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Abstract

This paper builds upon Caplin and Leahy [2010], which introduced a new mathematical

apparatus for understanding NTU allocation markets, as such covering the housing market

and other markets for large indivisible goods. In the current paper we complete the study

of comparative statics initiated therein. We introduce homotopy methods to characterize

how equilibrium changes in response to arbitrary parameter changes. Generically, we show

that there can be five and only five qualitatively distinct forms of market transition: Graft;

Prune and Plant; Prune and Graft; Cycle and Reverse; and Shift and Replant. Our path-

following methods identify new algorithms for computing market equilibria.

1. Introduction

Among the most significant of all markets are those, such as the housing market, that allocate

large indivisible goods to households. These goods are best modeled as allocation markets with

non-transferable utility (NTU). Caplin and Leahy [2010] (henceforth CL) introduced a new

mathematical apparatus for understanding these markets. In the current paper we complete the

study of comparative statics initiated therein. We use homotopy methods to characterize how

the minimum price competitive equilibrium changes in response to arbitrary parameter changes.

Given an initial equilibrium, we follow a path through parameter space, building up the discrete

change in equilibrium from infinitesimal ones. We show that along the generic path equilibria

evolve in a very controlled manner. There are five and only five qualitatively distinct forms of
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comments. Leahy thanks the NSF for financial support.



market transition. The homotopy path decomposes all comparative statics into these five basic

operations.

In addition to identifying market transitions, we show that our path-following methods are

ideally suited to algorithmic use. They can be used in principle to compute minimum price

equilibria from a starting point with a trivial equilibrium. The resulting algorithms may help to

overcome computational barriers to application of the NTU allocation model.1 It is also not hard

to envision adopting our methods to studying the dynamic properties of markets for indivisible

goods by recasting the homotopy paths as sample paths which characterize the evolution of the

market over time.

Demange and Gale [1985] show that there exists a minimum price equilibrium in the class

of allocation markets that we consider, those in which each agent is either a buyer or a seller.

CL showed that these equilibria correspond to the solutions to a certain optimization problem.

This optimization is over a set of mathematical structures, called GA-structures, that combine

an allocation of goods to buyers along with a particular class of directed graphs that summarize

key indifference relations among goods. CL showed that small changes in parameter values

generally leave unchanged the allocation and the indifference relations that characterize the

minimum price competitive equilibrium. Given that “local” comparative statics involve a fixed

GA-structure, changes in model parameters that cause the price of a given good to change

impact only those goods that “follow” it in the corresponding directed graph.

In this paper we use GA-structures to characterize comparative statics in the large. We

study how the allocation of goods and the pattern of local interdependence changes when there

is a discrete shift in the character of the minimum price equilibrium. While there are examples

in which the most minor change in parameters cause the entire structure of the equilibrium to

change in arbitrary ways, we show such cases to be the exception rather than the rule. We

introduce a natural definition of regularity for comparative static paths and show generically

that small parameter changes can induce five and only five distinct forms of market transitions.

We use GA-structures to illustrate the precise nature of each such transition. For reasons that

will be clear, the market transitions are labeled as: Graft; Pruni; Prune and Graft; Cyce and

Reverse; and Shift and Replant.

Markets for indivisible goods are characterized by multiple equilibria. Due to the presence of

non-convexities, small changes in prices often do not alter the equilibrium allocation. We focus

1The transferable utility case is well covered in this regard: the Hungarian algorithm of Kuhn [1955] and
Munkres [1957] can be used to compute the equilibrium allocation, while the ascending auction mechanism of
Demange, Gale and Sotomayor (1986) solves for the minimum price equilibrium in a discretized version of the
model.
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on the minimum equilibrium price for a number of reasons. First, CL established all equilibria

are in a well-defined sense minimum price equilibria of suitably perturbed models. The minimum

and maximal equilibrium prices define the boundaries of all equilibria. The two prices have the

same structure. The maximum equilibrium price is simply the dual of the minimum, in which

the roles of buyers and sellers are reversed. Moreover, CL show that all equilibrium prices may

be thought of as minimal equilibrium prices for some set of parameter values. Finally, Demange

and Gale [1985] show that the minimal equilibrium price vector is not manipulable by buyers,

making it a natural benchmark for multi-unit auctions.

Section 2 presents the general model and summarizes relevant results fromCL. The additional

results in this paper rest in part on our ability to count the number of distinct GA-structures.

The key cardinality results are in section 3. They are derived by connecting the number of

GA-structures with the structure of market demand at minimum equilibrium prices. We show

that there is typically only one GA-structure, and that the most important points of market

transition involve two and only two such structures. Section 4 introduces the domain in which

we study comparative statics, which involves paths through a rich space of model parameters.

Section 5 identifies the sense in which comparative static transitions are almost always “regular”,

in that the replacement for a given GA-structure is a unique second element that appears at a

point of transition. Section 6 identifies the five generic forms of market adjustment. Section 7

shows how to use path-following methods to algorithmically identify the minimum equilibrium

price. Section 8 concludes. All proofs are in the Appendix.

2. Background

2.1. Model

There is a set of buyers xa ∈ X, 1 ≤ a ≤ m, and a set of indivisible goods yi ∈ Y , 1 ≤ i ≤ n with

n > m. The goods are initially held by the sellers. Buyers may purchase the indivisible goods

from sellers by making a transfer in terms of a homogeneous, perfectly divisible, numeraire good,

which may be thought of as money.

Buyers derive utility from at most one element of Y . The payoff for buyer xa is summarized

by the utility function Ua : Y × R → R, where Ua(yi, pi) is the utility to xa from the purchase

of yi with a transfer of pi of the numeraire good.

The supply side is trivial. Sellers choose only whether or not to sell. They do not purchase

the indivisible goods from other sellers. Each seller wishes only to obtain the highest possible

price above a reservation level. Let r ∈ Rn
+ denote the vector of seller reservation prices. Overall,
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we can limit attention to a set Π in the search for competitive equilibria,

Π =
©
p ∈ Rn

+|p ≥ r and pn−a = rn−a = 0 all 0 ≤ a ≤ m− 1
ª
.

Given any price vector p ∈ Π, the (non-empty) demand correspondence Da(p) specifies

members of Y that maximize the utility of buyer xa,

Da(p) = {yi ∈ Y |Ua(yi, pi) ≥ Ua(yk, pk) for all yk ∈ Ya} .

An allocation μ : X → Y is a one-to-one mapping from buyers to goods. The set of all

allocations is M

A competitive equilibrium is a price vector and an allocation such that all buyers choose

optimally and all goods with prices above their reservation level are allocated.

Definition A competitive equilibrium is a pair (p∗, μ∗) with p∗ ∈ Rn and μ∗ ∈M such that:

1. μ∗a ∈ Da(p
∗) for all xa ∈ X.

2. p∗i ≥ ri for all yi ∈ Y .

3. If yi ∈ U(p∗), then there exists xa ∈ X such that μ∗a = yi.

The first condition is buyer optimality. The allocation must maximize the utility of each

buyer. The second condition is seller optimality. No seller will part for a good for less than

the reservation price. The third states that all goods with prices above reservation must be

allocated. This ensures that supply is equal to demand.

Wemake continuity and range assumptions that guarantee that the set of equilibria is a closed

lattice (see Demange and Gale [1985]). The first assumption is a straight forward regularity

assumption. The second assumption in combination with the first ensures that given any buyer,

any two goods, and a price for one of the goods, there is a price for the second that makes the

buyer indifferent between the two goods.

Assumption A For each buyer xa ∈ X and good yi ∈ Y ,

1. Ua(yi, pi) is continuously differentiable in pi and strictly decreasing in pi.

2. limpi→∞Ua(yi, pi) = −∞ and limpi→−∞Ua(yi, pi) =∞.
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With Assumption A we know not only that there is a competitive equilibrium allocation, but

also that there is a minimum equilibrium price (henceforth MEP) p
¯
∈ Π, which has the property

that it is an equilibrium price and that, for any equilibrium price,

pi ≥ p
¯ i
all yi ∈ Y .

Note we have presented the model without explicit reference to buyers’ endowment of the

numeraire good. We have implicitly assumed that buyers hold enough of the numeraire good

to buy the goods that they are assigned at the competitive equilibrium prices. An alternative

approach would be to express utility in terms of the endowment left over after purchase and to

include the additional assumption that each buyer prefers exit to spending the entire endowment

on a purchase. This condition would hold for any utility function that satisfied the Inada

conditions. This is the approach taken by Kaneko (1982) and is equivalent to the current one.

2.2. GA-Structures

CL introduce GA-structures, which combine an allocation of goods with a particular class of

graph, to study the structure of equilibria in the allocation model. The graphs in question are

directed graphs on vertex set Y that: are forests of trees (i.e. contain no cycles); that are rooted,

in the sense that each component tree has a unique element that is specified as its root, and in

which each edge is directed away from the root. We let F denote the class of directed rooted

forests on vertex set Y . Note the insistence that all goods that are at the “tail” of a directed

edge are allocated.

Definition A graph-allocation structure (GA-structure) comprises:

1. A directed graph F = (Y,R,E) with vertex set Y , root set R ⊆ Y , and edge set

E ∈ Y 2 in which F is a forest of trees, each component of F contains a unique

element of R and each edge (yi, yk) ∈ E is directed away from the corresponding

element of R.

2. An allocation μ ∈ M such that, if (yi, yk) ∈ E, then there exists xa ∈ X such that

μ(xa) = yi.

We let G denote the set of all GA-structures.
CL construct a natural mapping from G into prices by first pricing root goods at reservation,

and then iteratively pricing successors by indifference of the individual allocated to their unique

predecessor. Assumption A guarantees that this construction is well-defined.
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Definition The function q : G → Rn, the price generated by graph-allocation structure (μ, F ) ∈
G is defined by setting qi(μ, F ) = ri for all yi ∈ R(F ) ≡ A0, with iterative pricing of

successor goods yk ∈ S of As for s ≥ 1 based on the indifference condition,

Ua(yi, qi(μ, F )) = Ua(yk, qk(μ, F )). (2.1)

where μa = yi, and (yi, yk) ∈ E(F ), so that yi ∈ As is the direct predecessor of yk ∈ S.

2.3. The Min-Max Theorem

CL establish that with Assumption A, a solution to an optimization problem on these generated

prices identifies the minimum equilibrium price. It also establishes that any allocation that forms

part of a minimum price equilibrium (MPE) must also be identifiable from this optimization

problem.

Theorem (CL): q(μ∗, F ∗) is a minimum equilibrium price if and only if:X
i∈{1...n}

qi(μ
∗, F ∗) = min

μ∈M
max

F∈{F∈F|(μ,F )∈G}

X
i∈{1...n}

qi(μ, F ). (2.2)

Moreover, let (μ∗, F ∗) be an argument that solves (2.2). Then if qi(μ∗, F ∗) > ri for all

yi 6∈ R(F ) then (μ∗, qi(μ∗, F ∗)) is a MPE.

Comparative statics are particularly simple when there is one and only one element (μ∗, F ∗) ∈
G that solves (2.2) for some range of parameters. In such cases, a continuous change in the
model’s parameters do not change the allocation μ or the graph F . Changes in sellers reservation

have a direct effect on prices of root goods and changes in a buyer utility directly affects the

prices of goods that are direct successors of the good that that buyer is allocated to. These

changes propagate through the graph structure affecting the price of all successors in F .

3. Cardinality and the Demand Graph

The focus of this paper is on cases in which a change in parameters is large enough to force

a change in the equilibrium GA-structure. It turns out that this generally happens in a very

controlled manner. There is a sense in which it is rare to come across more than two solutions

to (2.2). For most parameter values there is only one solution. As one moves through the

parameter space, the generic path follows this single solution until at some point there a second
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solution appears along with the first.2 The path then follows one of these two solutions for a

while. The current section formalizes these arguments using counting arguments.

3.1. The GAME set

We begin by stating exactly what we mean to count. It is the set of (μ, F ) ∈ G which generate
the minimum equilibrium price and also have the property that μ allocates buyers not only to

the tails but to the heads of all edges in E(F ).3

Definition: The graph allocation minimum price equilibrium (GAME) set is,

Φ = {(μ, F ) ∈ G|(μ, q(μ, F )) is a MPE and for all (yi, yk) ∈ E(F ) =⇒ μa = yk some xa ∈ X} .

The condition that μ allocates a buyer to the head of each edge in E(F ) rules out some

uninteresting cases. Suppose, for example, that two goods y1 and y2 are both priced at reser-

vation, and that there is only one buyer who is indifferent between them at these prices. In

this case, there are four elements of G that generate the minimum price competitive equilibrium
and hence “solve” the min-max problem. There are two potential allocations, and for each

allocation we may either price both goods at reservation or use the buyer’s indifference to price

the unallocated good. The condition that μ allocates a buyer to the head of each edge in E(F )

rules out the use of indifference to price the unallocated good. In this case, Φ = 2.

Note that Φ depends on the parameters of the model through the minimum price equilibrium.

We suppress this dependence, as we are considering a fixed set of parameters at this point.

3.2. Demand Graphs and Condition M

The cardinality of the GAME set Φ is basic in the work that follows. We derive conditions

under which Φ is unique and under which it has two elements. We develop these cardinality

results using properties of demand at minimum equilibrium prices. We introduce the MPE

demand graph and a class of its subgraphs that turn out to be of particular importance in this

characterization.
2Throughout this paper we use the term generic in the topological sense. A property is generic if it holds on

a dense open set.
3The definition of Φ in this paper differs from that in CL. In that paper we did not need the restriction that

the heads of all edges are allocated.
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Definition: The MPE demand graph D(p
¯
) = (X,Y, E∗) is a bipartite graph with partition X

and Y , and an edge set defined by,

E∗ = {(xa, yj) ∈ X × Y |yj ∈ Da(p
¯
)}.

Definition: The edge set E ⊂ E∗ is said to satisfy Condition M, written E ∈M, if there exists

a partition {Y E
l |0 ≤ l ≤ L} of Y such that,

M1. Y E
0 is comprised of the elements of Y that are isolated in the demand graph.

M2. For l ≥ 1, each element of Y E
l is connected to the other elements of Y

E
l , but not to elements

of Y \Y E
l .

M3. For l ≥ 1, there is one and only one element, σEl ∈ Y , of degree (valence) 1 in each partition

set Y E
l . All other elements of Y

E
l have degree 2.

M4. For l ≥ 1, |XE
l | = |Y E

l | where XE
l =

©
xa ∈ X|(xa, yi) ∈ E some yi ∈ Y E

l

ª
.

M5. p
¯
i > ri implies that the degree of yi is equal to two.

Both the demand graph D and the set of subgraphsM depend on the price vector p
¯
which

determines the set of goods in each buyer’s demand set. To save on notation, we suppress this

dependence in much of what follows as we are considering a fixed set of parameters at this point.

3.3. A Counting Lemma

The reason for introducing these particular graphs is that they will correspond in a precise

manner with elements of Φ. M and Φ are essentially equivalent. Given a MEP p
¯
, we introduce

a bijection η :M→ Φ between Φ andM that provides structure to counting arguments. The

proofs of all propositions are in the appendix.

Lemma 1: Let p
¯
be a minimum equilibrium price vector. There exists a bijection η :M→ Φ

so that

|Φ| = |M|

Given E ∈M, the graph (X,Y, E) is a bipartite graph with partition {X,Y }. Since it is a
selection from the demand graph at p

¯
, each buyer is matched only to goods that are optimal at

these prices. With conditions M1-M4, (X,Y, E) is acyclic. Given one good in each component
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with degree 1, a cycle would either lead to fewer buyers than sellers or require a good with

degree greater than two. Each partition element Y E
l for l ≥ 1 therefore corresponds to a

distinct tree. In each such tree, the root good has degree 1 and all others have degree 2. F

is constructed recursively, beginning with the valence one goods and then at each step adding

as direct successors all goods that are two edges distant in E . Finally, Y E
0 is added to the root

set. The equality between the number of goods and buyers in each such set generates a natural

mapping μ. The valence one goods are allocated to their neighbors in E . Removing these buyers
creates a new set of valence one goods, who are then allocated to their neighbors, and so on.

Note that the equality of buyers and sellers in M4 guarantees that all goods in Y E
l are allocated.

This implies that all non-root goods are allocated and that the heads and tails of all edges in

E(F ) are allocated. Finally, it is easy to show that the (μ, F ) generated in this way generates

p
¯
, so that (μ, F ) ∈ Φ.

This bijection is illustrated in Figure 1 for a case in which there are five buyers and six

goods. Figure 1(a) illustrates E ∈M, with the partition {Y E
l |0 ≤ l ≤ L}. The sixth good is

unassigned, Y E
0 = y6. The other two partition sets are Y E

1 = {y1, y2, y3} and Y E
2 = {y4, y5}. To

draw the corresponding allocation η(E) we iterate from the goods of degree 1, so that μi = yi

for 1 ≤ i ≤ 5. The forest is found by placing down the three root goods, y1, y4, and y6 (which is
unoccupied) and then drawing all edges corresponding to additional demands of their matched

buyers, x1 and x4. Buyer x4 demands y5 in addition to y4, while buyer x1 demands y2 and y3

in addition to y1. Adding these as directed edges from the respective root good completes the

forest, as illustrated in Figure 1(b). The inverse mapping is also clear: if one starts from the

forest of directed rooted trees, all goods are demanded by the individual allocated to them, and

any individual allocated to a good at the origin of a directed edge demands all goods to which

such edges are directed.

3.4. Uniqueness

A characterization of demand graphs that give rise to uniqueness of the GAME set immediately

from Lemma 1. In the statement, d∗(yi) is the degree of vertex yi associated with demand graph

D.

Corollary 1: If E∗ ∈M and d∗(yi) = 2 =⇒ p
¯ i

> ri, then |Φ| = 1.

Since E∗ ∈ M all goods have valence less than two. Any other E ∈ M is a subgraph of

E∗, and therefore involves reducing the valence of some good. Reducing d∗(yi) from two to one
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violates M5 since d∗(yi) = 2 =⇒p
¯
i > ri. Reducing d∗(yi) from one to zero reduces the number

of goods that are connected to buyers and violates M4.

We identify U ⊂M as the set of graphs satisfying the conditions of the uniqueness theorem.

This set is of particular value in enumerating elements of Φ when there is more than one.

3.5. Cardinality Two

Corollary 1 implies that the existence of multiple equilibrium GA-structures is associated either

with one or more “extra” indifference relationships in the demand graph that can be removed

and have an edge structure that satisfies Condition M, or with some set of goods with valence

greater than one which have prices equal to their reservation values.

Our next result concerns circumstances in which |Φ| = 2. This is the case whenever the

demand graph associated with the minimum price equilibrium has one and only one edge more

than some subgraph Ẽ ⊂ E∗ such that Ẽ ∈ U .
While the theorem is proven in the appendix in standard analytic manner, certain of the

arguments are best understood in the figures that follow.

Theorem 1: |Φ| = 2 if and only if there exists (x̄, ȳ) ∈ E∗ such that E∗/(x̄, ȳ) ≡ Ẽ ∈ U .

The proof considers five cases. Each case is distinguished by the position of the good ȳ and

the buyer x̄. We illustrate how beginning with Ẽ ∈ U , the addition of an extra edge makes
possible the construction of a second element E 0 ∈M.

Figure 2 illustrates a case in which ȳ ∈ Y Ẽ
0 . In this example, there are two buyers and three

goods. Figure 2(a) illustrates the edge set Ẽ ∈ U :

Ẽ = {(x1, y1), (x1, y2), (x2, y2)},

The additional edge in E∗ is (x2, y3) as illustrated in Figure 2(b). We obtain a second element
of E 0 ∈M by removing the edge (x1, y1), as illustrated in figure 2(c).

Figure 3 illustrates a case in which ȳ ∈ Y Ẽ
l and x̄ ∈ X Ẽ

l for some l ≥ 1. In this example,
there are three buyers and three goods. We begin with the edge set Ẽ ∈ U comprising,

Ẽ = {(x1, y1), (x1, y2), (x2, y2), (x1, y3), (x3, y3)},

This is illustrated in Figure 3(a). The additional edge in E∗ is (x3, y2) as illustrated in Figure
3(b). E 0 ∈M is obtained by removing edge (x1, y2), as illustrated in Figure 3(c).
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Figure 4 illustrates a case with μ̄ ∈ Y Ẽ
l and ȳ ∈ Y Ẽ

m with m /∈ {0, l}, and with ȳ of valence 2

in Ẽ . Again there are three buyers and three goods. The edge set Ẽ ∈ U comprises,

Ẽ = {(x1, y1), (x2, y2), (x2, y3), (x3, y3)},

as illustrated in Figure 4(a). The additional edge in E∗ is (x1, y3) as illustrated in Figure 4(b).
E 0 ∈M is obtained by removing (x2, y3), as illustrated in figure 4(c).

In the final case, μ̄ ∈ Y Ẽ
l , ȳ ∈ Y Ẽ

m with m /∈ {0, l}, and ȳ has valence 1. This case is similar

to that in Figure 4, except that (x2, y3) 6∈ Ẽ .
It is important to note that there is something special about the addition of a single edge

to Ẽ ∈ U that leads to one and only one additional element of Φ. The addition of two edges
does not have a simple structure. It is easy to construct examples in which the addition of two

edges to Ẽ ∈ U can lead to Φ having three, four, or six elements depending on the position of

the additional goods and buyers in the graph (X,Y, Ẽ).

4. Regular Comparative Static Paths

We now consider a set of models indexed by a parameter vector λ ∈ Λ and consider comparative

statics with respect to λ. CL show that if the q (μ, F ;λ) are smooth in a sense to be defined

below, the effect of an infinitesimal change in λ on the minimum equilibrium price can almost

always be analyzed using a fixed GA-structure. In this case, the change in λ only affects the

prices of goods directly influenced by the change in λ and their successors in the relevant graph

F .

Discrete changes in λ are more complicated because they lead to shifts in the GA-structure.

In this section, we use homotopy methods to characterize discrete comparative statics.4 Given

two points λ0 and λ1 in Λ, we start with a known equilibrium at λ0 and consider paths through

Λ running from λ0 to λ1. We let Φ(λ) denote the dependence of the GAME set on λ. We

show that if the q (μ, F ;λ) are smooth and if Λ is large enough, then Φ(λ) has the following two

properties along the generic path: (1) Φ(λ) has at most two elements at every point along the

path; and (2) Φ(λ) has two elements at a only finite number of points so that it is single valued

almost everywhere. We call these paths regular comparative static paths.

Comparative statics are conceptually simple along regular comparative static paths. One

follows the implications of a change in parameters for a single GA-structure until at some point

4See Judd (1999, p. 179) for an introduction to homotopy methods.
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a second solution to the min-max problem emerges. According to Theorem 1, this would happen

if some the demand set of some buyer expanded or if the price of some good fell to its reservation

value. At that point, one would choose the structure that solved the min-max problem along

the next segment of the path. The following sections formalize these arguments.

4.1. Model Types

We consider a set of models indexed by a parameter vector λ ∈ Rmn+n. The firstmn components

of λ are shifters ξai of each buyer xa’s utility for each good yi. We let Ua(yi, pi, ξai) be the utility

to xa from the purchase of yi at the price pi when the taste parameter is ξai. The remaining n

components are the reservation prices of the sellers ri. We restrict λ to lie in a set Λ ⊆ Rmn+n

in which all the Ua(yi, pi, ξai) are strictly monotonic in ξai. This avoids “flat spots” in which a

change in the parameters has no impact on prices. In addition, we assume that Λ is non-empty,

open, bounded, and convex.5

We make the following smoothness assumption on the utility functions.6

Assumption B: The utility functions Ua(yi, pi, ξai) are analytic in pi and ξai for all xa ∈ X

and yi ∈ Y . Moreover the Ua(yi, pi, ξai) are strictly monotonic in ξai for all λ ∈ Λ.

Many of the objects that we have been considering become functions of λ. q(μ, F, λ) is the

price-induced by (μ, F ) in model λ ∈ Λ. p
¯
(λ) is the minimum equilibrium price in model λ ∈ Λ.

Φ(λ) is the GAME set. M(λ) identifies the edge sets that satisfy condition M.

The next lemma follows from the properties of analytic functions and the Theorem of the

Maximum applied to the max-min problem (2.2).

Lemma 2: With Assumptions A and B, each qi(μ, F, λ) is analytic at λ for all λ ∈ Λ; Φ(λ)

is non-empty, compact-valued, and upper-hemicontinuous; and p
¯
i(λ) is continuous for all

yi ∈ Y .

Moreover, it follows from Lojasiewicz’s Structure Theorem for Real Varieties (Krantz and

Parks [2002], p. 168) that the GAME set is generically single valued. Let Λ̂ ≡ {λ ∈ Λ|
|Φ(ρ)| = 1}.

Theorem 2: With Assumptions A and B, Λ̂ is open and dense in Λ.
5Taking Λ as open avoids the question of how to do comparative statics at the boundary of the parameter space.

Boundedness will imply that closed subsets are compact. Convexity implies connectedness, which is a natural
assumption when considering continuous paths. Convexity will also prove useful in constructing perturbations
of paths.

6A function f(x) is analytic at a point x0, if its Taylor series expansion converges on a neighborhood of x0.
Almost all commonly used utilty functions are analytic almost everywhere in their domain.
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4.2. Paths

A typical comparative static exercise involves some well defined change in model parameters

from λ0 to λ1. We will represent these changes with a path through Λ starting from λ0 and

ending at λ1. Technically, a path is a continuous mapping of the unit interval into parameter

space, π : [0, 1] → Λ, with π(0) = λ0 and π(1) = λ1. Any path induces a correspondence

φ(z) : [0, 1]→ G which maps each z into the GAME set φ(z).

φ(z) = Φ(π(z)).

Note that φ inherits the properties of Φ. It is upper-hemicontinuous, non-empty and compact

valued.

4.3. Regular Paths

Even though Φ is almost everywhere single valued, it will not be possible in general to find a

path between two sets of parameters that avoids points at which Φ takes on multiple values.

We consider now what happens at such points.

A simple example shows that in general anything can happen. Suppose that at λ̄ all buyers

have identical preferences and that the path π passes through λ̄. In this case one can transition

from any market situation to any other situation with the most minor of changes in model

parameters.

This example in which the equilibrium allocation can change in an arbitrary manner relies on

a seeming coincidence, with many individuals suddenly become indifferent to various goods at

the same point along the path. The results of the last section suggest that cases in which there

is only one new indifference at a time, or in which one and only one good falls to reservation

price at a given point in the parameter space, will be more ordered.

The simplest case is a path at which the number |Φ| was no higher than 2 all the way along
the path. In fact the following cases are the easiest of all.

Definition 4.1. A path π(z) is regular if the induced mapping φ(z) has the following properties:

1. maxz∈[0,1] |φ(z)| ≤ 2.

2. Z = {z ∈ [0, z̄]||φ(z)| > 1} is finite.

Along a regular path, comparative statics is conceptually easy. One travels along a path,

working out the implications of a change in parameters for a given GA-structure until at some
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point a new element of Φ arises. At this point, one chooses to continue with the structure that

solves the max-min problem beyond that point. There are a finite number of such switches.

The cardinality results of the last section at least give some hope that there may be many

regular paths, given that particular transitions can be shown to ensure cardinality of no more

than 2. In the next section, we show in fact that regularity is a generic property of comparative

static paths.

5. The Generic Path is Regular

5.1. Analytic Shapes

Paths can take many forms and the set of possible paths is quite large. In order to keep the

analysis manageable, we consider a notion of genericity based on fixing the “shape” of a path and

varying the initial condition. We show that given the shape of the path, the initial conditions

associated with regular paths form a dense open set. In other words, the generic path is regular.

The shape is a continuous mapping S : [0, 1] → Rmn+n such that S(0) = 0. The initial

condition is a point in parameter space λ0 ∈ Λ. The pair (λ0, S) define a path π(z;λ0, S) =

λ0+S(z), which begins at λ0 and ends at λ1 = λ0+S(1). A path is admissible if λ0+S(z) ∈ Λ

for all z ∈ [0, 1]. Let ΛS denote the set of λ0 for which λ0 + S(z) is admissible.

For the remainder of the paper we fix the shape S and assume that ΛS is a non-empty, open,

bounded, and convex subset of Λ.

Assumption C: Each component of S(z) is analytic on (0,1).

5.2. Regularity is Generic

Let ΛR = {λ0 ∈ ΛS|π(z;λ0, S) is regular} denote the set of λ0 for which the path π(z;λ0, S) is

regular. Theorem 3 states the sense in which almost all paths are regular.

Theorem 3: With A-C, ΛR is open and dense in ΛS.

The proof of Theorem 3 involves a number of steps. The upper hemicontinuity of Φ can

be used to show that the set of non-regular paths is closed. To show that the ΛR is dense

in ΛS we first show that the set of points ΛF = {λ0|Z = {z ∈ [0, z̄]||φ(z)| > 1} is finite} is
dense in ΛS. To see this, note that each point in Z is associated with an intersection of at

least two q(μ, F, π(z)). We show that Assumptions B and C imply that the qi(μ, F, π(z)) are

analytic in z for all z ∈ (0, 1), (μ, F ) ∈ G, and yi ∈ Y . Analytic functions whose intersections
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have accumulation points must be equal everywhere. We show that whenever qi(μ, F, π(z)) are

identical for two (μ, F ) we can find a perturbation of λ0 such that they are different. This

establishes ΛF is dense in ΛS. To establish that the set ΛR is dense in ΛF we show that given

λ0 ∈ ΛF , we can perturb λ0 in such a way that we reduce the number of edges in E∗ at points
in which |φ(z)| > 2.

6. The Five Market Transitions

According to Theorem 3, on a regular path there are only a finite number of points at which

the GA-structure changes and at each of these points of transition |φ(z)| = 2. According to

Theorem 1, points at which |φ(z)| = 2 are associated with an “extra” indifference in the demand
graph. The extra indifference could arise either with the expansion of the demand set of a single

buyer to a single new good or with a single price falling to ri, thereby making superfluous the

demand of the buyer who heretofore had supported the good.

The implication is that along the generic path there are only a few ways in which the structure

of the market can change. In fact, there are five types of transition. Four are associated with an

expansion of a buyer’s demand set. They differ in the position of the good demanded, whether

it is (1) unallocated, (2) allocated and a root good in another component, (3) allocated and a

predecessor in the same component, or (4) none of the above. The last case is associated with

a contraction in the graph satisfying the conditions of the Corollary 1. This happens when the

price of a good falls to its reservation level. Below we discuss each case in terms of the impact

on the GA-structure, since it is this that illustrates most clearly how, if at all, the allocation

changes, and how the structure of market interdependence changes at critical transition points.

We present the cases in the order of complexity. In each case, we describe what happens

at a point of market transition z. There is some GA-structure (μ, F ) which has characterized

the market prior to z. At z either some buyer x̄ becomes indifferent to some good ȳ or the

price of some good ȳ falls to r̄. We describe the relationship between (μ, F ) and (μ0, F 0), the

GA-structure that characterizes the market after z. It is useful to let μ̄ denote the good assigned

x̄ by μ.

6.1. Graft

Grafting occurs when x̄’s demand correspondence expands to include a good ȳ that is the root

of another tree. The tree with ȳ as its root is incorporated in x̄ to create a single larger tree.

An example of grafting is illustrated in Figure 5. Figure 5(a) shows the initial GA-structure
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(μ, F ). There are five goods. The only goods that are labeled are ȳ, the root of the second

tree, and μ̄, the good in the first tree whose buyer becomes indifferent to ȳ. This indifference is

illustrated by the light directed edge from μ̄ to ȳ. It is clear that ȳ can be priced in two ways:

it can be set at reservation or it can be priced using x̄’s indifference. This latter GA-structure

is illustrated in Figure 5(b). It involves solidifying the link from μ̄ to ȳ and the uprooting of ȳ,

as illustrated by the circular as opposed to square node.

In general, grafting is characterized by the following rules. First, there is no change in the

equilibrium allocation, μ0 = μ. Second, F 0 differs from F in just two ways: the added edge from

μ̄ to ȳ, E(F 0) = E(F ) ∪ (μ̄, ȳ), and the removal of ȳ from the root set, R(F 0) = R(F )\ȳ.

6.2. Prune and Plant

Pruning is the opposite of grafting. It involves the division of one tree into two separate trees.

It occurs when some good ȳ that used to be above reservation price falls to this price, and at

that point becomes a root good. This occurrence is illustrated in Figure 6(a). The new GA-

structure involves severing of the proximate link to the new root good, as illustrated in Figure

6(b). Again, there is no change in the allocation.

6.3. Prune and Graft

As its name indicates, this case combines pruning and grafting. This case involves separating

a branch from a tree and attaching it somewhere else. This is the “none of the above” case

described above, in which ȳ is allocated, but not a root good or a predecessor to μ̄. As in the

cases of pruning and grafting there is no change in the allocation. As with pruning, the link

between ȳ and its direct predecessor in F is cut. As with grafting, ȳ is grafted onto the new

directed edge from μ̄ to ȳ.

Two different cases with this common structure are illustrated in figures 7(a) and 7(b), with

the difference being that in the first case μ̄ and ȳ are in different trees, while in the second case

they are in the same tree, with μ̄ being a predecessor of ȳ. It is clear in each case, the addition

of the edge (μ̄, ȳ) creates two and only two ways to price good ȳ, one corresponds to the initial

graph F , the other to F 0.

Prune and Graft is characterized by the following rules: μ0 = μ; R(F 0) = R(F ); and E(F 0) =

{E(F )\(y0, ȳ)} ∪ (μ̄, ȳ) where y0 is the direct predecessor of ȳ in F .
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6.4. Cycle and Reverse

The two final cases involve changes both in the allocation of goods and in the nature of the

interdependence. Cyclic Reversal occurs when both μ̄ and ȳ are elements of the same tree, and

ȳ is a predecessor of μ̄.

A simple example with three goods and three buyers is illustrated in Figure 8(a). Initially,

each buyer is matched with the correspondingly numbered good: μi = yi, and the GA-structure

involves two directed edges: E(F ) = {(y1, y2), (y2, y3)}. In this example, μ̄ = y3 and ȳ = y1, as

illustrated by the corresponding light edge. Note that the addition of the directed edge (y3, y1)

creates a cycle in which each buyer is indifferent between the assigned good and its direct

successor. A cyclic permutation of the allocation therefore keeps all buyers in their demand

sets. It is clear that we can generate the same price vector as follows. First, allocate x̄ to y3 and

use indifference to price y3. Next take the buyer allocated to y2, shift to y3 and use indifference to

price y2. Finally, take the buyer allocated to y1 and shift to y2. This GA-structure is illustrated

in figure 8(b).

Formally, cyclic reversal involves the following steps. Add the edge (μ̄, ȳ) to E(F ). This

creates a directed cycle C = {y1, y2, . . . , yk, yk+1} with y1 = yk+1 = ȳ, yk = μ̄, and (yi, yi+1) ∈
E(F ) ∪ (μ̄, ȳ) for i ∈ {1, . . . k − 1}. The new allocation μ involves rotating all buyers allocated

to a good in C to its direct successor

μ0a =

(
μa if μa 6∈ C

yi+1 if μa = yi ∈ C

The new graph F 0 is derived from the old graph F in a series of steps by first reversing all of the

edges in the cycle C by replacing (yi, yi+1) for all yi, yi+1 ∈ C with (yi+1, yi), then eliminating

(y2, y1) and finally, replacing all (yi, yj) with yi ∈ C and yj 6∈ C with (yi+1, yj) so that all goods

not in P are priced by the same buyers in (μ0, F 0) as in (μ, F ).

6.5. Shift and Replant

Shift and Replant occurs when ȳ is unallocated. It is similar to Cycle and Reverse except that

instead of relocating buyers around a cycle, we relocate them along a path.

Figure 9(a) provides an example. There are four goods. The first three are allocated to

like-numbered buyers. The fourth good ȳ is unallocated and hence a root good as indicated

by the rectangle to which no one is assigned. The initial GA-structure (μ, F ) involves directed

edges (y1, y2) and (y2, y3). It is buyer x3 who then becomes indifferent with the unoccupied
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good ȳ. Note that we can support the same price vector, by first shifting the buyers along

the connected path between the two root goods, with x3 to ȳ, x2 to y3 and x1 to y2, and then

using x3’s indifference to price y3, x2’s to price y2. Good y1 is unallocated and hence priced at

reservation. This situation is illustrated in Figure 9(b).

Formally, shift and replant is characterized by the following operations. We first add the

edge (μ̄, ȳ) and let P = {y1, y2, . . . , μ̄, ȳ} denote the path in E(F )∪(μ̄, ȳ) beginning at y1 ∈ R(F )

and ending with ȳ. The change in the allocation μ involves shifting all buyers allocated to a

good in P to its direct successor:

μ0a =

(
μa if μa 6∈ P

yi+1 if μa = yi ∈ P

The new graph F 0 is derived from the old graph F . First, reverse all of the edges in the path P

by replacing (yi, yi+1) for all yi, yi+1 ∈ P with (yi+1, yi). Then eliminate (y2, y1). Finally, replace

all (yi, yj) with yi ∈ P and yj 6∈ P with (yi+1, yj), so that all goods not in P are priced by the

same buyers in (μ0, F 0) as in (μ, F ).

6.6. The Fundamental Theorem of Calculus for Allocation Markets

The above results allow us to express discrete changes in prices as the integral of infinitesimal

market changes. Consider a change for λ0 to λ1 along a regular path π(z). Let Ẑ = {z ∈
[0, 1]| lim →0 φ(z− ε) 6= lim →0 φ(z + ε)} denote the set of potential switch points, and label the
elements of Ẑ = {z1, . . . zS}. Let (μs, Fs) denote the unique element of φ(z) over the interval

(zs, zs+1), where it is understood that z0 = 0 and zS+1 = 1. Prior results imply that the change

in the price of good yi may be obtained by integrating the change in price over each subinterval

and summing over subintervals:

pi(λ1)− pi(λ0) =
SX
s=0

Z zs+1

zs

Ã
dpi
dλ(z)

¯̄̄̄
(μs,Fs)

dλ(z)

dz

!
dz

Here the derivative dpi/dλ(z) is taken with respect to the current GA-structure (μs, Fs).
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7. An Algorithm for Computing Competitive Equilibria

The maximization in problem (2.2) is over a very large set and may be difficult to perform in

practice. A generalization of Cayley’s theorem states that for each allocation μ there are

mX
k=1

Ã
m

k

!
kmm−1−k

different forests of rooted trees on the m allocated goods.7 On top of this there are n!/(n−m!)

ways to allocate buyers to goods. If n = m = 10, we get more than 8.5 × 1015 different GA-
structures. If n = m = 1000, we get more than 9× 103609.
We have shown how to use homotopy methods to move between any two competitive equi-

libria. This insight may be used to compute equilibria and avoid searching through such a large

set. We only need a simple equilibrium to start from. One convenient initial equilibrium is the

null equilibrium in which the preference parameters are such that each buyer prefers a different

good at reservation prices.

The algorithm works in the following way. Given any set of parameters, we initialize this

algorithm by raising the parameter ξa,a for each buyer xa high enough that each buyer xa prefers

a particular good ya to all other goods when prices are set at reservation levels, ensuring that

these goods are different for each buyer. At this level of reservation utility, the minimum price

equilibrium has all prices at reservation level and all buyers allocated to their preferred goods.

There is a unique GA-structure corresponding to this equilibrium. It involves the equilibrium

allocation and a null graph in which all goods are root goods and there are no edges. This

equilibrium is our starting point. We can then lower the ξa,a to their original levels, tracking

GA-structures that correspond to the minimum price equilibrium. Note that lowering the ξa,a
has the effect of raising prices monotonically to their final level.

This algorithm is related to the ascending auction mechanism of Demange, Gale and So-

tomayor (1986). They consider minimum price equilibria in a model with transferable utility

and discrete prices. Their algorithm involves increasing the prices of all goods in minimal

overdemanded sets by one unit until supply and demand are brought into balance. The key

complication that non-transferable utility introduces is that the same price change affects the

demands of different buyers differently. The challenge is to find a way of raising prices that does

not completely alter the balance between supply and demand, while at the same time keeping

track of the resulting changes in the allocation. The GA-structures provide such a mechanism.

7See Aigner and Ziegler [2003, 3rd edition, p. 178].
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There are several attractive features of this algorithm. First, it terminates by precisely

identifying the minimum equilibrium price. This is not the case with approximation methods

that are often employed in computing economic equilibria (e.g. Scarf (1973)).8 Second, the

algorithm is likely to be relatively fast in many practical applications. There is a sense in which

the algorithm is minimal: it searches only through the set of potential solutions for some set

of utility parameters and by-passes the mass of entirely unsuitable price vectors. This mirrors

the situation with the simplex method, in which one searches only through the set of extreme

points of the feasible set, all of which are optimal for some vector of resources.

7.1. From Continuous to Discrete

Practical implementation of the algorithm requires discretizing z. Figure 10 illustrates one

possibility. We begin with a known solution to to the model (μ1, F1) at z1 = 0. At each step in

the algorithm we take our current candidate solution (μ1, F1), which is known to generate the

minimum equilibrium price at some point z1 : (μ1, F1) ∈ Φ(z1), and test whether it generates

the minimum equilibrium price at some further point z2. Initially, we take z2 = 1.

If (μ1, F1) ∈ Φ(z2), this test succeeds and we reset z1 = z2 and z2 = 1. If z1 = 1, we are

finished. Otherwise, we test (μ1, F1) at z2 = 1.

We will say that there is a “violation of competitive equilibrium” at z2 if, given q(μ1, F1, π(z2)),

a buyer prefers a good to the one that is allocated or if there is good whose price falls below

reservation. The test succeeds if there is no violations. If there is a single violation of competi-

tive equilibrium when applying (μ1, F1) at z2, meaning a single buyer who prefers a single good

or a single good whose price falls below reservation, then we construct (μ2, F2), which is the

alternative GA-structure suggested by treating the violation as an indifference and making the

appropriate market transition as in the last section, and test (μ2, F2) at z2. If (μ2, F2) ∈ Φ(z2),

we update (μ1, F1) = (μ2, F2), as well as z1 = z2, and z2 = 1 and proceed as before. If there

are multiple violations of competitive equilibrium at q(μ1, F1;λ(z2)) or if (μ2, F2) 6∈ Φ(z2), then

we stepped over multiple market transitions. We then try taking a smaller step: we update

z2 = (z1 + z2) /2 and try (μ1, F1) again.

Given Theorem 3, which states that there are a finite number of points of transition on a

generic path, this algorithm converges. Eventually, the step size is reduced to the point that

(z1, z2) contains a single market transition and (μ2, F2) ∈ Φ(z2)

8Miyake (2003) also provides an algorithm with this property.
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8. Conclusion

In this paper and it companion, we have introduced a new mathematical apparatus for under-

standing allocation markets with nontransferable utility. We are currently extending the work

to a dynamic context and solving for the reallocation of objects over time. Our methods may

also apply in other areas.
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9. Appendix: Proofs

Lemma 1: There exists a bijection η :M→ Φ so that

|Φ| = |M|

Proof: We identify a mapping η :M→ Φ and show it to be a bijection. Given E ∈M, we

identify η(E) = (μ(E), F (E)) starting with the allocation. We first match all goods of degree one.

22



If there are goods remaining in any set Y E
l after the removal of these goods and their matched

buyers, there is as least one of degree one, since at least one edge to the unmatched goods is

removed when the prior match is created, due to the connectedness of the components. This

process ends by uniquely specifying μ(E) ∈ M in no more than max |Y E
l | steps. We construct

the graph F (E) = (Y,R,E) by first setting R equal to the union of Y E
0 and the valence 1 good

in each set Y E
l for l ≥ 1. We then define E = {(yi, yk)|(xa, yi), (xa, yk) ∈ E and μa = yi}. Since

each non-root good is allocated and has degree two, it has a unique predecessor in E. Since

each is connected to the root good by construction, each component is a tree. To establish that

η : M → Φ, note by construction q(μ(E), F (E)) = p
¯
, that (μ(E), F (E)) identifies a minimum

price equilibrium, and that all goods to which a directed edge points are allocated.

It remains to establish that η :M → Φ is onto Φ. Consider any (μ̃, F̃ ) ∈ Φ. We identify

the element γ(μ̃, F̃ ) = η−1(μ̃, F̃ ) ∈M such that η(Ẽ) = (μ̃, F̃ ) in stages. First, we generate a
bipartite graph on X ∪ Y with bipartition (X,Y ) by joining each buyer with the good to which

they are matched, placing (xa, μ̃a) ∈ Ẽ , and then placing (xa, yb) ∈ Ẽ if (μ̃a, yb) ∈ F . To see

that γ(μ̃, F̃ ) ∈M, note first that q(μ̃, F̃ ) =p
¯
, hence this graph is a subset of E∗. To see that

it satisfies the remaining aspects of condition M, look at each tree in the forest and note that

there every node of the tree has one and only one buyer due to the insistence that downstream

as well as upstream goods are allocated. Each such tree in the forest thereby is mapped to a

connected set (XE
l , Y

E
l ) for 1 ≤ l ≤ L that is disconnected from all others, and in which the equal

cardinality condition M2 is satisfied. The isolated set Y E
0 comprises all goods that are not in

demand by anyone. By construction, there is one and only one good of degree 1 in each partition

set Y E
l for l ≥ 1, and all others have degree 2. Moreover, by construction all goods of valence 1

are root goods for which q∗j = rj. By construction, goods of degree 0 also satisfy q∗j = rj. Hence

p
¯
i > ri implies that the degree of yi is 2. This confirms that γ(μ̃, F̃ ) ∈M. Finally, it is direct

from the construction that η(Ẽ) = (μ̃, F̃ ), establishing that indeed γ : Φ → M is the inverse

function of η :M→ Φ.¤

Corollary 1: E∗ ∈M and d∗(yi) = 2 =⇒ p
¯ i

> ri then |Φ| = 1.

Proof: Suppose that E∗ ∈M and all yi with d∗(yi) = 2 have p
¯
i > ri. We show thatM has

one element. Lemma 1 then implies |Φ| = 1. That there is no second element follows from the

observation that since E∗ ∈M all goods have degree less than or equal to two. Removing any

edge from the demand graph D reduces the degree of some good. If the degree falls from one to

zero, then the number of goods with degree greater than zero is less than the number of buyers
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in contradiction of condition M4. If a good has degree two in D, then by assumption its price

is above reservation. Reducing the degree of such a good contradicts condition M5.¤

Theorem 1: |Φ| = 2 if and only if there exists (x̄, ȳ) ∈ E∗ such that E∗/(x̄, ȳ) ∈ U .

Proof: (If) Suppose that there exists (x̄, ȳ) ∈ E∗ such that E∗/(x̄, ȳ) ∈ U . To establish
|Φ| = 2, let E1 = E∗/(x̄, ȳ). We consider a number of sub-cases and in each such case identify
E2 6= E1 with E2 ∈M. We then show that there is no third member E3 ∈M. The argument

depends on features of μ̄ ∈ Y , the good matched to x̄ in the unique match associated with

E1 ∈ U .

1. If ȳ ∈ Y E1
0 , let σ̄ ∈ Y be the root good in the set Y E1

l such that x̄ ∈ XE1
l , and let

μ−1(σ̄) ∈ XE1
l be the buyer matched to that good. Define E2 = E∗/{μ−1(σ̄), σ̄}. Note that

E2 ∈ U by construction, since the only change is the replacement of σ̄ ∈ Y E1
l with the good

ȳ ∈ Y E2
l , also of valence 1. Now suppose that there exists some third element E3 ∈ M,

with E3 /∈ {E1, E2}. Note that this set must contain both {μ−1(σ̄), σ̄} and (x̄, ȳ) given that
uniqueness holds with either element excluded. Hence some other edge from those joining

XE1
l and Y E1

l must be removed, thereby reducing the degree of some element other than

σ̄ or ȳ either to 1 or to zero. This contradicts the fact that this good must have p
¯
i > ri,

which implies that its degree in E2 must be 2 by M4.

2. Suppose (μ̄, ȳ) ⊂ Y E1
l for some l ≥ 1. Note in this case that E∗ itself has a cycle, since

it XE1
l ∪ Y E1

l has as many edges as vertices in E∗: this cycle is unique, since all cycles
must contain {x̄, ȳ}, so that if there were two of them, then there would have been one
prior to the addition of {x̄, ȳ} (geometrically clear). Now define {xC , ȳ} as the unique
edge other than (x̄, ȳ) heading to ȳ in this unique cycle in the graph (X ∪ Y, E∗). Define
E2 = E∗/{xC , ȳ}. By construction, E2 6= E1 satisfies E2 ∈ U , since all goods have the same
valence in E2 and E1, and the associated partitions are identical. Now suppose that there
exists some third element E3 ∈M, with E3 /∈ {E1, E2}. This set must contain both {xC , ȳ}
and (x̄, ȳ) given that uniqueness holds with either element excluded. Hence some other

edge in the unique cycle must be removed. In so doing, one reduces the degree of some

good other than ȳ ∈ Y E1
l below 2. This again contradicts the fact that this good must

have pi > ri, which implies that its degree in E2 must be 2 by M4.

3. Suppose μ̄ ∈ Y E1
l and ȳ ∈ Y E1

m with m /∈ {0, l}. There are two sub-cases depending on the
valence of ȳ.

24



1. If ȳ is of valence 2 in E1 then define E2 = E∗/{xN , ȳ}, where xN is the element in Y E
l

that is not matched to ȳ in unique match μ̄(E1). Note that E2 ∈ U , since one now has
two sets with root goods of valence 1 at reservation and all others of valence 2, in line

with the uniqueness condition. Again any third element E3 ∈M, with E3 /∈ {E1, E2}
must include both {xN , ȳ} and (x̄, ȳ), but exclude some other element of the edge set
corresponding to

¡
XE

l ∪XE
m, Y

E
l ∪ Y E

m

¢
. However this happens, it calls for there to be

at least two elements of valence 1 since the resulting set is disconnected, but there is

by assumption only one good at reservation price in the set, a contradiction.

2. If ȳ is of valence 1 in E , then E∗ ∈ M since the joint set Y E
l ∪ Y E

m has all but

one good of valence 1, which good is at reservation price. Now suppose that there

exists some third element E3 ∈M, with E3 /∈ {E1, E∗}. Since E∗/(x̄, ȳ) satisfies the
uniqueness condition, this set must contain (x̄, ȳ) and exclude something from the

edge set corresponding to
¡
XE

l ∪XE
m, Y

E
l ∪ Y E

m

¢
. As before, it will create some good

with p
¯
i > ri yet with degree strictly, a contradiction.

4. An adaptation of case 3(b) works in case 2, with E∗ ∈M and existence of one and only

one yj ∈ Y such that d∗(yj) = 2 and p
¯
j = rj. Since E∗ ∈M, there is a unique allocation

μ(E∗) consistent with E∗. Identify the unique element xNj ∈ X that is to linked yj but not

matched to it according to this allocation . Note that E∗/{xNj , yj} = E1 ∈ U , since yj has
valence 1 and is a root good with the removal of its second edge, with all of the matches

preserved. Now suppose that there exists some third element E3 ∈M, with E3 /∈ {E1, E∗}.
This set must contain {xNj , yj} given that uniqueness holds with it excluded, and it cannot
be the whole set, since this is E∗. Hence some other edge must be removed from the

partition element XE∗
l ∪ Y E∗

l that contains yj. If this is of degree 1 , then there is one too

few good: if it is any of the degree 2 goods, then one reduces the degree of some good with

p
¯
i > ri below 2, a contradiction.

(Only If) If |Φ| = 2 then certainly E∗ has some subset that satisfies the uniqueness condition
of corollary 1. It can have at most one more edge, since if it had two, then we know from above

proof how to create at least three members ofM. If it has no more edges than E∗, then it must
contain at least one more good at reservation price than in that minimum, and we know that it

cannot contain more than that, since then the proof above shows can find at least one for each

additional good at reservation. This completes the proof.¤
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Lemma 2: With Assumptions A and B, each qi(μ, F, λ) is analytic in λ ∈ Λ; Φ(λ) is non-empty,

compact-valued, and upper-hemicontinuous; and each p
¯
i(λ) is continuous.

Proof: We prove the qi(μ, F, λ(z)) are analytic by induction. Consider first yi ∈ R(F ) ≡ A0.

gi = ri which is trivially analytic in λ. Now suppose that for all yi ∈ An, gi are analytic functions

of λ. Consider S, the set of direct successors to An. S = {yi 6∈ An|(yj, yi) ∈ E(F ) for some

yj ∈ An}. Let μa = yj. Now qj is defined implicitly by the indifference of xa:

Ua(yi, qi, ξai) = Ua(yj, qj, ξaj)

where according to Assumption B, Ua(yj, qj, ξai) and Ua(yi, qi, ξaj) are analytic functions of their

second and third arguments and strictly monotonic in the third. Assumption A ensures that

Ua is strictly monotonic in the second. It follows from the Real Analytic Implicit Function

Theorem (Krantz and Parks, 2002, p. 35) that qi is an analytic function of λ. This completes

the induction step.

That Φ(λ) is non-empty, compact-valued, and upper-hemicontinuous; and each p
¯
i(λ) is con-

tinuous follows from Theorem 3 in CL.¤

The following Lemmas are used in the proof of Theorem 3. The proof of Theorem 3 is divided

between three propositions which together establish that ΛR is open and dense in ΛS.

Lemma 3: For each yi, qi(μ, F, λ(z)) is real analytic on z ∈ (0, 1).

Proof: According to Lemma 2, Assumptions A and B imply that qi(μ, F, λ) is real analytic
on λ ∈ Λ. Assumption C states that λ is real analytic on z ∈ (0, 1). That the qi(μ, F, λ(z))
are analytic follows from the observation that compositions of analytic functions are analytic

(Kranz and Parks, p.19).¤

Lemma 4: Given any three GA-structures, (μ1, F1), (μ2, F2), and (μ3, F3), let Λ̃ denote the

set λ0 such that |φ(z;λ0, S) ∩ {(μ1, F1), (μ2, F2), (μ3, F3)}| ≤ 2 for all z. Λ̃ is open.

Proof: Consider λ̄0 ∈ Λ̃ and let ΛB = Λ{λ ∈ Λ|{(μ1, F1), (μ2, F2), (μ3, F3)} ∈ Φ(λ)}. The
upper hemicontinuity of Φ implies then implies ΛB is closed. Since ΛB is bounded, it is compact.

Given λ, λ0 ∈ Λ, let d(λ, λ0) denote the Euclidian distance between λ and λ0 and let d(z) =

minλ∈ΛB d(π(z; λ̄0, S), λ). ΛB is compact so the minimum problem is well defined. d(λ, λ0) is

continuous in both arguments, so the Theorem of the Maximum states that d(z) is continuous.
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Since z ∈ [0, 1], d(z) has a minimal value. Let δ = min d(z). Since the path π and the set ΛB

are disjoint δ > 0. It follows that a ball around λ̄0 with radius δ/2 is contained in Λ̃. This

establishes that Λ̃ is open.¤

Lemma 5: Given λ ∈ Λ such that |Φ(λ)| > 2, there exists {(μ1, F 1), (μ2, F 2)(μ3, F 3)} ⊆ Φ(λ)

and l ∈ Rmn+n with d(l, 0) = 1 such that given any χ > 0 and δ = χl such that λ+ δ ∈ Λ,

{(μ1, F 1), (μ2, F 2)} ⊆ Φ(λ+ δ) and (μ3, F 3) 6∈ Φ(λ+ δ).

Proof: Fix λ ∈ Λ and such |Φ(λ)| > 2. Let (μ1, F 1) ∈ Φ(λ). Since |Φ(λ)| > 2, the

arguments of Theorem 1 can be extended to show that there must be either to goods y1and y2

such that yj 6∈ R(F 1) and qj(μ1, F 1, λ) = rj(λ) for j = {1, 2}; or two sets of indifference (xa, y1)
and (xa, y2) such that {(xa, y1), (xb, y2)} ∈ E∗, y1 is not equal to μ1a or any of its direct successors
in F 1, y2 is not equal to μ1b or any of its direct successors in F 1; or one of each.

(1) Construct (μ2, F 2) as equal to (μ1, F 1) except that y1 ∈ R(F 2). Similarly, (μ3, F 3)

has y1, y2 ∈ R(F 2). Now let (yk, y1) ∈ E(F 1) and yk = μ1(xa). Let δ be a vector of zeros

with a value δ̂ < 0 in the place associated with ξa1. q(μ2, F 2, λ + δ) = q(μ2, F 2, λ + δ) =

q(μ2, F 2, λ). q1(μ
1, F 1, λ + δ) < r1(μ

1, F 1, λ + δ). It follows that (μ1, F 1) 6∈ Φ(λ + δ). Need

{(μ1, F 1), (μ3, F 3)} ∈ Φ(λ+ δ).

(2) Construct (μ2, F 2) as the other structure given (xa, y1) ∈ E∗. Similarly (μ3, F 3) as

the other structure given (xb, y2) ∈ E∗. Note that y2 is not equal to μ2a or any of its direct

successors in F 2. Let δ be a vector of zeros with a value δ̂ < 0 in the place associated with ξb2.

(μ3, F 3) 6∈ Φ(λ+ δ). q(μ1, F 1, λ+ δ) = q(μ2, F 2, λ+ δ) = q(μ1, F 1, λ).

(3) Construct (μ2, F 2) as equal to (μ1, F 1) except that y1 ∈ R(F 2), and construct (μ3, F 3)

as the other structure given (xa, y1) ∈ E∗. Let δ be a vector of zeros with a value δ̂ < 0 in the
place associated with ξa1. (μ

3, F 3) 6∈ Φ(λ+ δ). q(μ1, F 1, λ+ δ) = q(μ2, F 2, λ+ δ) = q(μ1, F 1, λ).

The proof is completed by the observation that the only property of δ used in the proof is

its direction.¤

Proposition (Theorem 3, Part 1): ΛR is open.

Proof: The proof is in two parts. We first prove that the set of initial conditions for which
|φ(z)| ≤ 2 is open. We then prove that the set of initial conditions for which Z is finite is open.

The intersection of two open sets is open.

(1) The set of λ0 for which |φ(z;λ0, S)| ≤ 2 is open.
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Given S, let Λ1 be the set of initial conditions λ0 such that |φ(z;λ0, S)| ≤ 2 for all z ∈
[0, 1]. Let Λ̃[(μ1, F1), (μ2, F2), (μ3, F3)] denote the set λ0 such that there exists z such that

|φ(z;λ0, S)| ∩ {(μ1, F1), (μ2, F2), (μ3, F3)} ≤ 2. Λ1 = ∩Λ̃[(μ1, F1), (μ2, F2), (μ3, F3)] where the
intersection is over all triplets of GA-structures. Each Λ̃[(μ1, F1), (μ2, F2), (μ3, F3)] is open by

Lemma 4. Since finite intersections of open sets are open, Λ1 is open.

(2) The set of λ0 for which Z is finite is open.

Given λ0, let Z = {z ∈ [0, z̄]||φ(z;λ0, S)| > 1}. Given S, let Λ2 be the set of λ0 such

that Z is finite. Consider λ̄0 ∈ Λ2. The proof is by contradiction. Given ε > 0, let Bε(λ) =

{λ0|d(λ, λ0) < ε}. Suppose that for all ε > 0, there exists λ0 ∈ Bε(λ̄0) such that Z(λ
0) is infinite.

Consider a sequence {εn} converging to zero and consider a sequence λn such that λn ∈ Bε(λ̄0)

and Z = {z ∈ [0, z̄]||φ(z;λn, S)| > 1} is infinite. Given that there are a finite number of GA-
structures, there exists a subsequence {λm} ⊆ {λn} and two GA-structures, (μ1, F1) and (μ2, F2),
such that q(μ1, F1, π(z;λm, S)) = q(μ2, F2, π(z;λm, S)) at infinitely many points z ∈ (0, 1). By
Lemma 3, qi(μ1, F1, π(z;λm, S)) and qi(μ2, F2, π(z;λm, S)) are real analytic on z ∈ (0, 1). Given
a < 0 and b > 1, let Ŝ(z) : (a, b) → Rmn+n be the (component by component) analytic

continuation of S. Given the continuity of S, we can choose a, b, and εm small enough that

λm+ Ŝ(z) are contained in Λ for all z ∈ (a, b). Let q̂i(μ, F, z,m) = qi(μ, F, λm+ Ŝ(z)). Standard

arguments establish that and q̂i(μ, F, z,m) is analytic and q̂i(μ, F, z,m) = qi(μ, F, π(z;λm, S))

on [0, 1]. It follows that q̂i(μ1, F1, z,m) = q̂i(μ2, F2, z,m) at an infinite number of points in [0, 1].

Let U denote the set of intersections. It has an accumulation point in [0, 1] ⊂ (a, b). Corollary
1.2.7 in Krantz and Parks implies that q̂i(μ1, F1, z,m) = q̂i(μ2, F2, z,m) for all z = (a, b). It

follows that q(μ1, F1, π(z;λm, S)) = q(μ2, F2, π(z;λm, S)) for z ∈ [0, 1]. The continuity of the
q(μ, F ) then implies that q(μ1, F1, π(z; λ̄0, S)) = q(μ2, F2, π(z; λ̄0, S)). But λ̄0 ∈ Λ2. This

contradiction establishes that Λ2 is open.

ΛR = Λ1 ∩ Λ2 each of which is open. This completes the proof.¤

Proposition (Theorem 3, Part 2) Let Z1(λ0) = {z ∈ [0, z̄]||φ(z)| > 1} and let ΛF =

{λ0|Z(λ0) is finite}. With A-C, ΛF is dense in ΛS.

Proof: Given λ0, let Z = {z ∈ [0, z̄]||φ(z;λ0, S)| > 1}. Let ΛI ∈ ΛS denote the set of

λ0 ∈ ΛS such that Z is infinite. We show that given any λ0 ∈ ΛI , we can perturb λ0 and obtain

a path for which Z is finite.

We first prove that for each yi, p
¯
i(z) is real analytic on (0, 1) except at a finite number of

points. The proof is by contradiction. Let A = {z ∈ (0, 1)|p
¯
i(λ(z)) is not analytic at z}. Suppose
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|A| =∞. Since |A| =∞, there exists an accumulation point z1 ∈ [0, 1].9 Consider an arbitrary
z1 ∈ A. There exists (μ1, F1) such that p

¯
i(λ(z1)) = qi(μ1, F1, λ(z1)). Moreover, given any neigh-

borhood Ω of z1, if p
¯
i(λ(z)) = qi(μ1, F1, λ(z)) for all z ∈ Ω then p

¯
i is analytic at z. It follows

that there exists there a z2 ∈ Ω such that p
¯
i(λ(z2)) 6= qi(μ1, F1, λ(z2)). Given the continuity of

the qi(μ, F, λ(z)), this implies that there are two GA-structures, (μ1, F1) and (μ2, F2), such that

qi(μ1, F1, λ(z)) = qi(μ2, F2, λ(z)) at some point in Ω. As z1 is arbitrary and A is finite, there exist

an infinite number of these intersections. Given that there are a finite number of GA-structures,

there are two GA-structures, (μ3, F3) and (μ4, F4) such that qi(μ3, F3, λ(z)) = qi(μ4, F4, λ(z))

at infinitely many points and qi(μ3, F3, λ(z)) 6= qi(μ4, F4, λ(z)) at infinitely many points. Given

qi(μ3, F3, λ(z)) and qi(μ4, F4, λ(z)) are both analytic, qi(μ3, F3, λ(z)) = qi(μ4, F4, λ(z)) at infi-

nitely many points implies qi(μ3, F3, λ(z)) = qi(μ4, F4, λ(z)) at all z ∈ (0, 1). This contradiction
establishes that A is finite.

We return to the proof of the proposition. Suppose λ0 ∈ ΛI . Since p
¯
is piecewise analytic,

we can divide [0, 1] into a finite number of sub-intervals {[0, z1), (z1, z2), . . . (zT , 1]} such that p
¯

is analytic on each subinterval.10 Note that on each interval (zi, zi+1), φ(z) is constant except

at a finite number of points, for if there is any GA-structure (μ1, F1) such that p
¯
i(λ(z)) =

qi(μ1, F1, λ(z)) at an infinite number of points in (z1, z2), then either φ(z) = {(μ1, F1)} or
(μ2, F2) ∈ φ(z) and qi(μ1, F1, λ(z)) = qi(μ2, F2, λ(z)) so that (μ1, F1) ∈ φ(z) as well since both

are analytic on [0, 1].

Let ci denote the number of elements of φ(z) on interval (zi, zi+1) except possibly at a finite

number of points. Given an interval in which ci > 1, we show that we can perturb λ̄0 and reduce

ci by one without raising any other cj. Given that there are finitely many intervals with values

of ci > 1, a finite number of such perturbations will reduce Z to a finite set.

Suppose ci > 1. We consider two cases. First, suppose that qi(μ1, F1, λ(z)) > ri(λ(z))

for yi 6∈ R(F1) and z ∈ (zi, zi+1). According to Corollary 1, |Φ(z)| > 1 if and only if there

exists xb and y0 ∈ Db(q(μ1, F1, λ) such that y0 6= μb and (μb, y0) 6∈ E(F1). Consider a small

perturbation of λ0 in which we reduce the element associated with ξb0 by εb0 for all such y0.

Call this perturbation λ00 and let φ
0(z) denote the new path originating from λ00. We choose

the εb0 small enough that λ
0
0 ∈ ΛS. It follows from Corollary 1, that (μ2, F2) 6∈ Φ(λ1(z)) for

z ∈ (zi, zi+1). Note that since qi(μ1, F1, λ(z)) = qi(μ2, F2, λ(z)) on [0, 1], (μ2, F2) 6∈ Φ(λ1(z)) for

all z. The perturbation does not raise φ(z) at any other point.

9If z1 = {0, 1} we will need to extend all functions as in the previous proposition to (a, b) ⊃ [0, 1] so that the
accumulation point lies in an open set.
10Note that if needed we can imbed the closed interval in an open interval and extend all functions to the open

interval.
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Second, suppose that qi(μ1, F1, λ(z)) = ri(λ(z)) for some yi 6∈ R(F1). In this case we consider

a perturbation in which we increase the component of λ0 associated with ri. Call this perturba-

tion λ00 and let φ
0(z) denote the new path originating from λ00. It is clear that (μ1, F1) 6∈ Φ(λ(z))

for z ∈ (zi, zi+1). Similarly the perturbation does not raise φ at any other point.
This completes the proof of the proposition.¤

Proposition (Theorem 3, Part 3) With A-C, ΛR is dense in ΛF .

Proof: Let π(z;λ0) denote the path beginning at λ0, let φ(z;λ0) denote the GAME corre-
spondence along this path, and let Z2(λ0) = {z ∈ [0, 1]||φ(z;λ0)| > 2} denote the set of points
along the path at which φ(z;λ0) takes more than two values.

To show that ΛR is dense in ΛF we show that given an arbitrary λ̄0 ∈ ΛF such that Z2(λ̄0)

is not empty, we can construct a perturbation of λ̄0, λ̄
0
0 ∈ ΛF , such that Z2(λ̄

0
0) is empty.

The construction is inductive. Let Ψ denote the set possible three pairs of

Ψ = {{(μ1, F1), (μ2, F2), (μ3, F3)}|{(μ1, F1), (μ2, F2), (μ3, F3)} ∈ G}

Since |G| is finite, |Ψ| = N < ∞. At each step we choose an initial condition λ̄
n
0 ∈ ΛF and

a radius δn > 0, such that (1) for some ψn not previously considered the set {z ∈ [0, 1] |
ψn ⊂ φ(z;λ0)} is empty for all λ0 ∈ Bδn(λ̄

n
0); and (2) Bδn(λ̄

n
0) ⊆ Bδn−1(λ̄

n−1
0 ), where Bδ(λ0) =

{λ|d(λ, λ0) < δ}. The second condition ensures that the sets {z ∈ [0, 1] | ψi ⊂ φ(z;λ0)} is empty
for all λ0 ∈ Bδn(λ̄

n
0) and i < n. The iteration stops when Z2(λ̄

n
0) is empty. This must happen

in fewer than N steps.

Initially, we choose λ̄00 = λ̄0 and δ
0 > 0 such that Bδ0(λ̄

0
0) ⊂ ΛS. This choice is possible given

that ΛS is open. It will be useful below to choose δ0 such that the closure of Bδ0(λ̄
0
0), B̄δ0(λ̄

0
0),

is contained in ΛS. Let X = {λ|λ = π(z, λ0) for some λ0 ∈ B̄δ0(λ̄
0
0)}. X ⊂ Λ is compact since

Λ is bounded. It follows that the function f : X → R such that f(μ, F, λ) =
P

i gi(μ, F, λ),

being a continuous function from a compact metric space X to a metric space R, is uniformly
continuous on X.

The induction step begins with δn−1 > 0, λ̄n−10 ∈ ΛF , such that Bδn(λ̄
n−1
0 ) ⊆ Bδn−1(λ̄

n−2
0 ) ⊆

Bδ0(λ̄
0
0) and Z2(λ̄

n−1
0 ) is not empty.

Given Z2(λ̄
n−1
0 ) is not empty, there exists z1 such that |φ(z1; λ̄n−10 )| > 2. Let λ̂ = π(z1; λ̄

n
0).

It follows from Lemma 5 and the convexity of Λ that there exists {(μ1, F 1), (μ2, F 2)(μ3, F 3)} ≡
ψn ⊆ Φ(λ̂) and l ∈ Rmn+n such that d(l, 0) = 1 such that for θ ∈ (0, δn−1), {(μ1, F 1), (μ2, F 2)} ⊆
Φ(λ̂+ θl) and (μ3, F 3) 6∈ Φ(λ̂+ θl). .
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Any θ < δn−1 ensures that λ̂ + θl ∈ Bδn−1(λ̄
n−1
0 ). We must be careful, however, that we

do not shift λ0 so far that we create new points at which ψn ⊆ Φ(π(z, λ0). To this end,

let Ẑ = {z|(μ3, F 3) 6∈ φ(z; λ̄
n−1
0 ) and there exist {(μ4, F 4), (μ5, F 5)} ⊆ φ(z; λ̄

n−1
0 )} and let

ε̂ = minz∈Ẑ

¯̄̄
f(μ3, F 3, π(z; λ̄

n−1
0 ))− f(μ1, F 1, π(z; λ̄

n−1
0 ))

¯̄̄
. λ̄n−10 ∈ ΛF implies Z1(λ̄

n−1
0 ) is finite.

Ẑ ⊆ Z1(λ̄
n−1
0 ) implies Ẑ is finite. Ẑ finite implies that ε̂ > 0. Since f(μ3, F 3, λ) is uniformly con-

tinuous on X, there exists δ1 such that d(λ, λ
0) < δ1 implies d(f(μ3, F 3, λ), f(μ3, F 3, λ0)) < ε̂/2.

Since all paths π(z, λ0) have the same shape, d(λ, λ
0) < δ1 implies d(f(μ3, F 3, π(z, λ̄

n−1
0 )), f(μ3, F 3, π(z, λ0)) <

ε̂/2 for all z ∈ [0, 1]. If we choose θ > 0 such that θ < min{δn−1, δ1}, then {z ∈ [0, 1] |
ψn ⊂ φ(z; λ̄

n−1
0 + θl)} is empty. We fix θ ∈ (0,min{δn−1, δ1}).

Lemma 4 states that the set of λ0 such that |φ(z;λ0, S) ∩ {(μ1, F1), (μ2, F2), (μ3, F3)}| ≤ 2
for all z ∈ [0, 1] is open. Hence there exists a neighborhood of λ̄n−10 + θl, Ω, such that {z ∈ [0, 1]
| ψn ⊂ φ(z; λ̄

n−1
0 + θl)} is empty for all λ0 ∈ Ω and Ω ⊂ Bδn−1(λ̄

n−1
0 ). Given Assumptions A-C,

the previous proposition states that ΛF is dense in ΛS and hence there exists λ00 ∈ Ω ∩ ΛF . We

set λ̄n0 = λ00. We choose δ
n such that Bδn(λ̄

n
0) ⊆ Ω ⊆ Bδn−1(λ̄

n−1
0 ). This complete the induction

step and the proof.¤
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        Figure 10: Flow Chart Describing Algorithm for Calculating Φ(1) from Φ(0) 
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