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Abstract Network motif discovery is the problem of finding subgraphs of a
network that occur more frequently than expected, according to some rea-
sonable null hypothesis. Such subgraphs may indicate small scale interaction
features in genomic interaction networks or intriguing relationships involving
actors or a relationship among airlines. When nodes are labeled, they can carry
information such as the genomic entity under study or the dominant genre
of an actor. For that reason, labeled subgraphs convey information beyond
structure and could therefore enjoy more applications. To identify statistically
significant motifs in a given network, we propose an analytical method (i.e.
simulation-free) that extends the works of Picard et al. 2008 and Schbath et
al. 2009 to label-dependent scale-free graph models. We provide an analytical
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expression of the mean and variance of the count under the Expected Degree
Distribution random graph model. Our model deals with both induced and
non-induced motifs. We have tested our methodology on a wide set of graphs
ranging from protein-protein interaction networks (PPI) to movie networks.
The analytical model is a fast (usually faster by orders of magnitude) alterna-
tive to simulation. This advantage increases as graphs grow in size.

Keywords Network Mining · Random Network models · labeled graph
motifs · graph algorithms

1 Introduction and Related Work

Many complex systems can be represented as networks of interacting com-
ponents (e.g. protein-protein interaction networks, social networks, entertain-
ment networks). In biology, frequent sub-networks may represent functional
modules [1] or basic building blocks [2] that perform some coordinated activi-
ties. These blocks are commonly called network motifs. Network motifs can be
defined as consisting of patterns of interconnections (i.e. subgraphs) that arise
unexpectedly often in a network. We refer to unlabeled motifs as topological
unlabeled motifs. The motivation behind finding such motifs is that subgraphs
with the same topology might be functionally similar. For example, motifs
may correspond to conserved patterns that are linked to important cellular
functions.

Before we get into the technical details, we should ask the preliminary
question: how do we know when a subgraph appears unusually often? One
approach is to declare that if there are more than k instances of a subgraph in
the graph, then that subgraph frequently appears and therefore is important.
However, without a principled way to choose k, leaving the choice to the user
amounts to asking the user to guess.

In principle, statistics offers a better way. Consider the problem of asking
whether a coin is fair. Suppose we perform an experiment consisting of flipping
the coin 17 times and counting the number of heads. At which point should we
consider the coin likely enough to be unfair to warrant an expensive physico-
chemical analysis? Intuitively, 8, 9, 10 or 11 heads out of 17 should not raise
an eyebrow. 15 or more should. The background knowledge that enables us to
choose a threshold is that we start with a null hypothesis (the probability that
the coin will land heads is 1/2) and this gives us a probability distribution of
the number of heads under the null hypothesis. Using that distribution we can
ask the probability that there would be 12 or more heads (about 0.07) vs 15
or more heads (about 0.001). In the first case, we might conclude that there is
no evident need for an expensive test to determine fairness. So, the probability
of an outcome (i.e. the p-value) with respect to a reasonable null hypothesis
is a principled way to determine unusualness.

In the graph case, we have no simple a priori null hypothesis. Should finding
a path of five A more than 100 times be unusual in this graph? What about a
star of five A? That depends on many properties of the graph. For that reason,
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given a topological pattern m on an input network G, the common approach to
determining whether m is a motif consists of the following steps: (i) generate a
large set of random networks sharing the observable characteristics (roughly,
same number of nodes and edges with similar degree distributions) of G; (ii)
find the number of occurrences of m in each of those networks; (iii) estimate
the p-value by comparing the number of occurrences in the input network with
the numbers in the random networks.

The first step creates random graphs (i.e. networks) under a specified ran-
dom reference model having the same number of nodes and edges and de-
gree distribution as the input network. Examples of reference models include:
(i) The Erdös-Rényi model (ER model) [3] in which the probability of connect-
ing two nodes n1 and n2 in a random graph is the same as the probability of
connecting any other two nodes n3 and n4 and that probability is determined
by the network density of G. (ii) The Fixed Degree Distribution model (FDD
model) [4], where each random graph is generated by swapping edges start-
ing from the input network G, guaranteeing that each node in each random
graph R has the same degree as in G. (iii) The Block Two-Level Erdös-Rényi
model (BTER model) [5], which is based on the idea that a graph is composed
by subgraphs (“communities”) each of which satisfies ER conditions. These
communities are then connected to one another using an EDD model. For
this purpose, within each community, those nodes n having degree d′n lower
than the expected one dn are used. The quantity dn − d′n is defined as the
excess degree of node n. (iv) The Expected Degree Distribution model (EDD
model) typically known as Chung-Lu model [6,7] which generates random
graphs whose node degrees have the same expectation as the input network
G. (v) The Erdös-Renyi mixture for graphs model (ERMG model) [8,9] which
is based on mixture population edges and is used to model heterogeneous
connectivity. (vi) The Exponential Random Graph model, in which the input
network G is drawn from a family of randomized variants of it, RG, generated
in the following way. Each graph GR ∈ RG has a probability P (GR). Prob-
abilities P (GR) are such that a maximally random ensemble of networks is
generated, under the constraint that, on average, a set {Ca} of desired topo-
logical properties is set equal to the values {Ca(G)} observed in the input
network G. This is achieved as the result of a constrained Shannon-Gibbs
entropy maximization [10].

To find all motifs, algorithms generate candidates by searching for all sub-
graphs having k nodes in the input network G and in a set of random variants
of G [11]. This baseline method which relies on simulation yields a measure
of the significance of each candidate through the computation of a p-value
using a resampling approach [2,11–13]. Unfortunately, this method requires a
large number (1000 to 10,000) of random graphs whose analysis turns out to
be computationally expensive (far more expensive than analyzing the target
network alone). Moreover, the expense of simulation increases as the graph
size grows.

Over the last decades, researchers have worked on replacing simulation by
analytical methods. For unlabeled motifs, approximation methods, based on
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the Erdös-Renyi (ER) model, have tried to compute the asymptotic normality
of the distribution of topology counts [14]. Unfortunately, empirical evidence
suggests that the Erdos-Renyi random model offers a poor fit for many real-
world networks [15].

In 2008, Picard et al. [16] proposed a model to exactly compute the mean
and variance of the count of a given pattern under any exchangeable random
graph model. Exchangeability means that the probability of occurrence of a
topology does not depend on its position in the graph. The authors make
use of the Pólya-Aeppli distribution (also known as the Poisson Geometric
distribution which is a special case of the Poisson-Compound distribution) [26].
The Pólya-Aeppli distribution supposes that objects (which are to be counted)
occur in clusters, the number of clusters follow a Poisson distribution, while
the number of objects per cluster has a geometric distribution. This holds
when distinct topologies can share nodes and edges (i.e. clumps) [16]. The
authors show that when the number of clumps has a Poisson distribution with
mean λ and the sizes of the clumps are independent of each other and have a
Geometric distribution G(1−a), the number of observed events X (topologies)
has a Pólya-Aeppli distribution P (λ, a). These results lead to an estimate of
the count of occurrences of a given topology. Picard et al. [16] show that this is
a good model for the distribution of the counts of subgraph topologies (both
induced and non-induced), since the fit is more accurate than a Gaussian
model for the graphs of many applications. (An induced subgraph is a subset
of the vertices of a graph G together with any edges whose endpoints are both
in this subset. In a non-induced subgraph of G, the edges are a subset of those
present in the corresponding induced graph over the same nodes.)

More recently, Squartini and Garlaschelli [17] proposed an analytical
maximum-likelihood method to detect patterns in real networks, introducing
a method that allows one to obtain expected standard deviations of any topo-
logical property analytically, for any binary, weighted, directed or undirected
network. However authors deal only with topology motifs.

The motif finding problem has attracted a lot of research concerning the de-
sign of efficient algorithms for the enumeration of subgraphs. Several methods
have been proposed for the identification of induced and non-induced motifs
[14,18–20] of any size. Many tools are capable of dealing with motifs up to
k = 9 nodes on medium size networks. When the size of the motif is small
(k = 3, 4), the usage of graphlet decomposition techniques [21] has been proved
to be the most efficient solution for unlabeled graphs even with large networks
having billions of nodes and edges, because it lends itself to parallelism.

Different characterization of labeled motifs

The above methods give p-values for label-free networks. Focusing only
on topology ignores the possible meaning of nodes. Such meaning can lead
to important insights. For example, in a protein-protein interaction network,
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topologies having to do with the process of metabolism may be different from
topologies having to do with another process such as meiosis.

We name motifs where node types matters labeled motifs.
To deal with labeled motifs we need to generalize the unlabeled motif

definition based on constraints that can be defined on the topology, on the
label assignment, or both. This leads us to three different definitions of motifs
which are hierarchically related (see Figure 1).

Topological
Unlabeled

(Picard et al. 2008)

Injective Topological 
Labeled Motif

Multiset Topological 
Labeled Motif

Our Contribution

Motif Definitions

Multi‐Set 
Labeled

(Schbath et al. 2009)

Fig. 1: Motif hierarchy. Four different definitions of motifs. When definition A
points to definition B, the set of motifs responding to A is a superset of those
responding to B. All the definitions apply to both directed and undirected
graphs.

Concerning the generation of networks with real-world structural proper-
ties and correlated labels, in [22] the authors introduced the Attributed Graph
Model (AGM), which exploits label correlations in connection to generative
network models to jointly model network topology and node labels. In [23],
authors propose a generative model for labeled graphs called Multiplicative
Attribute Graph (MAG) model. MAG generates the network by taking into
account the number of vertices, a set of prior probabilities for vertex label
values and a set of affinity matrices specifying the probability of an edge con-
ditioned on the vertex labels. In [24], the authors describe AGWAN (Attribute
Graphs: Weighted and Numeric), a generative model for random graphs with
discrete labels and weighted edges.

In their seminal work on analytical analysis methods for labeled motifs,
Schbath et al [25] define a motif as any connected topology of k nodes having
a given multiset of labels M . We refer to this kind of motifs as multiset labeled
motif.
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An example of multiset labeled motif is a connected topology consisting
of five nodes having one red label and four nodes labeled with blue. In this
example, five would be the size of the motif. An occurrence of a motif is defined
as any connected topology with exactly one red node and four blue nodes (see
Figure 2).

Injective 
Topological 

Labeled Motif

Multiset 
Topological 
Labeled Motif

Topological
Unlabeled
(Picard et al. 

2008)

Multi‐Set 
Labeled

(Schbath et al. 
2009)

Occurrences Motif 

Fig. 2: Example of Motif occurrences within the motif hierarchy. Multi-Set
Labeled motifs might consider all connected structures containing four blues
and one red to be the same motif. Topological Unlabeled motifs count as a
single motif all stars of size five, regardless of labels. Multiset Topological
Labeled motifs might count as a single motif all star structures consisting of
four blues and one red regardless of which of the five nodes have which labels.
An Injective Topological Labeled Motif might count as a motif a star consisting
of a single red node in the center surrounded by four blue nodes.

The authors [25] proposed an analytical (simulation-free) approach for as-
sessing the exceptionality of multiset labeled motifs. They established an ex-
act analytical model for the mean and the variance of the count of a labeled
motif using the Erdös-Rényi (ER) random graph model. In doing so, they as-
sumed that the label assignment to nodes is independent of the topology of
the network, and therefore modeled the probability of a multiset of labels as
a multinomial distribution. To estimate a p-value associated to a motif, the
authors also modeled the complete distribution of the count of a colored motif
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in an Erdös-Renyi random graph model by making use of the Pólya-Aeppli
distribution.

In many applications, we are interested in both topology and labels. For
that reason, we propose a first new definition of labeled motif consisting of
a subgraph of k nodes with a given topology having nodes belonging to a
multiset of labels M , denoted multiset topological labeled motif (see Figure
1). In this case, the precise assignment of labels to nodes in the topology is
unimportant. For example, any star topology of five nodes in which one node
is red and the others are blue could be an occurrence of the same topological
multiset labeled motif.

A second new definition defines motifs as a topology and a specific label
assignment to each node in the topology. For example, a star topology of five
nodes in which the center node is red and the other nodes are blue. In this case
a motif is a subgraph of k nodes having fixed labels connected through a given
topology, so this is called an injective topological labeled motif (see Figure 1).

Our view of motifs

In this paper we deal with the two definitions of motifs that constrain both
labels and topologies: multiset topological labeled motif (or multiset motif) and
injective topological labeled motif (or injective motif). No analytical model has
been proposed yet for either of these. Inspired by the work of [16,25] we in-
troduce analytical models to establish the significance of labeled motifs on
directed and undirected graphs, under the EDD random model, and in which
labels are either independent or dependent on the degrees of nodes. Finally,
our model deals with both induced and non-induced motifs. Thus, we handle
two kinds of motifs, directed and undirected graphs, induced and non-induced
motifs, and two random models (with color-degree dependency or not). The
body of the paper introduces what we consider to be the most useful of these
definitions: label-dependent graphs (as in graphs where the label of a node
might at least partly determine its degree, e.g. rock musicians have more fans
than professors) and the injective motif case for non-induced motifs. The sup-
plementary material (and our software) extends this to both new definitions of
motifs, induced graphs, label-independent valence distributions, and directed
graphs.

2 Definitions

A labeled graphG(V,E,C, c) is a graph where V is the set of nodes, E ⊆ (V×V )
is the set of edges, C is a set of labels and c : V −→ C is a function that assigns
a label to each node in V . If (u, v) ∈ E, we say that v is a neighbor of u. G
is undirected means that if ∀(u, v) ∈ E, then (v, u) ∈ E, i.e. all neighbor
relationships go both ways. If labels are not taken into account G(V,E) is
called unlabeled graph.
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Intuitively, given a graph G, a topology that occurs “unusually” frequently
in G is called a motif. The number of occurrences of a motif counts only non
redundant occurrences. A motif occurrence is redundant if it is an automor-
phism of another occurrence. Given a graph G = (V,E), a permutation ξ of
the vertex set V is an automorphism if for each pair of vertices u, v ∈ V we
have (u, v) ∈ E ⇐⇒ (ξ(u), ξ(v)) ∈ E.

To establish the significance of the motifs in an input graph G, we imagine
that the target graph is drawn from a set of graphs belonging to a random
graph model. Random graph models generate graphs that preserve certain
characteristics of G. An important property of a random graph model is ex-
changeability. Given two random graphs G1 and G2 under a random model
RG, we say that RG is a random exchangeable model when the node degree
distributions of G1 and G2 are the same.

We define two types of motifs.

Definition 21 (Multiset Topological Labeled Motif) Let G(V,E,C, c)
be a labeled graph drawn from a distribution of graphs under a given reference
random exchangeable model RG. Let m(Vm, Em, Cm) be a subgraph (induced
or non-induced) of G having Vm and Em as sets of nodes and edges and Cm
as the multiset of node labels of the nodes Vm. Let Nobs(m) be the number of
non-redundant occurrences of m in G having the same multiset of labels Cm,
and let α be a critical value (provided by the user). We say that m is a motif
of G if the probability

P [N(m) ≥ Nobs(m)] ≤ α

where N(m) is a random variable representing the number of non-redundant
occurrences of the motif m under the random reference model RG.

We discuss the above type of motif further in the appendix. In the body we
focus on the following definition of motif, corresponding to the last example
of figure 2.

Definition 22 (Injective Topological Labeled Motif) Let G(V,E,C, c)
be a labeled graph drawn from a distribution of graphs under a given reference
random exchangeable model RG. Let m(Vm, Em, Cm, c) be a subgraph (induced
or non-induced) of G where Vm is the set of k nodes of m, Em is the set of
edges and Cm is the multiset of node labels. Let Nobs(m) be the number of
non-redundant occurrences of m in G, where p(Vp, Ep, Cp, c) is an occurrence
of m if there is a 1-to-1 mapping from Em to Ep such that for every (u, v) ∈
Em ∃(u′, v′) ∈ Ep such that c(u) = c(u′) and c(v) = c(v′). Let α be a critical
value. We say that m is a motif of G if the probability

P [N(m) ≥ Nobs(m)] ≤ α

where N(m) is a random variable representing the number of occurrences of
the motif under the reference model RG.
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From now on, we will denote m(Vm, Em, Cm) as mc. The significance of a motif
is always evaluated with respect to a reference random model, so the aim is
to find a good estimation of the distribution of the random variable N(mc)
under a properly selected random graph model.

3 The Expected Degree Distribution Random Model

The Chung-Lu model, also known as Expected Degree Distribution (EDD)
model was introduced in [6] for non-labeled graphs. EDD generates graphs
in which node degrees follow a given distribution. We review the definition
of EDD and extend it to labeled graphs where the degree of nodes depends,
at least partly, on labeled. This case would hold, for example, for chemical
graphs where most nodes labeled with carbon have degree 4 and all nodes
labeled with hydrogen have degree 1.

Given an undirected graph G(V,E) with |V | = N , we define a random
variable fD based on the degree distributions of G. Specifically, P (fD = d) is
the probability that a node has degree d in G.

Given fD, we can generate a new graph G′ = (V ′, E′) with |V ′| = |V | as
follows: assign degrees to each node i in V ′ by sampling according to the fD
distribution. An edge between two nodes i and j, with i 6= j, is generated with
probability:

P (i, j|D(i), D(j)) = min(1, γ ×D(i)×D(j)) (1)

where γ = 1/ [(N − 1)× E[fD]] and D(i) is the degree of node i within the
input graph.

According to the exchangeability assumptions, the occurrence probability
of a given motif does not depend on the occurrence position; further, dis-
joint occurrences are independent of one another. Therefore, the conditional
occurrence probability of the motif, given an assignment of expected degrees
D(i) to the nodes of the motif, can be expressed as the product of the edge
probabilities. To compute the occurrence probability of the topology motif m
with k nodes, under the EDD model we have to perform a summation over
the distributions of degrees D(i). Such a probability, as defined in [16], can be
expressed using the following equation:

µ(m) = γm++/2
k∏
u=1

E[f
mu+

D ] (2)

where fD is the degree distribution for nodes in the input network, m++ is
twice the total number of edges in m, mu+ is the number of out-going edges
from node u in m and E[f

mu+

D ] is the mu+ − th moment of the distribution
fD. Intuitively, the same probability can be computed in the case of directed
graphs by adapting the EDD to sample within a space of in-degree and out-
degree distributions. When dealing with a directed graph G = (V,E) with
|V | = N , we can generate random graphs by defining two random variables
Dout and Din. They are obtained by sampling from distributions of fDin

and
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fDout , which are the random variables of in-degree and out-degree distributions
of the input graph. Let Dout(i) and Din(i) be the out-degree and in-degree
of node i in the input graph, respectively. Then, EDD random graphs can be
created according to the following equation:

P (i, j) = min(1, γ ×Dout(i)×Din(j)) (3)

where γ = 1/ [(N − 1)× E[fDout ]]. To compute the probability of observing
an unlabeled topology of k nodes in a directed graph we use the following
equation:

µ(m) = γm++

k∏
u=1

E[f
mu+

Dout
]E[f

mu−
Din

]

where m++ is the total number of out-going edges in m, mu+ is the number of
out-going edges from node u in m and mu− is the number of in-going edges to
node u in m. E[f

mu+

Dout
] and E[f

mu−
Din

] are the moments of order mu+ and mu−
of distributions fDout

and fDin
, respectively.

In what follows we give the probability of injective motifs. Please refer to the
supplementary materials for multiset motifs, for the case in which the degree
is independent of labels, and for the analysis of induced motifs.

3.1 Expected degree distribution on labeled graphs

When dealing with graphs in which node degrees depend on labels, we have
the fD distribution of degrees and we can define a number of EDD conditional
distributions, one for each label. We extend the model of [6] to labeled graphs
as follows.

Let fD|c be a random variable defined as the degree distribution for nodes
with label c within the input graph G. Let P (fD = x|c) be the probability of
sampling a node in G with a degree x given the label c. Random graphs can
be created by defining the probability of adding an edge between two nodes
as in the case of undirected graphs under the EDD model with label-degree
independence (see equation 1), where D(i) is the degree of node i according
to fD|ci.

We define the occurrence probability of the topology of a labeled motif mC

with k nodes, given a label assignment C to the nodes of the motif, within the
graph as:

µ(mC |C) = γm++/2
k∏
u=1

E[f
mu+

D |cu] (4)

where fD|cu is the degree distribution for nodes with label cu in the input
network, m++ is twice the total number of edges in mC , mu+ is the number
of out-going edges from node u in mC and E[f

mu+

D |cu] is the mu+ − th mo-
ment of the conditional distribution fD|cu. Once again, the above equation of
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the occurrence probability is obtained by performing a summation over the
distributions of degrees.

When dealing with directed labeled graphs we have to define 2×|C| condi-
tional distributions. Given a label c we create two conditional random variables
fDout |c and fDin |c by making use of both the in-degree and out-degree distri-
butions of the input network.

We can then define two random variables fDout
and fDin

by sampling from
the distributions fDout

|c and fDin
|c, respectively. Let fDout

(i) and fDin
(i) be

the out-degree and in-degree of node i, respectively.
We define the occurrence probability of the topology of a labeled motif mC

in a list of k nodes within the directed graph, given a label assignment C, in
the following way:

µ(mC |C) = γm++

k∏
u=1

E[f
mu+

Dout
|cu]E[f

mu−
Din
|cu] (5)

where mu+ is the number of out-going edges from node u in mC , mu− is the
number of in-going edges from node u in mC and E[f

mu+

Dout
|cu] and E[f

mu−
Din
|cu]

are the moments of order mu+ and mu− of the conditional distributions
fDout

|cu and fDin
|cu, respectively.

Finally, the probability of observing the injective labeled motif mC is:

σ(mC) = µ(mC |C)× ν(C)

where ν(C) is computed as:

ν(C) =

k∏
u=1

P (cu) (6)

where P (cu) is the probability of observing the label cu of motif node u in the
graph. Notice that, in this case the labels in C have an order according the
corresponding label assignment to the nodes of the motif.

Figure 3 presents a toy example showing the computation of the topology
occurrence probability, the label probability and the labeled motif occurrence
probability for a non-induced injective motif in an undirected graph under an
EDD model with label-degree dependence.

4 Expectation and Variance of Non-Induced Motifs

We describe a method to compute the mean and the variance of the number of
non-induced occurrences of injective topological motifs under any exchange-
able random graph model [16,25].

Let mC be a motif of k nodes. It can occur in different positions within a
graph G. Let α = (i1, i2, ..., ik) be a k-tuple of ordered indexes (i.e., i1 < i2 <
. . . < ik) representing a potential location of mC in G. The number of such
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Fig. 3: Occurrence probability for a non-induced injective topological labeled
motif under the EDD random model with label-degree dependence on an undi-
rected graph. (a) Input graph G(V,E), input motif mC . We have two differ-
ent degrees within G, the fD distribution assumes values within the set 1, 2,
P (fD = 1) = 1

3 , P (fD = 2) = 2
3 , E[fD] = 5

3 , γ = 3
25 . The probability of the

two labels are P (R) = 1
3 , P (B) = 2

3 . We have to define the two labels’ condi-
tioned degree distributions: the fD|R distribution assumes values within the
set 1, 2, P (fD = 1|R) = 1

2 , P (fD = 2|R) = 1
2 , E[fD|R] = 3

2 , the fD|B distribu-
tion assumes values within the set 1, 2, P (fD = 1|B) = 1

4 , P (fD = 2|B) = 3
4 ,

E[fD|B] = 7
4 , E[f2D|B] = 13

4 . (b) Probability of the motif. Generate the set I3
containing all degree triples with labels R, B and B. The probability of the
motif is given as the sum of all probabilities of each occurrence times the prob-
ability of observing such node degrees given the labels times the probabilities
of the labels.

positions is
(
N
k

)
. We introduce a random variable Yα(mC) which equals one if

the topology mC occurs at position α and 0 otherwise.

Since we assume exchangeability of our random model, the distribution of
Yα(mC) does not depend on position α. We deal with overlaps among motifs
shortly. Yα(mC) is distributed according to a Bernoulli random variable B(p),
where p = σ(mC) is the probability of occurrence of motif mC at any position
within G.

Moreover, a motif mC in a position α can occur in different configurations,
where each configuration corresponds to a permutation of indexes in α. Some
permutations of the indexes yield the same motif, so we need to consider
only the set of its Non-Redundant Permutations (NRP) which we denote with
R(mC).

We introduce the concept of non-redundant labeled permutations of an
injective labeled motif. A labeled permutation of a motif mC is a labeled motif
resulting from a permutation of the nodes (and the corresponding labels) of
mC and the permutation is represented by its adjacency matrix plus the array
of labels of its nodes. Two labeled permutations are non-redundant iff one of
the following conditions hold: (i) their adjacency matrices are different; or (ii)
their adjacency matrices are equal, but the arrays of labels are different.
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We also denote with π(mC) = |R(mC)| the number of Non-Redundant
Permutations of mC . We then have the following random variable: N(mC) =∑
α

∑
m
′
C∈R(mC) Y (m

′

C).

Thanks to the exchangeability assumption, each permutation of mC has
the same probability of occurrence. The expectation of the count of a labeled
injective motif mC with structure m and multiset of labels C in a graph G
with N nodes is

E[N(mC)] =

(
N

k

)
× π(mC)× σ(mC) (7)

where
(
N
k

)
is the number of all possible locations of mC in G and σ(mC) is

the occurrence probability of the labeled motif mC , according to the chosen
random model.

We compute the variance of the number of occurrences of the labeled mo-
tif as V[N(mC)] = E[N2(mC)] − E[N(mC)]

2
. The expectation of N2(mC) is

computed considering that N2(mC) can be expressed as:

N2(mC) =
(∑

α

∑
m
′
C∈R(mC)

Yα(m
′

C)
)2

=

=
∑
α

∑
m
′
C∈R(mC)

∑
α′

∑
m
′′
C∈R(mC)

Yα(m
′

C) · Yα′(m
′′

C)

Therefore, E[N2(mC)] is the sum over all positions of the probabilities of
having Yα(m

′

C) · Yα′(m
′′

C) = 1. To compute these probabilities, we have to
take into account the possibility that occurrences overlap. Two occurrences of
a motif overlap if they share at least one node.

As suggested by [16], we define the concept of super-motif, which is a motif
composed of two NRPs of overlapping occurrences of a given motif. Given two
NRPs m

′
and m

′′
of a motif m and an integer s, we define the overlapping

operation with s common nodes as m
′
Ωsm

′′
. The result of the operation is

a new motif with 2k − s edges (see Figure 4 for an example). A super-motif
inherits labels from the ancestor motifs. Due to node overlapping, one or more
labels can overlap. Specifically, in the case of injective motifs, the overlapping
has to take into account the node labels. Therefore when two motifs of size
k overlap on s nodes, these nodes should share the same labels. This implies
that motifs having nodes of the same labels in incompatible positions will not
yield a super-motif. Figure 4 shows an example.

We can define an overlapping operations for two multi-sets of labels C1

and C2 with overlap s, C1ΠsC2, where C1ΠsC2 represents the set of labels
assigned to the super-motif.

Therefore, the probability of observing a labeled super-motif generated
from labeled motifs is the following:

σ(m
′

C ,m
′′

C , s) = µ(m
′

CΩsm
′′

C |CΠsC)× ν(CΠsC)
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Figure 4 Colored Super‐motif of a path of 3 nodes with overlap s=2. (a)  A super‐motif of 4 nodes 
obtained from the overlapping of two non‐redundant colored motifs of 3 nodes sharing two nodes. (b) 
Two non‐redundant permutations of a path with 3 nodes with the  corresponding adjacency matrices. 
In this case  to perform the overlapping the colors of the nodes have to be compatible. The overlapping 
involves two nodes, the colors of the last two nodes in the m’ motif have to be the same (in an inverted 
order) of the first two nodes in the motif m’’. The overlapping regions are represented (highlighted in 
red) by the bottom right sub‐matrix of m’ and upper left sub‐matrix of m’’. (c) The adjacency matrix of 
the super‐motif. The overlapping is applied by using an OR operator on the overlapping entries of m’ 
and m’’ sub‐matrices. 
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Fig. 4: Labeled Super-motif of a path of 3 nodes with overlap s = 2. (a) A
super-motif of 4 nodes obtained from the overlapping of two non-redundant
labeled motifs of 3 nodes sharing two nodes. (b) Two non-redundant permuta-
tions of a path with 3 nodes along with the corresponding adjacency matrices.
In this case, overlaps require that the labels of the nodes be compatible. The
overlapping involves two nodes, the labels of the last two nodes in the m′

motif have to be the same (in an inverted order) of the first two nodes in
the motif m′′. The overlapping regions are represented (highlighted in red) by
the bottom right sub-matrix of m′ and upper left sub-matrix of m′′. (c) The
adjacency matrix of the super-motif. The overlapping is applied by using an
OR operator on the overlapping entries of the m′ and m′′ sub-matrices.

where ν(CΠsC) is computed as in equation 6.

The computation of variance is based on the expectation of the squared
count of a labeled motif. The expectation is given by the contribution of two
terms, one is related to pairs of disjoint occurrences and one is related to pairs
of overlapping occurrences (with different amounts of overlap). In both cases
we have to consider: (i) all possible locations of the two occurrences of a motif
mC in the graph; (ii) all possible non-redundant permutations of mC .

The expectation of the squared count is given by the following equation:

E[N2(mC)] =

(
N

N − 2k, k, k

)
ρ2(mC)σ2(mC)+

k∑
s=1

(
N

k − s, s, k − s,N − 2k + s

) ∑
m′,m′′∈R(mC)

σ(m′C ,m
′′
C , s) (8)

where k is the number of nodes of motif mC and N is the number of nodes of
the graph,

(
N

N−2k,k,k
)

is the number of all possible combinations of locations of

two non-redundant permutations of m with no overlap and
(

N
k−s,s,k−s,N−2k+s

)
is the number of all possible combinations of locations of two non-redundant
permutations of m with overlap s.
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5 Assessing Non-Induced Motif Significance

To establish whether a motif mC is over-represented in a given graph, one
needs to calculate the probability (i.e. p-value) P [N(mC) ≥ Nobs(mC)], where
Nobs(mC) is the observed number of non-redundant occurrences of mC and
N(mC) is a random variable representing the number of occurrences of the mo-
tif in a graph generated according to the chosen reference model. The baseline
approach to the approximation of P [N(mC) ≥ Nobs(mC)] relies on simulation
through the usage of permutation tests. The method consists of generating a
certain number of random networks and computing the number of occurrences
of the motifs in such networks. The p-value is then approximated as the num-
ber of times the occurrences of the motif in the random networks exceeds the
number of occurrences of the motif in the target network, divided by the num-
ber of random networks. Thus, the reliability of the p-value is strictly related
to the number of randomizations performed.

To avoid such an expensive simulation, a key problem is to identify a
proper distribution fitting the number of observations in the reference random
model. Picard et al. [16] proposed a model for unlabeled graphs in which they
showed that the Pólya-Aeppli (denoted by PA) distribution (also known as
the Geometric-Poisson distribution) [26] is suitable to describe how the count
of motif occurrences may vary and can be used as an approximation of the
distribution of the count of N(mC).

Following [16], we observe that motifs come in clusters because they can
overlap. Also, clusters result in several occurrences of a motif with a reduced
number of vertices. Hence, given a graph we can observe a certain number
of clusters constructed from the overlap of the motifs. This number can be
modeled as a random variable that we call X1. On the other hand, suppose
we have a set of clusters obtained from the intersection (i.e. overlap) of pairs
of motifs. We can introduce a second random variable called X2 in which we
sample several times a cluster (notice that we can assume we have a distribu-
tion of clusters according to the overlap) until we observe the size of the cluster
we are looking for. We assume that X1 (modeling the number of clusters) has
a Poisson distribution, whereas X2 (modeling the probability of observing a
certain cluster size) has a Geometric distribution. Furthermore, the cluster
sizes are independent of each other. The PA distribution is obtained when the
cluster size has a geometric distribution G(1 − α), yielding a mean size of a
cluster of 1/(1− α).

In this case we have that X ∼ PA(λ, α) is a random variable representing
the number of observed events (i.e. motif occurrences in our case):

P (X = x) =

{
e−λαx

∑
c=1···x

1
c!

(
x−1
c−1
) [λ(1−α)

α

]c
if x > 0

e−λ if x = 0

The mean and the variance of PA(λ, α) are defined as λ
1−α and λ(1+α)

(1−α)2 .

By making use of the mean and variance obtained using the exchangeable
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random graph model we can deduce the parameters of the distribution as

α = V[N(mC)]−E[N(mC)]
V[N(mC)]+E[N(mC)] and λ = (1− α)× E[N(mC)].

6 Experimental analysis

In this section we analyze the accuracy and speed of the analytical model
in the identification of statistically significant motifs under the random EDD
model. We make use of directed and undirected graphs of different sizes. To
evaluate the quality of results, we compare the analytical p-values with those
obtained through a simulation-based permutation test.

In several cases, the Polya-Aeppli (PA) distribution provides a better fit
of the empirical distribution of motif counts in a sample of EDD graphs than
the Gaussian distribution (see Supplementary materials for the experiments).

In terms of running time, we demonstrate that the analytical model usually
vastly outperforms the simulation based method. The speed-up is greatest for
non-induced motifs.

Finally, we report some examples of a few small significant and non-significant
motifs that have be found in two large networks by using our analytical-based
model: (i) an actor-actor collaboration network and (ii) a paper citation net-
work.

In all the experiments we used the GLabTrie algorithm (see The supple-
mentary material for a complete description of the algorithm) to count motifs
occurrences in input and random EDD graphs.

The analytical model and GLabTrie have been implemented in Java and
integrated in a software called FlashMotif. For purposes of reproducibility and
for community use, we provide both source and jar executable of FlashMotif.
The executable requires Java 8 (or more) and works on all platforms. The
program and the source code are available at http://alpha.dmi.unict.it/

flashMotif/. Experiments have been performed on an Intel Core i3-3240 CPU
with 3.40 Ghz.

6.1 Dataset

We used a dataset of labeled graphs with nine real graphs and two artificial
graphs. Table 1 describes their main characteristics.

roget graph is taken from the Roget’s Thesaurus of 1879 and describes
the associations between pairs of words of English that have similar meanings
[28]. Nodes are category words and an edge connects two nodes iff they are
directly related to each other in the book.

hamsterster is a graph of friendships between owners of hamsters at the
website Hamsterster.com.

openflights is a graph extracted from Openflights.org and represents all
existing air routes between different airports around the world in 2011 [29].
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Table 1: Database of colored graphs.

Graph Orientation Nodes Edges Node colors
roget Undirected 1,010 3,648 6

hamsterster Undirected 2,426 16,631 16
openflights Undirected 2,939 15,677 5
ppihuman Undirected 9,506 37,054 11
ppiyeast Undirected 2,617 11,855 13

neuralworm Directed 279 2,990 3
polblogs Directed 1,224 19,022 2

dblp Directed 12,591 49,744 8
foldoc Directed 13,356 120,238 14

artnetundir Undirected 2,000 6,000 8
artnetdir Directed 2,000 8,000 7

ppihuman is a protein-protein interaction (PPI) network in human, taken
from the HPRD database [30].

ppiyeast is a PPI network in yeast, compiled by von Mering et al. [31],
combining data taken from different sources (experimental techniques, corre-
lations, genetic interactions and reference sets of known complexes). In order
to include trusted and reliable interactions, the PPI network contains only
PPIs with ”high” and ”medium” level of confidence, according to the quality
assessment analysis performed by von Mering et al.in [31].

neuralworm is the complete neural network in worm and describes the
synaptic connections between neuron cells [32]. polblogs is a directed graph
of hyperlinks between weblogs on US politics of 2004 [33].

dblp is the directed citation network of DBLP, a database of scientific
publications, where each node in the graph is a publication and an edge goes
from A to B iff A cites B [34].

foldoc is a directed semantic network taken from the on-line computing
dictionary FOLDOC (http://foldoc.org), where nodes are computer science
terms and edges connect two terms X and Y iff Y is used to explain the
meaning of X [35].

Nodes of each real graph have been annotated with the following labels. In
the roget graph, nodes are labeled according to the existing classification of
categories into 6 domains (’abstract relations’, ’space’, ’matter’, ’intellectual
faculties’, ’voluntary powers’ and ’sentiments’). Each domain maps to a specific
label. Nodes of hamsterster have been annotated with 16 different species
of hamsters. In openflights, airports have been associated to one of the five
continents.

For the labeling of nodes in ppihuman, we used Gene Ontology (GO) [36],
which is a multi-hierarchical dictionary of terms related to biological processes,
cellular components and biological functions. GO is commonly used for the
analysis of biological networks [37,38]. Each hierarchy of GO terms (e.g. the
one for biological processes) is represented by tree data structures. We anno-
tated proteins with GO processes down to the first level of the corresponding
tree yielding 11 node labels. Ten of them represent specific kinds of biolog-
ical processes such as: ’whole-organism process’, ’metabolism’, ’regulation’,



18 Giovanni Micale et al.

’cellular organization’, ’development’, ’localization’, ’signaling’, ’response to
stimulus’, ’biological adhesion’ and ’reproduction’. A special label represent-
ing the generic biological process has been associated to proteins for which we
did not have GO annotations.

Proteins in ppiyeast have been annotated using the MIPS functional
catalogue FunCat [39]. In particular, we followed the functional annotation
scheme designed by von Mering et al. in [31] where each protein is assigned
to exactly one of the following categories: ’energy production’, ’aminoacid
metabolism’, ’other metabolism’, ’translation’, ’transcription’, ’transcriptional
control’, ’protein fate’, ’cellular organization’, ’transport and sensing’, ’stress
and defense’, ’genome maintenance’, ’cellular fate’ and ’uncharacterized func-
tion’.

Neurons in neuralworm are labeled according to their putative roles
(’sensory neurons’, ’interneurons’ and ’motor neurons’). In polblogs nodes
have been classified depending on their political leaning (’liberal’ and ’conser-
vative’). dblp nodes has been annotated with different kinds of publications
(’articles’, ’inproceedings’, ’proceedings’, ’books’, ’incollections’, ’phd thesis’
and ’master thesis’) or ’www’ if the node refers to a cited website. Comput-
ing terms in foldoc have been labeled according to their domains: ’jargon’,
’computer science’, ’hardware’, ’programming’, ’graphics’ and ’multimedia’,
’science’, ’people and organizations’, ’data’, ’networking’, ’documentation’,
’operating systems’, ’languages’, ’software’ and ’various terms’.

artnetundir and artnetdir are artificial graphs where nodes with the
same degree have the same label. They have been generated, starting from a
lattice graph, by iteratively removing random edges until the desired number
of edges is obtained. We include artificial graphs because these graphs allow
us to test the model in the color-topology-dependent case.

6.2 Accuracy of the model

The accuracy of the analytical model is determined by its ability to recover the
same set of motifs of the simulation-based approach, given a p-value threshold
for motif significance. We first computed all labeled subgraphs with 3 and 4
nodes both in the simulation-based approach and in the analytical model. For
each real graph we ran eight different experiments, considering all possible
definitions of motifs (Multiset and Injective, induced and non-induced) and
EDD models (with label-degree dependence and independence) using directed
and undirected graphs. As regards artificial graphs, we ran experiments with
label-degree dependent only, since in these networks node labels and node
degrees are dependent by construction. This led to a total of 160 different
tests. The simulation-based p-value was established by using an ensemble of
1,000 random graphs generated under the EDD model. However, we can notice
that p-values which are much lower or higher than the critical threshold (i.e.
0.05) are not so affected by the number of networks. Therefore, in principle, we
could expect few differences between p-values with 500 or 1000 simulation. On
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the other hand, p-values close to the critical threshold are clearly influenced by
the number of networks. The choice of this number represents a good trade-off
between the accuracy of the simulation-based p-value and the running time of
the simulation-based approach.

Labeled motifs present in the input graphs are then classified into ’posi-
tives’ and ’negatives’, depending on whether their simulation-based p-values
are lower or higher than a threshold P , respectively. In our experiments, we
fixed a p-value P to be 0.05, a common value used to establish the statistical
significance of a motif. To obtain the precision/recall curve we fixed the p-value
for the simulation and varied the p-values for the analytical computation.

Intuitively, the simulation runs are taken to yield the gold standard and the
question is how well do the analytical predictions match that gold standard.
We denote as ’true positives’ (TP) all the instances of graph motifs accord-
ing to simulation that have a p-value less than P using the analytical model.
We denote as ’true negatives’ (TN) all the graph patterns that are not motifs
according to simulation and have p-values greater than P in the analytical
model. Corresponding definitions hold for both ’false positives’ (FP) (analyt-
ical assigns low p-value but simulation assigns high p-value, so graph pattern
is not a motif according to the simulation gold standard) and ’false negatives’
(FN) (analytical assigns high p-value but simulation assigns low p-value).

For each of the 160 tests we plotted the Precision-Recall (PR) curve. In
Figs. 5 and 6 we report the PR curves for different kinds of non-induced
and induced motifs and different EDD models with 4 nodes in all graphs.
PR curves for non-induced and induced motifs with 3 nodes are available as
Supplementary Materials.

The results clearly show that the accuracy of the model is very high for all
graphs and for all motif and EDD model definitions. The number of false pos-
itives and false negatives is generally very low, so there is a strong correlation
between the results found using the analytical model as to the gold standard
simulation-based approach.

6.3 Running times

We compared the performance of the analytical model to the simulation-based
model in all 160 tests.

In Tables 2, 3, 4 and 5 we report, for each graph and for each motif and
EDD model definition, the running time for the computation of all non-induced
and induced multiset and injective topological labeled motifs of size k (with
k = 3, 4), respectively.

The results show that the analytical model is faster than the simulation-
based algorithm for all non-induced motifs, regardless of motif and EDD model
definitions, usually by orders of magnitude. Regarding induced motifs, the
analytical model is very fast in the case of undirected graphs but can be slower
than the simulation-based algorithm in the case of directed graphs, especially
when the number of node labels is high (e.g. foldoc). This represents the
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Table 2: Running times (secs) of analytical model-based algorithm vs
simulation-based algorithm for the computation of non-induced multiset la-
beled motifs (D=label-degree dependent, I=label-degree independent). Artifi-
cial networks have been tested only in the label-degree dependent model.

Graph k Simulation-based algorithm Analytical-based algorithm
I-Multiset D-Multiset I-Multiset D-Multiset

roget
3 27.92 27.22 0.03 0.03
4 175.52 206.73 0.28 0.76

hamsterster
3 283.18 257.05 0.35 0.43
4 11550.39 9824.35 19.08 30.97

openflights
3 380.10 339.97 0.48 0.51
4 16345.06 12922.77 27.24 43.00

ppihuman
3 3413.27 3360.45 2.16 2.75
4 25736.71 20846.42 34.66 46.69

ppiyeast
3 173.07 0.73 335.69 1.02
4 4967.54 6.89 202192.80 235.45

neuralworm
3 23.19 25.48 0.05 0.08
4 782.68 2365.53 4.83 12.18

polblogs
3 374.59 325.71 0.74 1.12
4 34755.42 30465.09 131.38 234.78

dblp
3 7639.44 7559.17 4.29 4.41
4 60142.39 53544.69 111.39 140.00

foldoc
3 9352.80 9269.15 5.76 7.38
4 95923.70 132947.10 300.57 902.32

artnetundir
3 - 109.67 - 0.14
4 - 191.78 - 0.57

artnetdir
3 - 155.13 - 0.13
4 - 1085.88 - 3.95

Avg performance ratio of anal. vs simul. 724x 588x

worst case for the analytical model, since it needs to compute several Kocay
matrices (discussed in the supplementary materials), one for each possible
combination of labels, and many terms in the variance and the covariance
computation, whose number depends on the count of topologies of a given
size. Considering all possible tests, the analytical model is on average 650
times faster than the simulation-based model (last row of Tables 2, 3, 4 and
5).

6.4 Scalability Tests: Actors in Movies and Paper Citations

To test the scalability of our framework we applied FlashMotif on two big
networks: an actor collaboration network and a paper citation network.

The actor collaboration network was built from the IMDB database
(http://www.imdb.com). Nodes are actors and links connect pairs of actors
who acted together in at least one movie.

Data about actors, movies and movie genres were downloaded as flat files.
We decided to focus only on movies made in the United States. Two actors
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Table 3: Running times (secs) of analytical model-based algorithm vs
simulation-based algorithm for the computation of non-induced injective la-
beled motifs (D=label-degree dependent, I=label-degree independent). Artifi-
cial networks have been tested only in the label-degree dependent model.

Graph k Simulation-based algorithm Analytical-based algorithm
I-Injective D-Injective I-Injective D-Injective

roget
3 26.91 26.78 0.03 0.03
4 206.40 195.36 0.64 0.64

hamsterster
3 256.22 255.94 0.31 0.35
4 10081.02 9647.71 20.83 20.87

openflights
3 342.15 339.95 0.37 0.37
4 13084.28 12736.22 26.43 26.36

ppihuman
3 3362.08 3364.48 2.55 2.23
4 21034.03 20590.24 33.38 33.55

ppiyeast
3 470.30 1.14 366.68 1.19
4 428612.79 215.62 210876.81 215.50

neuralworm
3 26.25 25.10 0.05 0.06
4 3032.65 2353.22 9.83 9.87

polblogs
3 325.48 327.74 0.70 0.71
4 30363.26 30263.51 130.06 131.38

dblp
3 7565.49 7558.59 4.37 4.09
4 52601.67 53486.89 101.11 101.31

foldoc
3 9239.93 9243.77 6.50 6.36
4 130550.67 129241.64 820.60 824.58

artnetundir
3 - 93.57 - 0.11
4 - 186.16 - 0.47

artnetdir
3 - 154.29 - 0.09
4 - 1078.60 - 3.83

Avg performance ratio of anal. vs simul. 673x 725x

are linked if they acted together in at least one USA movie. The resulting
undirected network consists of 1,283,456 nodes and 54,272,070 edges.

Nodes of the actor collaboration network were then labeled according to
the genre of the movies in which the actor mostly acted. For example, an actor
was labeled with ’comedy’ if he or she mostly acted in comedies. The network
contains 29 labels, representing different movie genres, plus one special label
for the ’undefined’ genre.

The paper citation network has been extracted from the SciMAG 2015 open
data set [40,41], which integrates citation data from the Microsoft Academic
Graph [41] with paper annotation data coming from the SciMago classification
of academic journals (http://www.scimagojr.com). In such a directed network,
a paper A is linked to a paper B if A cites B.

To build the network, we considered papers published from 2000 to present
days and annotated with at least one of the following SciMago categories:
’Computer Science’, ’Economics’, ’Engineering’, ’Mathematics’, ’Medicine’ and
’Physics and Astronomy’. The resulting network has 9,042,661 nodes and
71,191,166 edges.

We used FlashMotif to count and estimate the significance of all labeled
cliques of 3 and 4 nodes in the two networks. For the directed network of paper
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Table 4: Running times (secs) of analytical model-based algorithm vs
simulation-based algorithm for the computation of induced multiset labeled
motifs (D=label-degree dependent, I=label-degree independent). Artificial
networks have been tested only in the label-degree dependent model.

Graph k Simulation-based algorithm Analytical-based algorithm
I-Multiset D-Multiset I-Multiset D-Multiset

roget
3 27.90 26.52 0.02 0.03
4 175.62 155.15 0.19 3.91

hamsterster
3 283.50 252.23 0.30 0.41
4 11427.55 8842.34 14.21 56.63

openflights
3 379.11 340.70 0.36 0.45
4 16381.74 12899.35 18.41 24.62

ppihuman
3 3422.87 3362.88 2.58 2.78
4 25662.37 20225.28 31.66 75.88

ppiyeast
3 184.31 0.42 189.94 0.81
4 4342.26 4.07 3806.38 59.93

neuralworm
3 23.04 20.41 0.03 0.08
4 779.08 682.28 14.69 509.97

polblogs
3 375.09 323.70 0.50 0.64
4 34911.58 29126.04 56.39 183.10

dblp
3 7639.00 7560.25 4.00 4.60
4 59834.26 53181.85 118.61 4243.94

foldoc
3 9340.76 9174.23 5.21 9.96
4 96164.98 87260.57 144.02 155903.10

artnetundir
3 - 92.26 - 0.08
4 - 172.69 - 3.52

artnetdir
3 - 150.89 - 0.52
4 - 395.96 - 7019.75

Avg performance ratio of anal. vs simul. 1034x 472x

citations, a clique is defined as any topology where all the nodes are connected
to one another, regardless of the direction of the edges. We considered induced
injective motifs with label-degree dependency.

FlashMotif took about 26 minutes to retrieve all 2,787 3-cliques present
in the actor network and 24 seconds to compute the analytical p-values. The
counting of all 13,649 4-cliques took about 39 hours whereas the analytical
p-values were computed in 1.3 minutes. For the paper citation network, Flash-
Motif took 7.7 minutes and 25.7 minutes to count all 658 3-cliques and 3,979
4-cliques, respectively. Analytical p-values for 3-cliques and 4-cliques were com-
puted in 3.5 seconds and about 169 minutes, respectively.

The complete set of labeled cliques in both networks is available as Supple-
mentary Material. In Tables 6 and 7 we report a few examples of significant and
non-significant cliques that we found in our experiments. The table reports,
for each clique, the number of occurrences in the input network, the expected
number of occurrences in random graphs according to the EDD model and the
p-value. We also report the time needed to check the significance of the single
labeled motif by using the analytical-based model and the estimation of the
time needed by the simulation-based model with 1,000 EDD random graphs.
The time for the simulation has been estimated by multiplying the time needed
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Table 5: Running times (secs) of analytical model-based algorithm vs
simulation-based algorithm for the computation of induced injective labeled
motifs (D=label-degree dependent, I=label-degree independent). Artificial
networks have been tested only in the label-degree dependent model.

Graph k Simulation-based algorithm Analytical-based algorithm
I-Injective D-Injective I-Injective D-Injective

roget
3 26.29 26.11 0.03 0.03
4 145.61 144.87 3.83 3.86

hamsterster
3 250.70 251.30 0.30 0.34
4 8787.20 8735.41 51.17 51.31

openflights
3 341.44 339.43 0.34 0.33
4 13011.54 12751.47 17.79 17.87

ppihuman
3 3366.29 3363.07 2.55 2.55
4 20029.44 20459.98 65.08 65.24

ppiyeast
3 173.55 0.96 184.49 0.99
4 3790.26 58.02 3638.92 56.83

neuralworm
3 20.01 20.15 0.07 0.07
4 648.55 649.20 506.15 512.08

polblogs
3 324.76 326.32 0.48 0.47
4 29315.97 29130.96 167.71 169.42

dblp
3 7555.49 7562.57 4.30 4.27
4 51616.89 52238.83 4172.64 4212.15

foldoc
3 9166.24 9183.45 9.84 9.27
4 82440.02 83560.30 154798.84 155974.89

artnetundir
3 - 91.86 - 0.08
4 - 167.53 - 3.50

artnetdir
3 - 150.17 - 0.50
4 - 386.33 - 7017.91

Avg performance ratio of anal. vs simul. 525x 531x

for a single random graph by the number of random graphs (1,000). Notice
that such time includes the generation of each random graph and the computa-
tion of relative motif frequency. Whereas this operation could be parallelized,
it represents a formidable amount of computation.

As expected, actors of the same genre tend to appear together, forming
dense communities in the network and a high number of colored 3-cliques
and 4-cliques, that are consequently significant as motifs. Likewise, papers of
the same (or similar) categories are very frequent and significant as motifs.
However, we found many interesting examples of recurrent patterns in which
actors of different genres and papers of different disciplines appear together.
For instance, drama and comedy actors are very often linked to one another:
this can be explained by the fact that i) several actors acting in comedies also
act in many dramatic movies and vice versa, ii) ’comedy’ and ’drama’ are
interchangeable genres and many movies can be comedies and dramas at the
same time. In the paper citation network, an interesting example is represented
by a directed clique with papers published in Medicine and Economics areas.
We also found some under-represented motifs. For example, actors of adult
movies tend to work together and seldom appear with other actors. In the
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Table 6: Examples of significant and non-significant 3-cliques and 4-cliques
motifs found in the actor collaboration network. P-values below the sig-
nificance threshold (0.05) are highlighted in bold. Label map: D=Drama,
F=Family, ADU=Adult, CO=Comedy, N=News, W=Western, H=Horror,
ADV=Adventure, AC=Action, T=Thriller, CR=Crime, M=Mystery.

Clique labels Occurrences Mean P-value Analytical Simulation
EDD time time

D, F, ADU 47 131.875 0.955 1.88 secs ' 221 days
CO, N, W 1 10.122 0.982 1.86 secs ' 221 days
H, D, CO 14,404,872 580,375.691 0.0 2.45 secs ' 221 days

ADV, AC, T 13,453 367,417 1.92E-14 1.82 secs ' 221 days
CO, F 3 3.391 0.367 1.97 secs ' 221 days

ADU, W
D, ADU 181 74.81 0.149 1.90 secs ' 221 days
ADU, W
D, CO 26,712,605,349 5,624,541.844 0.0 3.64 secs ' 226 days
CO, CO
CR, M 2,337,597 0.102 1.11E-16 1.91 secs ' 221 days
ADV, W

paper citation network, cliques with Medicine and Physics papers appear to
be underrepresented.

Once again, the running times clearly show that the analytical model out-
performs simulation-based model. In this experiments, the difference between
the two approaches is 7 order of magnitude. Since the networks are very big,
the generation of a single random graph requires several hours and this im-
pacts the total running time, even though the computation of frequencies is
very fast. The analytical model is extremely fast and its time is independent
of the size of the network.

7 Conclusions

The labels of nodes convey meaning just as their relationships do. Node mean-
ing may have to do with political party, physical location, type of actor, or
chemical constituent, just to mention a few possibilities. Relationships are
characterized by edges.

Finding motifs in such graphs corresponds to finding relationships among
labeled nodes that would not be expected at random for similar graphs. The
simulation approach to find motifs is to generate random graphs and count.
This counting task demands the majority of the time in any motif calculation.

This paper has extended previous works in unlabeled graphs and topology-
agnostic labeled graphs [16,25] to find fast analytical models for labeled motifs
that encode topology. Our model handles (i) directed and undirected graphs,
(ii) induced and non-induced motifs, (iii) label-dependent valences and la-
bel-independent valences, and (iv) two models of labeled motifs. Across a
wide variety of real and simulated graphs, our analytical approach is vastly
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Table 7: Examples of significant and non-significant 3-cliques and 4-cliques
motifs found in the paper citation network. P-values below the signifi-
cance threshold (0.05) are highlighted in bold. Label map: C=Computer Sci-
ence, ME=Medicine, EC=Economics, EN=Engineering, MA=Mathematics,
P=Physics and Astronomy.

Motif Occurrences Mean P-value Analytical Simulation
EDD time time

P

EC ME
65 1,568.923 0.859 2.70 secs ' 3167 days

ME

ME EN
6 34.103 0.999 2.67 secs ' 3168 days

ME

ME ME
176,687 0.266 3.11E-15 2.59 secs ' 3168 days

C

EC MA
1,977 1.881 0.0 2.72 secs ' 3167 days

P ME

EC ME
17 9.957 0.176 94.24 secs ' 3168 days

ME EC

EC ME
249 4.26E-8 1.11E-16 44.57 secs ' 3167 days

C C

ME ME
2,814 2.81E-21 0.0 12.74 secs ' 3167 days

P MA

EN MA
922 1.36E-7 0.0 60.58 secs ' 3167 days

faster (usually hundreds of times faster) than the simulation approach for
non-induced motifs and generally faster for induced subgraphs as well.

Our methods are based on the Expected Degree Distribution Model (EDD),
which preserves the degree distribution of the original network. The EDD
model has also been showed to be capable to generate the right type of trian-
gles for certain kind of real networks [42]. Although degree-distribution-based
approaches are the most widely recognized for measuring significance of net-
work motifs, they do have some limitations when applied as null model in
certain kind of real networks [5,42]. In the future we will explore other more
realistic graph models in connection with our labeled graph analytical model,
like the Block Two-Level Erdös-Rényi (BTER) model and Exponential Ran-
dom Graph models.
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Our software is available at http://alpha.dmi.unict.it/flashMotif/.
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(a) Non-induced multiset motifs in EDD label-degree
independent model
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(b) Non-induced injective motifs in EDD label-degree
independent model
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(c) Non-induced multiset motifs in EDD label-degree
dependent model
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(d) Non-induced injective motifs in EDD label-degree
dependent model

Fig. 5: Precision-Recall curves for simulation-based and analytical p-values for
non-induced motifs with 4 nodes. These are nearly perfect curves, showing that
across network types and query types, the analytical model yields essentially
the same results as the simulation model.
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(a) Induced multiset motifs in EDD label-degree inde-
pendent model
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(b) Induced injective motifs in EDD label-degree inde-
pendent model
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(c) Induced multiset motifs in EDD label-degree depen-
dent model
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(d) Induced injective motifs in EDD label-degree depen-
dent model

Fig. 6: Precision-Recall curves for simulation-based and analytical p-values
for induced motifs with 4 nodes. These are nearly perfect curves, showing that
across network types and query types, the analytical model yields essentially
the same results as the simulation model.


