading Architechitures

0

20

40

60

80

100

120

140

160

180

0
9
:1

0
.3

0
9
:5

5
.3

1
0
:4

0
.3

1
1
:2

5
.3

1
2
:1

0
.3

1
2
:5

5
.3

1
3
:4

0
.3

1
4
:2

5
.3

1
5
:1

0
.3

1
5
:5

5
.3

1
6
:4

0
.3

1
7
:2

5
.3

1
8
:1

0
.3

1
8
:5

5
.3

1
9
:4

0
.3

2
0
:2

5
.3

2
1
:1

0
.3

2
1
:5

5
.3

2
2
:4

0
.3

2
3
:2

5
.3

M
il
li
o

n
s

NIC1 Bytes Total/sec LOOPBACK Bytes Total/sec

0

100

200

300

400

500

600

700

800

900

1,000

0
9
:1

0
.3

0
9
:5

5
.3

1
0
:4

0
.3

1
1
:2

5
.3

1
2
:1

0
.3

1
2
:5

5
.3

1
3
:4

0
.3

1
4
:2

5
.3

1
5
:1

0
.3

1
5
:5

5
.3

1
6
:4

0
.3

1
7
:2

5
.3

1
8
:1

0
.3

1
8
:5

5
.3

1
9
:4

0
.3

2
0
:2

5
.3

2
1
:1

0
.3

2
1
:5

5
.3

2
2
:4

0
.3

2
3
:2

5
.3

T
h

o
u

s
a
n

d
s

NIC1 Packets/sec LOOPBACK Packets/sec

 … but in practice IPC is significant

 Infiniband helps here.

 Shared memory would be awfully nice (Arthur?).

 DR looks easy on paper, but it’s expensive in practice. A chained hub will exhaust a 100MB
connection.

 Have to find the balance of CPU Utilization vs.. Network Load for multi-server deployment.

 It’s very nice having it all on one box. But can you sleep at night?

Algo Trading Architechitures

0

1000

2000

3000

4000

5000

6000

7000

9
:2

5
:5

5
9
:4

3
:1

0
9
:4

3
:3

2
9
:4

3
:5

8
9
:4

4
:2

0
9
:4

4
:4

2
9
:5

7
:3

7
1
0
:3

1
:4

8
1
0
:3

2
:1

0
1
0
:3

2
:3

2
1
0
:3

2
:5

4
1
0
:3

3
:1

6
1
0
:3

3
:3

8
1
0
:3

4
:0

1
1
0
:3

4
:2

3
1
0
:3

4
:4

5
1
0
:3

5
:0

9
1
0
:3

5
:3

1
1
0
:3

5
:5

3
1
0
:3

6
:1

5
1
0
:3

6
:3

7
1
0
:3

7
:0

2
1
0
:3

7
:2

5
1
0
:3

7
:4

9
1
0
:3

8
:1

1
1
0
:3

8
:3

3
1
0
:3

8
:5

6
1
0
:3

9
:1

9
1
0
:3

9
:4

2
1
0
:4

0
:0

4
1
0
:4

0
:2

6
1
0
:4

0
:4

8
1
0
:4

1
:1

0
1
0
:4

1
:3

2
1
0
:4

1
:5

4
1
0
:4

2
:1

6
1
0
:4

2
:3

8
1
0
:4

3
:0

0
1
0
:4

3
:2

2
1
0
:4

3
:4

4
1
0
:4

4
:0

8
1
0
:4

4
:3

0
1
0
:4

4
:5

2
1
2
:2

2
:0

3
1
2
:2

2
:2

9
1
2
:2

2
:5

3
1
2
:2

3
:1

8
1
2
:2

3
:4

3
1
2
:2

4
:0

8
1
3
:0

9
:4

4
1
3
:1

0
:0

7
1
3
:1

0
:3

1
1
3
:1

0
:5

5
1
3
:1

1
:1

9
1
3
:1

1
:4

2
1
3
:1

2
:0

5

A
v

g
.

M
P

S

Time 1s Bar

MSGrequests Table (Main Trade Flow)

0

100

200

300

400

500

600

700

800

900

1000

9
:2

5
:5

5
1

0
:3

5
:3

1
1

0
:4

1
:5

4
1

3
:1

0
:3

1
7
:2

5
:3

9
7
:3

1
:5

3
7
:3

8
:0

7
7
:4

4
:2

1
7
:5

0
:3

5
7
:5

6
:4

9
8
:0

3
:0

3
8
:0

9
:1

7
8
:1

5
:3

1
8
:2

1
:4

5
8
:2

7
:5

9
8
:3

4
:1

3
8
:4

0
:2

7
8
:4

6
:4

1
8
:5

2
:5

5
8
:5

9
:0

9
9
:0

5
:2

3
9
:1

1
:3

7
9
:1

7
:5

1
9
:2

4
:0

5
9
:3

0
:2

0
9
:3

6
:3

5
9
:4

3
:0

1
9
:5

1
:1

0
9
:5

7
:2

4
1

0
:0

4
:0

3
1

0
:1

0
:1

7
1

0
:1

6
:3

1
1

0
:2

2
:4

5
1

0
:2

8
:5

9
1

0
:4

8
:1

1
1

0
:5

4
:2

5
1

1
:0

0
:3

9
1

1
:0

6
:5

3
1

1
:1

3
:0

7
1

1
:1

9
:2

1
1

1
:2

5
:3

5
1

1
:3

1
:4

9
1

1
:3

8
:0

3
1

1
:4

4
:1

7
1

1
:5

0
:3

1
1

1
:5

6
:4

5
1

2
:0

2
:5

9
1

2
:0

9
:1

4
1

2
:1

5
:3

3
1

2
:2

1
:4

7
1

2
:3

0
:1

0
1

2
:3

6
:2

4
1

2
:4

2
:3

8
1

2
:4

8
:5

2
1

2
:5

5
:0

6
1

3
:0

1
:2

0
1

3
:0

7
:4

3

T
h

o
u

s
a
n

d
s Total MPS

Bumping up against 1mm /sec mark (scary). It’s hard to partition the messages (cross asset)

Algo Trading Architechitures:

Pitfalls and Failures

 Model Synchronization Issues

Calculation Engines: Back testing systems

utilize different code than online systems

Order Engines: Assumptions are made about

the speed at which models can be matched to

data

 Execution Engines: Assumptions are made

about the speed execution.

Algo Trading Architechitures:

Pitfalls and Failures

 Model Synchronization Solutions
 Calculation Engines:

 Utilize the same code as backtesting systems. Either backtest (play
forward data), or share the same analytics.

 Be sure you can build your exact data on the wire (filter bad ticks?)

 Order Engines:
 Parallize the matching process when possible.

 Separate the matching process from the calculation process (e.g.
simple matches rules based on complex calculated values).

 Understand the inherent latency of your systems.

 Execution Engines:
 Separate the execution process.

 Store your trades to develop estimates of market impact, slippage
etc.

 Understand your model interactions (can you cross internally?)

Algo Trading Architechitures:

Pitfalls and Failures

 Market Synchronization Issues
 Calculation Engines: Focus has been on getting the data to the

decision process as quickly as possible. From there the process
is often sequential. How long does it take to react to the data?
 Example: Low latency market data feed returns prices across the

futures curve. The model receives the prices and calculates the “true
value”, and requests a trade for the dislocated instruments. As
volatility increased, these calculations took longer- and the system
was pricing off market.

 Execution Engines: Who sets the price? If the price is set at the
order engines (trade decision engines), will the market have
moved before returning to the wire?
 Example: A high frequency stat arb system set the price at the order

engine level. As market prices changed quickly (often as a result of
illiquidity), the HFT model began to place bids at offer levels (thus
cross spread).

Algo Trading Architechitures:

Pitfalls and Failures
 Market Synchronization in General:

 Be careful about engines which go “message crazy”

 It’s very difficult to manage the message queue. We set timestamps at the engine level, and “throw away”
messages outside of a threshold for certain tables. Coding feedback and reaction is hard (and costly).

 Market Synchronization Solutions for Calculation Engines

 Benchmark your calculation engines. Calculation engines should be able to perform at 2-3x the feedhandler
capacity.

 Along the same lines, use incremental calculations when possible. When in doubt, see if a faster calculation
is available during peak load (e.g. switch from correlation to an FFT implementation). Always see if you can
pre-calculate (e.g. yield lookup tables). If you pre-calculate, pre-calculate 3x more than you think you will
ever need (memory is cheap).

 Ask yourself if you are willing to give up some degree of accuracy for speed. This is a big problem with pre-
packaged calculation frameworks.

 Obviously all the standard coding optimizations apply.

 Market Synchronization Solutions for Execution Engines

 Set the price at the calculation level, but allow for a degree of error. Ideally your models have a level freedom
inherently.

 Seperate your micro-market execution from your model! This is a simple solution to most problems. The
rules and techniques behind the micro-market are generally not specific to types of trades. Break out your
actual execution process from your model.

 At the very least, have a set of basic checks at the last stage (current market vs.. request, instantaneous
spread etc.)

Expect the worst….

 Expect, and model to the worst possible scenarios (from the market)

 GHPT

 Introduce non cooperative noise into your data

 Introduce bad ticks into your data

 It is arguably as important to develop “meta models”, models which describe when models
aren’t applicable as the actual trading models.

 For example: News events are difficult to code. Develop methods for detecting illiquidity.
This Market:

sym pos | time bid bidsize bidlot ask asksize asklot

---------------| --

usg_10Y 0 | 12:29:53.797 102.1875 7 1 1 3 2 102.2031 8 5 1 1 1

usg_10Y 1 | 12:29:54.141 102.1719 9 2 1 1 1 1 2 1 102.2188 7 1 1 1 2 1 1

usg_10Y 2 | 12:29:54.141 102.1563 8 2 1 2 1 1 1 102.2344 8 1 1 1 1 2 2

usg_10Y 3 | 12:29:54.360 102.1406 6 2 1 1 1 1 102.25 11 2 1 1 2 1 1 1 2

usg_10Y 4 | 12:29:54.141 102.125 4 2 1 1 102.2656 3 2 1f

…is not the same as this market

sym pos | time bid bidsize bidlot ask asksize asklot

---------------| --

usg_10Y 0 | 08:29:58.394 102.625 2 2 102.7031 2 1 1

usg_10Y 1 | 08:29:56.769 102.5938 10 10 102.7188 1 ,1

usg_10Y 2 | 08:29:56.769 102.5625 2 2 102.7344 1 ,1

usg_10Y 3 | 08:29:50.410 102.5313 10 10 102.7969 1 ,1

usg_10Y 4 | 08:29:57.222 102.4844 10 10 102.8125 1 ,1

If you expect the worst …

… you’ll be right one day

•Even in the US Treasury market, which is traditionally the most stable of the micro markets….

•Uncertainty →Illiquidity → Volatility

Algo Trading Architechitures:

Filters, Algorithms and Models

 Filters: methods for smoothing or measuring the error

rates of data

 Simple: VWAP, TWAP, SMAVG

 More Complex: Kalman, Unscented Kalman, Double Exponential

Filtering

 Rocket Science: Stochastic filtering (fitting data to your

model), evolutionary adaptive filtering, particle filters…

 Algorithms: methods for measuring and calculating

values.

 Simple: Correlation, Covariance, Cointergration

 Advanced: (trade secrets)

 Models: The combination of filters and algorithms to

measure and estimate data

Algo Trading Architechitures:

Filters, Algorithms and Models

 Nosce te ipsum. This is a major source of error

 Bad: Using filters &| Algorithms you don’t fully understand

 How sensitive are they to noise?

 If you combine them, what is the result of the superposition? Independent? Constructive?

Destructive?

 What are the limiting behaviors of the functions? As variance increases, does computation

time increase exponentionally?

 What are the “perfect storms” for error.

 If you understand your algorithms, you understand where they can be substituted.

If you buy them, understand them (have the source code). If you build them, check them.

 Crazy: Using Models you don’t fully understand.

 I could give a list of firms and examples. Ensure you understand all the implications of your

models.

 Develop “meta models” when possible. Understand how your models effect and are effected

by one another.

Next Generation Systems

 Most firms are using collocation services.

 Next steps are to use internal data center feeds.

 For example, multicast wire level market data feeds

 Faster delivery and parsing

 Extending logic to include advanced order types offered by the exchange

 For example “modify” order types (BGC FX/UST and ELX Futures)

 Requires wait in internal states (I must wait for the cancel). Instead use a modify order

type.

Next Generation Systems

Real Time Kernels:

Almost a no-brainer. Noticeable difference (especially TCP

and IO). Mature and supported (Redhat MRG and Suse)

Solid State Drives:

One day. Still too expensive. No real application in real

time trading (everything is in memory, 1TB memory

systems available).

New Intel and Multicore:
Makes sense in our world- at high clock speed (3.4 GHz).

Biggest benefit is DDR3 and QuickPath

Overclocking? Looks promising (5160 was very nice)

NVIDIA CUDA
Tesla is, simply, amazing.

But it’s limited (4 GB memory).

It’s hard to find embarrassingly parallel problems which

warrant it.

Questions?

