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Clustering approaches are commonly used to navigate and interrogate gene expression 

profiles, protein-protein interaction information, and other large genomic datasets. However, 

many biological questions that are investigated by analysis of the genome-wide 

measurements are not global-clustering problems at all. Rather, a frequent problem is to find 

the neighbors of a query, which is a vector in the multidimensional measurement space, and 

to rank these neighbors by similarity to the query.  To address this local-clustering problem, 

we developed an iterative pattern-matching program called psi-square. The program searches 

the space of genome-wide vectors, finds a group of highly similar vectors, derives a 

probabilistic model of that group, and repeats database search using this model as a query. 

We applied the method to several pathway-discovery problems, which use three types of 

genome-wide datasets, namely gene content in microbes, gene expression in the blood stage 

of malaria parasite, and protein-protein interactions in yeast. The unified method of analysis 

is generally more sensitive and in many cases also more specific than each of the specialized 

methods applied to these data before. 
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Genome era produces large multidimensional datasets, which need to be analyzed in robust, 

quantitative ways. The first-aid response to the advent of gene expression data and other 

genome-scale measurements was cluster analysis. The techniques of global partitioning of 

the data, such as K-means, partitioning around medoids, various flavors of hierarchical 

clustering, and self-organized maps (1-4) , have provided the initial picture of similarity in 

the gene expression profiles, and helped to infer functional links between genes. However, 

cluster analysis has its drawbacks. Typically, once gene is assigned to a cluster, it remains in 

that cluster, even though many genes participate in more than one pathway. Furthermore, the 

degree of intra-cluster similarity between expression profiles may not be the same for every 

set of functionally linked genes, which puts limitations on the use of cutoffs and on the 

number of clusters that can be predicted with confidence. Several approaches have been 

suggested to overcome these problems, for example, iterative clustering  and iterative 

maximization of the partition quality (5).  

Another approach to finding functionally relevant groups of genes is network 

derivation, which has been popular in the analysis of gene-gene and protein-protein 

interactions (6-10), and is also applicable to gene expression analysis (11, 12). This class of 

methods overcomes the inflexibility of hierarchical clustering/partitioning approaches. 

However, network definition is also confronted with the issue of estimating statistical 

significance, and, as with partitioning approaches, the significance threshold can be different 

in different parts of the same network (13). In addition, visualization and navigation of links 

in the highly connected network poses its own set of computational challenges. 

Although the general picture of dependencies between genes and their products can 

be obtained by these methods, in fact many biological questions asked of the genome-wide 
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measurements have little to do with global clustering or with delineation of the whole 

network. Rather, a commonly encountered task is to discover the neighbors of a point, which 

represents a set of measurements associated with a gene or a protein. Finding such groups 

does not require the knowledge of the complete set of genome-wide correlations “  the 

fundamental task here is to discover and rank similarities that are local with regards to that 

network. Pathway reconstruction and discovery of functional links belong to this class of 

tasks: we are given one or a few members of a pathway, and would like to infer the other, 

functionally linked components of the same pathway. Functional links may be discovered, 

for example, by similarity of expression profiles (2, 14, 15), or by similarity between the set 

of protein-protein interaction partners (16, 17), or by co-inheritance of groups of genes across 

different genomes (18). If a query belongs to a functionally and evolutionarily defined 

module, we want to find as many members of this module as possible. At the same time, 

many - perhaps most - entities in the measurement space are not involved in the module of 

our interest and, with correctly chosen statistics, should display only the random-level 

similarity to the query. 

This logic has been exploited for decades, and with considerable success, in another 

area of computational biology, i.e., in sequence similarity-based prediction of biopolymer 

structure, function, and evolutionary origin. Nowadays, it is standard to begin studying new 

sequence with a database search, performed by a program like BLAST (19) or PSI-BLAST 

(20). If there is a similarity between an uncharacterized query sequence and a better-studied 

sequence in the database, this information can be used for structural, functional, and 

evolutionary inferences. At the same time, the similarities between sequences that are 

unrelated to the query are not of interest, and there is often no need to examine them at all.  
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In this work, we apply the same logic to searching in the multidimensional space of 

genome-wide numeric datasets. The search is performed by an iterative pattern-matching 

program that was inspired by PSI-BLAST, and is called psi-square (as in ”pseudo-PSI„). The 

idea of the algorithm is to start with a numerical pattern of interest (gene expression profile, 

gene occurrence pattern, protein interaction list, or any other), to find group of highly similar 

patterns, to derive a probabilistic model of that group, and to repeat database search using 

this model as a query. In the rest of this paper, we describe the psi-square algorithm and 

software, and apply it to several pathway-discovery problems, which make use of three very 

different types of genome-wide datasets.  

 

Materials and Methods  

Algorithm. The summaries of genome-wide measurements associated with a given gene 

have been called ”profiles„ and ”patterns„ (e.g., ”phyletic patterns„ (21, 22) or ”expression 

profiles„ (15)). For the sake of generality, we will call a set of numbers (measurements) 

associated with the ith  gene ”a gene vector„. In different experiments, the same gene can be 

associated with a phyletic gene vector, an expression gene vector, a protein-protein 

interaction gene vector, etc. Different measurements for the same gene can, in principle, be 

combined. In this study, however, we are concerned with the examples for which each 

coordinate of each vector represents one and the same type of measurement.  

A gene vector space, or vector database, is a set of vectors Xi=(xi1,.xi2,∑ ,xiN), where 

i=1,..,M and j=1,∑ ,N, and M, N indicate, respectively, the number of genes and the number 

of data points/experimental conditions associated with each gene. We assume that a vector of 

interest, called ”query„, is known (either produced by actual measurements, or made up), and 
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we want to find similar vectors in the database. The query may represent a set of relative or 

absolute measurements, as with gene expression data; or it may consist of numerically 

encoded discrete states, such as gene presence-absence, gene expression or lack thereof; or it 

can be a probabilistic model derived from a series of related vectors. We will use ”profile„ to 

refer to the set of all probabilities associated with every coordinate in a vector (23) and will 

use ”condition-specific scoring matrix„ (CSSM) as a synonym for profile.  

The psi-square algorithm searches the database for vectors that are similar to the 

query vector (or query profile/CSSM, i.e., a probabilistic model of several related vectors). 

The program takes query vector Xi as its input and produces a set of similar gene vectors (a 

subset of the vector database) as its output. The logic of the algorithm is reminiscent of 

iterative sequence similarity search and has two iterative steps: (1) compare the profile 

formed from the query vector and, perhaps, other closely related vectors to the entire vector 

database; (2) update the profile based on the high-scoring matches, producing the CSSM of 

scores skj, where k=1,..,K and j=1,..N, and K is an additional parameter that corresponds to 

the number of discrete categories (see below).  

Conditions may represent different treatments, different time points in gene 

expression experiments, different genomes in the phyletic pattern space, etc. The number of 

conditions (N) is the number of vector coordinates. A vector or a vector set of interest are 

called target vector set, T, and the complete vector database is called background vector set 

B. Every element skj of the matrix is the log-odds ratio skj = log{Pr(ak,cj|T)/Pr(ak,cj|B)}, where 

Pr(ak,cj|T) is the probability of observing the value ak under condition cj in T, and Pr(ai,cj|B) 

is the probability of observing ak under the same condition in B. The probability is estimated 

as the frequency (fT
kj or fB

kj) of the given observation under the specific condition in the target 
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or background vector sets, respectively. This scoring scheme is intuitive and familiar from 

the theory of sequence comparison. In the context of sequence similarity searches, the log-

odds scores derived from the target dataset are known to be optimal for signal recovery (24). 

High sensitivity of this scoring scheme in our hands (see below) suggests that log-odds 

scores may be likewise close to optimal when applied to different types of gene vectors, 

though this proposition remains to be formally proven. 

A high-scoring pair (HSP) is a pair of vectors such that their similarity exceeds a 

certain threshold. The similarity measure and significance threshold may be derived from 

empirical observations, or from a process model of some kind. In this article, we focus on a 

similarity/distance measure derived from the correlation coefficient, while psi-square 

software allows one to choose from several distance measures.  

The algorithm proceeds through the following steps: 

1. Initialize the program with a vector or a group of related vectors (initial value 

of target vector set). 

2. Construct the scoring matrix (CSSM) of the form skj = log(fT
kj/fB

kj), where k 

varies over the number of possible values of vectors (or transformed vectors, see below) 

and j varies over the set of conditions.   

3. Use the CSSM as a query at the next iteration of the search.  Score similarity 

between CSSM and each database vector as follows: S(vector)=’ skj, where skj is the 

score of value k under condition j in a given vector. Vectors with higher similarities to 

CSSM get higher scores. Construct the empirical distribution of these scores. Record 

vectors with scores from a given percentile (e.g., 95%) of the total score distribution as 

new high-scoring matches. 
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4. Add these vectors to the target vector set; update the CSSM. 

5. Repeat step 3. The process terminates when we cannot find new matches at 

step 3.  

The vectorsï coordinates can be either discrete or continuous. Discrete coordinates 

often have only two states, e.g., ” turned on-turned off„ or ”present-absent„, but they may be 

multistate. The present algorithm assumes a finite number of states, which can be achieved 

by discretizing continuous variables. Discretization simplifies the data representation, and 

some machine-learning algorithms have been shown to perform better with discrete-valued 

attributes, even though they can also handle continuous attributes (25, 26). The number of 

states that each coordinate can take after discretization is designated by K, a parameter that 

can be either dictated by an ad hoc scientific hypothesis, or computed on the fly. We use 

equal-width interval binning and set K value globally, assuming that the coordinates of all 

vectors of the same type come from the same probability space. For every vector in the 

database, the range of its values, Emax and Emin, observed over all conditions, is calculated 

with step δ= Emax-Emin/K. Each vector is transformed to receive a set of discretized 

coordinates, where its ith value is replaced by the attribute )( ix
ktr .The number of intervals 

depends on the data set. For example, in sequence similarity analysis, the number of initial 

states for nucleic acids may be naturally set for five “  four nucleotides and the gap. For coded 

binary character states, such as presence/absence, K is 2. For other types of data, the value of 

K is estimated from the initial target vector set (see Supporting Text for details). 

There are two more parameters that have to be specified, the similarity threshold for 

the inclusion in the target vector set, r, in step 1, and the percentile of the score distribution 

that is used as the inclusion cutoff s, in step 3. The optimal values of r and s depend on the 
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sample size and signal-to-noise ratio in the data, and their selection is similar to the decisions 

commonly made in sequence database searches.  

 

Phyletic vectors. Gene presences and absences are summarized in the COG database 

(http://www.ncbi.nlm.nih.gov/COG/new). There were 4873 COGs from 66 complete 

genomes of unicellular organisms in the COG database, as of September 21, 2004 (22). 284 

fungi-specific COGs were not considered in this study. Each ith COG (i = 1,∑ ,4589) is a 

phyletic vector, where the jth coordinate (j = 1,∑ ,63) is set at 1 if it is represented in the jth 

genome and 0 if it is not (we ignore some details, such as the presence of in-paralogs in some 

COGs “  see (22) for discussion). In this case K is set at 2, corresponding to two possible 

values of binary coordinates, 0 and 1;  r and s parameters were adjusted interactively. 

 

Protein-protein interaction vectors. We used the tandem-affinity purification (TAP) data 

set from Gavin et al. (27) and removed purifications that only retrieved the bait itself. This 

retains 455 purifications, containing 1361 proteins. The K parameter is naturally set at 2; r 

and s parameters were adjusted interactively. 

 

Gene expression vectors. Gene expression data for the asexual intraerythrocytic 

developmental cycle (IDC) of the malaria parasite P. falciparum are from Bozdech et al. (28) 

(Quality Control data set, 5081 vectors with 46 coordinates). Missing data and outliers 

(coordinates deviating more than 3 s.d. from the mean value for a given vector) were 

replaced by the mean; this is called ” the IDC set„ in the sequel. The parameters for this data 
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were chosen iteratively, in order to maximize the number of new matches and minimize the 

average number of matches (see details below).  

 

Specificity and sensitivity estimates. When the training sample (list of proteins with desired 

properties) is available, we compare the sensitivity and specificity of psi-square with the 

performance of the approaches used in the literature for each analysis. Specificity is 

computed as TP/(TP+FP) and sensitivity as TP/(TP+FN), where TP denotes true positives 

(genes/proteins included in the training sample); FP denotes false positives (genes/proteins 

not included in the training sample), and FN denotes false negatives (genes/proteins included 

in the training sample but not found by the approach). For simplicity, we treated all genes 

found by only one approach as false positives (overestimating FPs, because this does not 

account for the novel predictions that may be ultimately proven correct). 

 

Results 

Phyletic vectors. Information about phyletic distribution of orthologous genes, i.e., presence 

and absence of orthologs in completely sequenced genomes, is of interest because 

functionally linked proteins tend to be co-inherited in the same subsets of genomes (29). 

Informally, co-inheritance has been approximated by low Hamming distance (e.g, three bits 

or less) between phyletic vectors (18), but a more systematic analysis indicated that other 

distance measures, in particular those based on correlation, can greatly improve the 

sensitivity of functional inference from co-inheritance (30). One case study in this work is 

the search for new components of flagellae in bacteria based on their co-inheritance with the 

known flagellar components.  
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Flagellae, the sensory and locomotive organs, are found in 23 bacteria out of 50 in the 

COG database. Two parasitic bacteria, (Chlamidia trachomatis and Chlamidophila 

pneumoniae), and two symbionts (Buchnera sp. APS  and Yersinia pestis) do not have 

flagellae, but contain several genes orthologous to flagella assembly factors in other species, 

presumably because these genes have additional functions, such as assembly of other 

extracellular protein complexes (31, 32). The genomic signature of the flagellar biosynthetic 

and structural genes is represented by a vector with 27 coordinates set to one and 23 

coordinates set to zero (Fig. 1, supporting information). There are only 6 COGs characterized 

by such a phyletic vector, yet at least 37 bacterial COGs are known or inferred to be directly 

involved in bacterial flagella biogenesis and function (Fig. 1). Thus, phyletic vectors of at 

least 31 flagella-related genes mismatch the query constructed on the basis of flagella 

genomic signature “  in the extreme case, by 22 conditions (Fig. 1). The likely reasons for 

these mismatches include differential gene losses and functional takeovers by unrelated 

genes, and, probably, existence of several modules within the flagella apparatus, some of 

which are capable of functioning independently, as in the aforementioned aflagellate bacteria 

(31, 32). Regardless of the reason for patchy distribution of flagellar components, many of 

them can not be sensitively and specifically discovered by exact matching to a made-up 

genomic signature, nor with naıve methods of Hamming distance-based matching. 

Levesque et al. (33) have suggested a series of algorithms that make functional 

predictions on the basis of phyletic vectors and set theory. The threshold of similarity 

between subsets is an adjustable parameter. This ”Trait to Gene„ software (TTG in the 

sequel) identifies 33 COGs as associated with flagella phenotype at the most sensitive 

similarity threshold 0.65 (Fig. 1 and see ref. (33) for details). Among those, 27 COGs have 
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annotations indicating their involvement in flagella. Thus, the approach results in at least 

82% true positives and recovered 73% of the 37 known flagellar COGs (Table 1).  

Another approach for functional prediction from phenotype has been suggested by 

Jim et al. (34). Their method computes the phenotype propensity (PP), i.e., the ratio of two 

frequencies, that of the genomes that have both phenotype and protein of interest, and of all 

genomes which have the same protein. Proteins that appear only in genomes with given 

phenotype have the highest propensities. The PP approach identifies 46 COGs, 

corresponding to 60 E.coli proteins, with the highest propensities to flagella phenotype. 

Twenty-two of them (59%) overlap with 37 known flagellar COGs (Table 2, supporting 

information).  

We applied the psi-square algorithm to find vectors most similar to the flagella 

genomic signature vector (Fig. 1). Using COG1298, one of the six COGs perfectly matching 

the flagellate phenotype, as a query with r set at 0.6, we recovered 45 COGs. Twenty-nine of 

these COGs are involved in flagella assembly or function (this corresponds to 78% of all 

known flagellar proteins). Thus, the naıve psi-square approach had higher sensitivity, but 

lower selectivity, than TTG (Fig. 2, Table 1), and exceeded the PP approach in both 

specificity and sensitivity (Fig. 3, supporting information; Table 2).  

To supplement the naıve psi-square search, we collected 29 flagella-associated COGs 

found at the first step of the analysis and used them as queries in further rounds of psi-square 

searches, with the r parameter set more conservatively at 0.7. The union of all newly found 

matches gives 73 vectors, with 34 true positives, i.e. 92% of the known flagellar COGs (Fig. 

4, supporting information). Seven flagellar components were predicted by psi-square at this 



 14 

step, but were missed by TTG (Fig. 4, supporting information), indicating higher sensitivity 

of psi-square towards these outlying vectors (Fig 1).  

Thirty-four COGs were predicted by psi-square only (Fig. 4c). Phyletic patterns of 

these COGs were much ”patchier„ than the flagella genomic signature (Fig. 2e, 4c) . Five of 

the proteins found only by psi-square, COG2160, COG3154,COG2356, COG0854, 

COG3154, appear to be unrelated to flagella function and biogenesis (Fig. 4c). On the other 

hand, among the 34 genes uniquely identified by psi-square, nine are involved in cell 

division, shape determination, and chemotaxis; these are most likely not spurious matches, as 

the recent literature suggests several linkages between these processes and flagellar function 

(35, 36). We expect that several of the remaining COGs, for example some of the 

transcriptional regulators (COG1221, COG3829, COG3835) and signal transduction proteins 

(COG3852, COG3605) are also involved in the regulation of flagellar biogenesis. Moreover, 

3 proteins found by psi-square (COG1699, COG2257, COG3034, Fig. 4c) may have 

previously unreported connections to flagellar phenotype, based on contextual information 

from STRING database (Table 3, supporting information). 

 

Gene expression vectors. The lifecycle of the malaria parasite includes three stages: the 

mosquito, liver and blood stages. The blood stage is responsible for all of the malaria 

symptoms and mortality in humans and is therefore an important target for vaccine 

development (37). Despite much effort, an effective malaria vaccine is still unavailable (38). 

Recently, the transcriptional program of the asexual intraerythrocytic development cycle 

(IDC) of P.falciparum has been characterized (28). The parasite-specific genes, especially 
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those related to the initiation of the IDC (merozoite invasion), may be good candidates for 

vaccine development.  

Several candidate antigens have been identified in P.falciparum. Most of them are 

expressed on the parasite cell surface, in particular within apical organelles involved in 

merozoite invasion (37). Among the best-studied invasion proteins are seven malaria vaccine 

candidates, AMA1, MSP1, MSP3, MSP5, EBA175, RAP1 and RESA1. Their expression 

profiles undergo sharp induction during the mid- to late schizont stage. In order to find 

additional vaccine candidates, Bozdech et al. (28) compared the Euclidean distances between 

expression profiles of seven antigens and the rest of plasmodium transcriptome, and the 5% 

of this distribution with the lowest distance (5%ED) was proposed as a plausible set of 

vaccine candidates. The 5%ED set of 262 ORFs included virtually all known merozoite-

associated genes.  

We used the psi-square approach to find proteins involved in merozoite invasion in 

the IDC set. Seven independent searches were initiated with seven antigens as queries. 

(When one ORF was represented by multiple probes on the chip, we chose the vector with 

the highest average correlation to the other vectors). We tried several thresholds for 

correlation and several values of the K parameter, with 24 parameter settings altogether 

(Table 4, supporting information). The correlation threshold 0.9 and K=15 maximized the 

number of iterations and new matches. Fig. 5 presents matches found during several 

iterations of psi-square for queryPFA0110w (ring-infected erythrocyte surface antigen 

precursor). In sum, psi-square and 5%ED identified, respectively, 596 and 419 probes; there 

were 409 probes found by both approaches, 187 found only by psi-square, and 10 probes 

found only by 5%ED.  
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The average maximum time of expression for 187 unique probes, corresponding to 

151 unique ORFs found by psi-square, matched 30 hours, i.e., the beginning of the schizont 

stage. Among them were several already known P.falciparum antigenes, such as RESA-H3 

(PFB0915w), MSP8 (PFE0120c), octapeptide-repeat (ORA) (PFL0035c), PF70 

(PF10_0025), membrane protein ag-1 (PFD0255w), RESA-2 (PF11_0512), 

tryptophan/threonine-rich antigen (PF08_0003), and transmission-blocking target antigen 

(PF13_0247). None of these proteins have been identified by the 5%ED method.  

For proteins involved in merozoite invasion, we cannot estimate specificity and 

sensitivity within the previously established framework: not only is the list of true positives 

unknown, but we intentionally tuned parameters of psi-square so as to find more candidates. 

Therefore, to compare biological relevance of two approaches, we examined the sequence 

properties of the two sets of hypothetical proteins (HP), found either by the psi-square 

approach only (HPs1, 108 proteins), or by both the psi-square and 5%ED methods (HPs12, 154 

proteins). The structural properties of the proteins in these two non-overlapping sets are 

nearly the same, and at the level of predicted molecular function, the two groups of proteins 

exhibited many common features as well (Tables 5 and 6, supporting information). Both sets 

were depleted of the housekeeping genes involved in genome expression, in intermediate 

metabolism, and in signal transduction from cytoplasm to the nucleus. Among the proteins 

with predicted enzymatic activity, there is a clear prevalence of domains involved in lipid 

biosynthesis and membrane remodeling. Also seen in both sets are proteins with chaperone 

activity, components of cytoskeleton and of secretory vesicles, and multiple protein kinases 

and phosphatases (Table 6). These observations are compatible with the idea of regulated 

changes in the cell surface and cell shape upon transitioning to the merozoite phase. 
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Interestingly, HPs1 and HPs12 recover different bona fide antigen-related proteins (RESA in 

the case of HPs1 and AMA-1 and MSP7 in the case of HPs12). 

These results indicate that psi-square is quite specific towards the putative proteins 

involved in merozoite invasion. At the same time, psi-square is more sensitive than 5%ED 

method: psi-square has recovered many ETRAMPs, expressed mostly at early ring stage and 

located at the parasite-host cell interface, as well proteins identified by MudPIT as parasite 

proteins on the surface of the infected erythrocyte (PIESPs, Florens et al. (39)), none of 

which was detected by 5%ED. Psi-square also identified PFE0340c, an ortholog of the  

rhomboid protease involved in adhesin cleavage during invasion of another apicomplexan 

parasite, Toxoplasma gondii (40). Identification of this and other enzymes involved in 

membrane remodeling and signal transduction suggest an additional strategy of anti-malaria 

drug development, namely to screen for small-molecule inhibitors of these merozoite 

invasion-related enzymes.  

 

Protein-protein interaction data. The majority of cellular processes are carried out by 

multiprotein complexes (41), and analysis of their composition is of great interest. Screening 

of protein-protein interaction (PPI) at a large scale can be done with yeast two-hybrid 

technology (42), which registers only pairwise PPI, and with various affinity purification 

schemes (27), which record the protein content of a complex but not individual interacting 

pairs. High-throughput screens are noisy because of non-specific binding, fragmentation of 

the whole complex into subcomplexes (17), low reproducibility (27) and other factors; true 

protein complexes must be discerned by a combination of analytical biochemistry and 

computational techniques (27).  
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We used the psi-square strategy to identify protein complexes in yeast affinity 

purification data from Gavin et al. (27) . The PPI vector space can be set up in several ways. 

For example, purification vectors can be compared in the space of protein coordinates, or else 

protein vectors can be compared in the purificationsï space. In the former case, the search 

result would be the set of purifications similar to the purification of interest; in the latter case, 

the result is the set of proteins co-purifying with the query protein.  

We applied our approach to recover the contents of the protein complex responsible 

for post-transcriptional maturation of the 3ï-end of eukaryotic pre-mRNA. This reaction 

occurs in several steps, including site-specific cleavage, polymerization of the poly(A) tail, 

and trimming of adenylate residues to mature length (43). In yeast, the major components of 

these processes are poly(A)-binding protein (Pab1p), poly(A) nuclease (PAN), and three 

multidomain complexes, CFIA, CFIB, and CPF (44). Using Pta1 as the first bait, Gavin et al. 

(27) experimentally identified 12 of the 13 known components of the polyadenylation 

complex and 7 new putative components. 

The psi-square search of interaction vectors initiated with Pta1 converged in one 

iteration (r=0.6), detecting 10 known components of the polyadenylation machinery (Cft1p, 

Cft2p, Glc7p, Pap1p, Pfs2p, Pta1p, Ysh1p, Fip1p, Yth1p, Rna14p) and two putative 

components, Ref2p and YKL059C, which have been also identified by Gavin and co-

workers.  We then applied the same strategy as with flagella proteins, running 13 psi-square 

searches, one for each already found component, and taking the union of all newly found 

vectors. This strategy led to identification of 5 additional components (Ssu72p, YOR179C, 

Clp1p, Pcf11p, Rna15p) which were also found in TAP-purification analysis (27). In sum, 
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our analysis identified all components found by TAP, except for two, Pab1p and YKL018W 

(Fig. 6a, supporting information).  

The orthogonal search, initiated with a purification vector of all proteins retrieved 

when Pta1 was used as a bait, converged at one iteration (r=0.6), resulting in 11 similar 

purifications. These purifications included 33 proteins (Fig. 6b, Fig. 7: supporting 

information). Thus, the protein-based query retrieves a set of proteins virtually identical to 

the original complex found by Gavin et al. (27), whereas the purification-based query 

discovers many additional proteins. Sequence analysis indicates that among these new 

findings there are two RNA helicases Has1p and Dbp4p, putative RNA modification 

enzymes Cbf5p (pseudouridylate synthase-like) and Nop1p (methyltransferase-like), as well 

as nucleolar proteins Nop56p, Nop58p, and Rsa3p. Many of these proteins are more familiar 

as components of processosome, the complex that is responsible for maturation of ribosomal 

RNAs. Recent evidence, however, suggests the existence of extensive cross-talk between 

processing of rRNA and mRNA (45), and our results point in the same direction.  

 

Discussion 

Many global-clustering approaches tend to underestimate functional relationships among 

gene vectors (46-49). To address the limitations of global clustering, we propose the 

similarity search program, psi-square, which is applicable to recognition of any kind for 

patterns represented in vector form. The use of profiles is familiar to molecular biologists 

from such tasks as prediction of gene structure by homology, delineation of protein families, 

and fold recognition. The same intuition applies to iterative search of vector spaces for 

similarities between gene vectors. Because query vectors are converted into probabilistic 
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models that can be iteratively updated, the resulting sensitivity of the method is higher than 

in more naıve similarity searches.  

The performance of psi-square depends on the choice of distance measure and several 

search parameters. The optimal choice of distance measure in genome-wide datasets is 

examined elsewhere (50). 

Some of the ideas that were used in psi-square algorithm have been discussed before. 

Most notably, Zhou and co-authors (48)  have introduced the shortest path concept, which 

seeks to find series of closest neighbors in genome-wide data in an iterative fashion. In 

contrast to their approach, psi-square does not rely on pre-computed network, but uses a 

query to interrogate unordered vector space and to produce a probabilistic model of the 

query. Our approach also estimates the significance of observed similarities from the 

background data, similar to how it is done in sequence database searches. 

 

Software availability: psi-square code and formatting utilities are at http://research.stowers-

institute.org/bioinfo 
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program. 
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FIGURE LEGENDS 

Figure 2. Phyletic vectors and COGs associated with flagella phenotype, identified by 

psi-square and TTG algorithms (45 COGs and 49 COGs, respectively), with COG1298 used 

as a query. a) 27 COGs in benchmark (see text), also found by psi-square and TTG; b) 5 

COGs found by psi-square and TTG; c) 2 COGs  found by psi-square and in benchmark and 

one COG found by TTG only; d) 8 COGs  found in benchmark only; e) 11 COGs  found by 

psi-square only. COG numbers and functional annotations are shown in the right-hand 

column. 

Figure 5. Expression vectors for the closest matches retrieved by psi-square with 

query PFA0110w in Plasmodium IDC dataset. Two best matches per iteration (nine iterations 

before convergence) are shown. 
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Table 1. Sensitivity and specificity of psi-square and TTG algorithms in prediction of 
flagellae components. 
 

 Psi-square: single 
query 

Psi-square: combined 
query 

TTG 

False Positives (FP) 11 34 1 
True Positives (TP) 29 34 27 

False Negatives (FN) 8 3 10 
SPECIFICITYa 0.725 0.500 0.964 
SENSITIVITY 0.784 0.919 0.730 

Number of predicted proteins: 45 73 33 
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1419 Fl. GTP-bind. 
1580 Fl. basal body 
1345 Fl. Capping pr. 
1516 Fl. chaperone FliS 
1706 Fl. P-ring 
2063 Fl. L-ring 
1261 Fl. basal body
1749 Fl FlgE 
1291 Fl. Motor 
1344 Flagellin 
1360 Fl. Motor 
1815 Fl. basal body 
1843 Fl. Hook cap 
1558 Fl. Rod protein 
4786 Fl. basal body 
1256 Fl. Hook pr. 
1987 Fl FliQ
1766 Fl. Type III path
1684 Fl. FliR
1677 Fl. Hook 
1868 Fl. Motor switch 
1536 Fl. Motor switch 

1886 Fl. Motor switch

1157 Fl. Type III path
1298 Fl. FlhA
1338 Fl. FliP
1377 Fl. FlhB

0835 Chemotaxis
1220 ATP-dependent protease HslVU
5405 ATP-dependent protease HslVU
1508 sigma54 homolog
1671 Uncharacterized

1317 Fl. Bios./ type III path
2882 Fl. bios. Chaperone
5455 Predicted integral membrane

1191 DNA-dir. RNA pol. sigma
1486 Alpha galactosidases
0741 Murein transglycosylase
0860 N-acetylmuramoyl-L-alanine amidase
1154 Deoxyxylulose-5-phosphate synthase
1158 Transcr. term. factor
1734 DnaK suppressor protein
2204 Resp. Regulator
3034 Uncharacterized
4174 ABC-type unch. transport
4239 ABC-type unch. transport

a) 

b) 

c) 

d) 

e) 

1705 Muramidase (fl. specific)
2747 Neg. reg. of flag. (anti-sigma28)
3144 Fl. hook-length control
3190 Fl. biogenesis_pr.
3418 Fl. bios./ type III path
4787 Fl. Basal body rod protein
5442 FlaF
5443 FlbT
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