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Abstract

Background Current technologies have lead to the availability of multiple genomics data types in
sufficient quantity, and of sufficient quality, to serve as a basis for automatic global network inference.
Accordingly, there is currently a large variety of network inference algorithms that learn regulatory
networks to varying degrees of detail. Methods that use steady-state data of the system’s response to
genetic perturbations (or other interventions) can accurately learn the topology of the network, while
methods that use time-series data, that captures the temporal response of the system to new stimuli, can
learn dynamical models that can be used to predict the response of the system to new conditions.

Methodology We investigate methods that combine time-series data with steady-state genetic pertur-
bation data to improve the overall accuracy of regulatory network prediction and compare these methods
to simpler component methods. We test a two-stage method that includes: 1) a simple methods that
uses only steady-state measurements following genetic perturbations (such as gene knock outs) and 2) a
method that includes an explicit treatment of regulatory dynamics (time-series following perturbations).
Our combined method is able to infer directed causal regulatory interactions and predict the response of
the system to new conditions (in this case new double knock-out genetic perturbations).

Conclusion/significance Our method based solely on steady-state data describing the response of
the system to genetic knockouts tied for 1st out of 19 teams in the DREAM4 100-gene in-silico network
challenge. We demonstrate complementarity between this method and a method that utilizes time-series
data. Combining data from these fundamentally different experimental designs resulted in improved pre-
dictive performance of the topology of the network, while retaining the ability to predict the response of
the system to new conditions. Our evaluation of the performance of multiple methods for network infer-
ence suggests avenues for future methods developments and provides simple considerations for genomic
experimental design.

Introduction

Predicting how a cell will respond, at the molecular level, to environmental and genetic perturbations is
a key problem in systems biology. Molecular regulatory systems-level responses are governed by several
regulatory mechanisms including the underlying transcriptional regulatory network (RN). Recently, there
has been an increase in the number of genome-wide datasets appropriate for large scale network inference,
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which has driven a large interest in methods for learning regulatory networks from these datasets. In
general, the question of inferring a transcriptional RN can be posed in the following way: given a set of
regulators (transcription factors - TFs) and a set of targets (genes), what are the regulatory relationships
between the elements in these two sets? These relationships can be directed (e.g. gene A regulates gene B)
or undirected (e.g. there is a regulatory relationship between gene A and gene B). RN inference techniques
use three main types of genome-wide data: 1) steady-state profiling of gene knockout, knockdown and
over-expression, 2) collections of time series observations following relevant perturbations, and 3) mea-
surements of TF-DNA binding. Different types of RN inference methods produce RNs that vary in detail
and comprehension. One critical distinction is the scalability of any given method. Typically, methods
that learn less detailed regulatory models scale to larger systems and data sizes than methods that learn
more complex models. Another critical difference between methods is whether causal (directed) edges
or undirected relationships are learned. Several current methods aim to learn dynamical parameters,
such as TF-target activation rates and rates of degradation of gene products. Ideally, a computational
biologist should choose the most detailed method that the data will support, as more detailed models can
suggest more focused biological hypothesis and be used to model a system’s behavior in ways that simple
network models cannot. Given this constant need to balance the specific features of any given biological
dataset with the capabilities of multiple RN inference algorithms, testing of RN inference methods using
a variety of datasets is a critical field-wide activity. This is evidenced by several recent methods that aim
to generate biologically meaningful datasets with a known underlying topology [1–4].

To this end, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) [5] provides
a set of networks which can be used to develop and test RN inference methods. The networks presented
by DREAM make some simplifications of the networks found in a cell, and the corresponding datasets
are ideal in their completeness. The control of cellular processes occurs on at least three distinct lev-
els including transcript, protein, and metabolite. Measuring only transcript levels ignores the fact that
cellular interactions happen on the level of proteins, and are mediated in many cases by metabolites.
Accordingly, an ideal dataset for RN inference would contain time-series measurements of multiple levels
of regulation (RNA, protein, protein-modifications, etc.) with the sampling rate on the order of the
fastest reaction. Additionally, the cellular response to genetic perturbation (gene knockout or knock-
down) would also be available. Although advances are currently being made in the cost and accuracy of
genome-wide proteomics, metabolomics, and protein binding (ChIP-chip, ChIP-seq) [6,7] measurements,
the most mature and cost efficient technologies remain those that measure genome-wide transcription-
level responses. Experimental and financial constraints typically prohibit obtaining these measurements
in a finely time-resolved manner. The DREAM challenge removes many of these constraints and presents
participants with an idealized expression dataset for which the true topology (gold-standard) is known.
This presents a unique opportunity to develop RN inference methods and immediately test their perfor-
mance by comparison with the gold-standard. It should be noted that biological systems present several
advantages not relevant to the DREAM4 challenge. These advantages (not discussed here) are leveraged
by integrative methods for learning modularity prior to inference [8–12], methods that use structured pri-
ors derived from compilations of validated biological regulatory interactions [13–16], and approaches to
characterize binding sites [17,18]. A thorough review of current network inference methods is beyond the
scope of this introduction but can be found in [19–24]. Here we briefly review only the classes of methods
that we utilized in our hybrid approach: mutual information based methods, ODE-based methods, and
resampling methods.

Several methods for detecting significant regulatory associations are based on similarity metrics de-
rived from information theory, such as Mutual Information. [25]. The Mutual Information (MI) between
two signals (in this case the expression of a TF and its target) is calculated by subtracting the joint
entropy of each signal from the sum of their entropies. It is similar to correlation (the higher the value,
the stronger the relationship), but is more generally applicable as it does not assume a linear relationship
between the two signals, nor does it assume continuity. At their core, methods that rely on mutual
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information generally infer undirected interactions, as the MI between two variables is a symmetric quan-
tity [26–29], however modifications can be made that allow for the inference of direction [30, 31]. Here,
we use an MI-based method, Time-Lagged Context Likelihood of Relatedness (TL-CLR) [31], which is
based on CLR [29], to learn initial topology that is further optimized and parametrized by Inferelator
1.0 [32]. TL-CLR computes a directed measure that makes use of the temporal information contained in
time series observations to estimate the directionality of a significant regulatory interaction. This method
is described in [31] and is reviewed in the methods section. TL-CLR cannot be used to predict new data
as it does not infer any dynamical parameters. A different approach is needed to calculate dynamical
parameters for the regulatory edges in a given topology. In the context of a full regulatory network infer-
ence pipeline that includes fitting of dynamical parameters, TL-CLR can be used as a feature selection
algorithm that identifies the most likely regulators for each target based on time-lagged, corrected MI.

Ordinary differential equation (ODE) based methods for RN inference attempt to learn not only the
topology of the network, but also the dynamical parameters of each regulatory interaction. Regulatory
network models resulting from these methods can be used to predict the system-wide response to previ-
ously unseen conditions, future time-points, and the effects of removing system components. A drawback
of these methods is that they generally require time-series data and more complete datasets than many
alternative methods. ODE methods model the rate of change in the expression of a gene as a function of
TFs (and other relevant effects) in the system. ODE based methods differ in the underlying functional
forms, how the ODE system of equations is solved (couple or uncoupled solution), and how structure
priors and sparsity constraints are imposed on the overall inference procedure. For example, several
methods have been proposed that use complex functional forms [33], and solve a coupled system [33,34],
while other methods [32, 35–38] solve a simplified linear system of ODEs. The Inferelator 1.0 [32], is an
RN inference method which learns the network as a system of linear ODEs, where the rate of change
for each gene is modeled as a function of the known regulators in the system. Inferelator 1.0 uses a
finite difference approximation to estimate the change in the response over a given time interval, and
uses an efficient implementation of l1-constrained linear regression, LARS [39], to enforce model sparsity.
The Inferelator 1.0 has previously been used to learn a large portion of the Halobacterium salinarium
transcriptional regulatory network, and was able to predict mRNA levels of 85% of the genes in the
genome over new experimental conditions [40]. Additionally, feature selection by TL-CLR followed by
optimization and parameterization via Inferelator 1.0 was a top performing method for the DREAM3
network challenge [31]. One drawback of these scalable MI and ODE based methods is that they rely
on point estimates for many network parameters and thus are not ideal for estimating the error in the
inferred parameters [41]. One possible solution is to use a resampling approach [42, 43] to generate an
ensemble of predicted networks from which the confidence interval for any parameter can be estimated.

Resampling refers to a broad class of statistical methods that are often used to assess confidence
bounds on sample statistics by empirically generating distributions [42]. Recently, several groups have
used resampling approaches in a biological context. In this setting resampling methods are an attractive
means of determining confidence bounds on model parameters (such as the strength and directionality of a
putative regulatory interaction) for two main reasons: 1) resampling methods are non parametric and thus
applicable in cases where complex or ill-understood regulatory relationships might confound assumptions
about the correct error distribution, and 2) resampling methods do not, in our case, decrease algorithm
scalability. Resampling methods have been applied in several contexts to estimate error in a variety of
genomics data-analysis contexts. Kerr et al. [44] used a resampling approach to assess confidence bounds
of clusters from ANOVA models. Resampling of a gaussian process regression model was used by Kirk et
al. [45] to show the sensitivity of the inferred network to uncertainty in the underlying data. Friedman
et al. [46] used a resampling approach of a Bayesian network reconstruction algorithm to assess the
confidence of inferred parameters. Additionally, Marbach et al. [47] showed that a resampling approach
applied to a genetic algorithm for network inference was a top performering method in the DREAM2
five-gene network challenge. We show that by using resampling to generate ensembles of networks with
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our network inference pipeline we can improve the accuracy of our topology prediction.
Here, we present our best-performing method for the DREAM4 in-silico 100 gene network inference

challenge. We show that using the genetic knockout data alone, in a relatively straightforward way,
achieved best performance in predicting the topology of the DREAM4 100 gene networks. We also show
that our network inference pipeline of TL-CLR → Inferelator 1.0 is capable of predicting the system-
wide response to combinations of new genetic perturbations (predicting expression levels in the double
knock-out challenge). We demonstrate that the integration of heterogeneous data types by a resampling
approach can markedly improve our ability to infer network topology while retaining our ability to predict
data in the double knockout challenge. We focus on comparing these methods in an effort to determine
when ODE-based, MI-based, and genetic-perturbation based methods (or combinations thereof) can
be expected to perform best. This comparison provides several simple considerations for determining
the correct balance between genetic perturbations and time series data required for large-scale network
inference.

Materials and Methods

Here we describe all methods used for the the DREAM4 in-silico 100-gene network reconstruction chal-
lenge. We first review the networks and data we were given and the metrics used to evaluate performance.
We then describe the method we used to generate network-topology predictions using only the genetic
knockout observations. Next, we present, in detail, the tlCLR-Inferelator pipeline we used to infer dy-
namical parameters and predict double knockout data. We conclude by describing how the rankings
produced by tlCLR-Inferelator and those produced by a method that uses only the knockout data can
be combined to improve the overall topology prediction while retaining the ability to generate double
knockout predictions.

Problem Set Up

The DREAM4 in-silico network reconstruction challenge consists of five synthetic networks of 100 genes
used to generate five corresponding datasets. The five networks vary in their topology, chosen to mimic
either Escherichia coli or Saccharomyces cerevisiae, and their dynamical properties, determined by initial
conditions and the kinetic parameters chosen for each of the five networks [1]. Stochastic differential
equations, followed by the addition of noise proportional to the level of gene expression (as seen in real
mircroarray datasets), were used to generate expression data from each topology. Denote the expression
levels of the genes by x = (x1, . . . , xN )T . We are given four sets of observations: time-series (Xts), wild-
type (Xwt), knockout (Xko), and knockdown (Xkd). To generate the time-series data a perturbation was
introduced into the system for a period of time, and then removed. Measurements were taken at evenly
spaced time intervals as the system responded to the perturbation, and as it relaxed. Xwt is composed
of the first observation in each time series (of which there are ten), and one provided observation of wild-
type expression. To generate the knockout data the transcription rate of each gene was set to zero (in
turn), the network was equilibrated, and the steady-state expression for all genes in system was measured.
Likewise, for the knockdown data the transcription rate of each gene was set to half of its wild-type rate,
the network equilibrated, and the steady-state expression levels of all of the genes in the system were
measured. For the main challenge participants were presented with this data, but not the underlying
network topology or kinetic parameters, and asked to submit a ranked list of regulatory interactions
sorted by confidence (highest-confidence interactions at the top of the list). The topology predictions
were evaluated by area under the precision recall curve (AUPR) [5]. A perfect prediction would have all
true regulatory interactions (i.e. true positives) ranked higher than false regulatory interactions (i.e. true
negatives). In addition to this main challenge, participants also had the option of taking part in a bonus-
round challenge aimed at assessing a method’s ability to predict system-wide behavior in response to
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new genetic perturbations, the double knockout challenge. For each network participants were presented
with twenty double knockout perturbations, in which the transcription rate of a pair of genes was set to
zero simultaneously, and asked to predict the steady-state expression of all other genes in response to the
perturbation. The accuracy of the prediction was evaluated by calculating the mean square error (MSE)
between the actual and predicted expression of the N genes.

We now present the four methods we used to learn regulatory networks from the DREAM4 data. We
developed a method based only on the knockout data, Xko, which we refer to as mean-corrected Z-scores
(MCZ). We submitted the predictions made by MCZ, tying for 1st out of 19 teams. We also developed
a method that takes advantage of the time-series data to infer topology and dynamical parameters
(based on our method for DREAM3 [31]), which we refer to as tlCLR-Inferelator (the TL-CLR →
Inferelator 1.0 pipeline). We used the dynamical parameters from this method to submit predictions
for the bonus round. We heuristically combined the tlCLR-Inferelator topology predictions with the
topology predictions from MCZ to assess if the two are complemetary. We refer to this method as tlCLR-
Inferaltor+MCZ, and submitted the corresponding predictions of topology, placing 8th out of 19 teams.
We revisited the DREAM4 challenge after the results were made available and developed a method
that combined a resampling version of tlCLR-Inferelator with MCZ . This method achieved optimal
performance in reconstructing topology compared to the other three methods, while retaining the ability
to predict the response of the system to new conditions. We refer to this method as Resampling+MCZ.

Correcting the wild-type measurements for stochastic effects

The underlying model for the expression data in DREAM4 was generated by stochastic differential
equations. Each measurement can be thought of as the observation of only a few cells, as opposed to
a population of cells. Therefore, each measurement of wild-type expression, contained in Xwt, is an
estimate of the population wild-type expression derived from only a few samples, making it a relatively
noisy observation. Thus, any single observation will not accurately describe the population wild-type
expression, and methods that rely on such statistics (e.g. t-test) will suffer. To correct for this we need
to increase the sample size. By considering all wild-type measurements and than taking the mean (or
median) of the expression levels for each gene we can improve our estimate of the population mean.
Median has the advantage of being more robust to outliers than the mean. We can further improve
our estimate of the population wild-type expression by taking the median of xi not only with respect
to the wild-type observations, Xwt, but also with respect to the genetic knockout data, Xko. We can
do so under the assumption that the networks are sparse (i.e. each gene is regulated by relatively few
regulators). Thus, in most single knockout observations the level of most genes will remain close to the
wild-type expression. Accordingly, we consider the wild-type expression of gene xi to be the median of
its expression in Xwt and Xko, and denote this median-corrected estimate of wild-type expression as
xwt

′
= (xwt

′

1 , xwt
′

2 , . . . xwt
′

n ).

Learning topology using genetic knockout data

Previously, we have observed that the genetic knockout data, Xko, is very informative in regards to the
topology of the network [31]. Moreover, Yip et al. [48], showed that a simple global noise model to filter out
non-significant interactions using only genetic knockout data was able to produce regulatory interaction
ranks of high quality, resulting in the top-performing method for the DREAM3 in-silico network challenge.
However, for DREAM4 the noise for each gene is a function of the gene’s expression (higher noise for
higher expression), more accurately simulating the noise found in real microarray measurements. Thus,
we use a method that can take advantage of the genetic knockout dataset, and uses a more biologically
relevant gene-specific noise model to predict the topology of the network. A natural way of identifying if
a gene, xi, is a target of a TF, xj , is by comparing the expression level of xi when xj is knocked out to
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the corrected wild-type expression of xi, x
wt′

i . We do so using the Z-score:

z(xi|xj(−/−)) =
xi,j − xwt

′

i

σi + σo
(1)

Where the notation (−/−) indicates a knockout experiment (i.e. z(xi|xj(−/−)) corresponds to the Z-
score of target gene xi given that xj is knocked out), xi,j is the expression of gene xi when xj is knocked
out, σi is the standard deviation of gene xi over Xko, and σ0 is a correction term (to bias against genes
with very low standard deviation). To determine the proper value of σ0 we tested this method on the
DREAM3 100 gene networks, finding that setting σ0 to zero performed best (this is not the case for
the smaller 10 gene networks). We confirmed, once the gold-standard networks were made available,
that the best σ0 was zero for the DREAM4 100 gene networks. This implies that having 100 knockout
conditions provides a good enough estimate of the population standard deviation. We use z(xi|xj(−/−))
as a measure of confidence for each regulatory interaction xj → xi, which we store in:

Zko =


zko1,1(−/−) zko1,2(−/−) · · · zko1,N(−/−)

zko2,1(−/−) zko2,2(−/−) · · · zko2,N(−/−)

...
...

. . .
...

zkoN,1(−/−) zkoN,2(−/−) · · · zkoN,N(−/−)

 (2)

We refer to the method described above as median corrected Z-scores (MCZ). We ranked the absolute
value of the entries in Zko (from high to low), and submitted the resultant ranked list of regulatory
interactions as our topology prediction for the DREAM4 competition. This method was a co-best per-
former (along with the team of Pinna et al.) in reconstructing the topology of the network. Although it is
attractive in its simplicity, it relies on a dataset that is more complete than we can expect a real genomics
data-collection to be. Additionally, this method is not satisfactory if the end goal is to model system-wide
behavior following new stimuli or new genetic perturbations as it does not assign dynamical parameters
to each regulatory interaction. Predicting how a system will behave under previously unobserved condi-
tions, such as the removal of certain regulators, is a key problem with a wide range of applications and a
focus of the remainder of this section. Thus, we implemented an inference pipeline that infers dynamical
parameters as well as topology. We refer to this pipeline as tlCLR-Inferelator, and it is very similar to
the method we used for the DREAM3 competition [31]. This pipeline is composed of two steps: 1) using
Time-Lagged Contex Lilehood of Relatedness (TL-CLR) [31], a mutual information based method, to
learn directed topology, and 2) optimization and parameterization of the topology learned by TL-CLR
via Inferelator 1.0 [32].

Double knockout prediction

For learning topology we were able to generate high-quality predictions using solely Xko. Conversely,
when learning dynamical parameters we used all of the data, emphasizing the distinction between the
time-series data and steady-state data. We treated all of the time series experiments as a single dataset,
Xts, with columns t1, t2, . . . , tK corresponding to the K observation times, and all of the steady state
data (Xwt, Xko, Xkd) together as another dataset, Xss. In order to make predictions for the double
knockout challenge we needed to infer topology and dynamical parameters. To improve the accuracy
of our approach we filtered out the least likely regulatory interactions (using the scores in MCZ), and
utilized internal metrics of model performance to reduce the effect of incorrect models. Our procedure for
calculating double knockout predictions has five steps: 1) computing a directed topology using TL-CLR,
2) filtering out least likely interactions using MCZ, 3) optimizing and fitting parameters to the inferred
topology via Inferelator 1.0, 4) estimating the relative merit of all model components, and 5) generating
double knockout predictions.
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Step 1: Computing the most likely predictors for each gene using TL-CLR

Mutual information (MI) as a metric of statistical dependency between two random variables X and Y
can be defined as [25]

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(3)

where p(x, y) is the joint probability distribution function of X and Y , and p(x) and p(y) are the marginal
probabilities that X = x and Y = y, respectively. Note that MI is a symmetric measure. Faith et al. [29]
have previously shown that Context Likelihood of Relatedness (CLR), a MI based method, performed
well at identifying a large portion of the known E.coli regulatory associations as well as predicting novel
interactions. However, CLR can only predict undirected edges (regulatory associations), and must rely
on additional data to determine directionality (e.g. by knowing that one gene encodes for a TF and the
other for an enzyme, directionality can be resolved). By taking advantage of the temporal information
available from time-series observations, we have shown that CLR can be extended (in a method we call
TL-CLR), allowing us to infer directed regulatory interactions, and increasing overall performance [31].
At the core of TL-CLR’s ability to resolve directionality is its reliance on dynamic-MI instead of static-
MI; below, we make our distinction between static- and dynamic-MI clear and explain how to compute
each measure.

As previously suggested [26–29], MI can be used as a measure of similarity between the expression
levels of gene-pairs, I(xi, xj), where gene-pairs that show a significantly higher MI scores (compared to
other gene-pairs) are more likely to have a regulatory interaction between them. Since I(xi, xj) = I(xj , xi)
both regulatory edges (xj → xi and xi → xj) are equally likely. We refer to the MI calculated from
I(xi, xj) as static-MI, because it does not use the temporal information available from time-series data
(treating time-series and steady-state data identically).

We now describe dynamic-MI, which is motivated by our previous work on the Inferelator 1.0 [40],
an ODE-based method. We assume that the temporal changes in expression of each gene, xi, can be
approximated by the linear ODE:

dxi(t)

dt
= −αixi +

N∑
j=1

βi,jxj(t), i = 1, . . . , N (4)

where αi > 0 is the first-order degradation rate of xi and the βi,j ’s are a set of dynamical parameters
to be estimated. The value of βi,j describes the extent and sign of the regulation of target gene xi by
regulator xj . We store the dynamical parameters in an N × N matrix, β. Note that β is typically
sparse, i.e. most entries are 0. Using a finite difference approximation, we can write (4) for time-series
experiments as

τi
xi(tk + 1)− xi(tk)

tk+1 − tk
+ xi(tk) = τi

N∑
j=1

βi,jxj(tk), i = 1, . . . , N k = 1, . . . ,K (5)

where τi = 1
αi

is related to the half-life time, t1/2, of xi by t1/2 = τi log(2). For every gene pair (xi, xj),
we define a time-series response variable,

yi(tk+1) = τi
xi(tk+1)− xi(tk)

tk+1 − tk
+ xi(tk), (6)

and a corresponding explanatory variable, xj(tk), both derived from the left and right hand sides of (5),

respectively. For steady state experiments, the derivative, dxi(t)
dt , in (4) equals zero, and we can write (4)

as

xi(vl) = τi

N∑
j=1

βi,jxj(vl), i = 1, . . . , N l = 1, . . . , 2N + 1 (7)
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Similarly, we define a steady-state response variable,

yi(vl) = xi(vl), (8)

and a corresponding explanatory variable both derived from the left and right hand sides of (7), respec-
tively. Taking the time-series and steady-state response variables together, we get the final response
vector: yi = (yi(t2), . . . , yi(tK), yi(v1), . . . , yi(v2N+1). Similarly, taking the corresponding time-series and
steady-state explanatory variables together, we get the final explanatory variables vector:
xj = (xj(t1), . . . , xj(tK−1), xj(v1), . . . , xj(v2N+1). Note that for time-series data the explanatory vari-
ables are time-lagged with respect to the response, as we desire.

As a measure of confidence for a directed regulatory interaction between a pair of genes (xj → xi) we
use, I(yi, xj), where a pair that shows a high MI score (relative to other pairs) is more likely to represent
a true regulatory interaction. Note that I(yi, xj) 6= I(yj , xi), making one regulatory direction more likely
than the other. We refer to the MI calculated from I(yi, xj) as dynamic-MI, as it takes advantage of the
temporal information available from time-series data (distinguishing time-series data from steady-state
data).

As described above, we calculate I(xi, xj) and I(yi, xj) for every pair of genes and store the values
in the form of two N × N matrices M stat and Mdyn, respectively. Note that M stat is symmetric while
Mdyn is not. We now briefly describe how TL-CLR integrates both static- and dynamic-MI to produce
a final confidence score for each regulatory interaction (unlike for CLR, TL-CLR confidence scores will
not be symmetric). For a more detailed explanation we refer the reader to [31]. For each regulatory
interaction xj → xi we compute two positive Z-scores (by setting all negative Z-scores to zero): one for
the regulation of xi by xj based on dynamic-MI (i.e. based on Mdyn), z1, and one for the regulation of
xi by xj based on static-MI (i.e. based on Mstat), z2. We combine the two scores into a final TL-CLR

score, ztl−clri,j =
√

(z2
1 + z2

2). Note, that some entries in Ztl−clr are zero, i.e. Ztl−clr is somewhat sparse.

Step 2: Filtering least likely regulatory interactions using knock out data

We now apply a simple filtration step (similar to the one used in [31]) using the genetic knockout data,
Xko, with the aim of removing the least likely regulatory interactions from Ztl−clr (by setting their scores
to zero). For the results presented here, we filtered every regulatory interaction with MCZ score (stored
in Zko) below the 50th percentile of scores in Zko. Ztl−clr now contains only the putative interactions
we are most sure of, and we can interpret row i of the filtered Ztl−clr as a ranking of the regulators, xj ’s,
for gene xi. Similar to the confidence scores in Zko, the confidence scores in Ztl−clr recapitulate only the
topology, not the dynamics of regulation, and cannot be used to make predictions of the response of the
system to new conditions.

Step 3: Learning dynamical parameters using Inferelator 1.0

We use Inferelator 1.0 to learn a sparse dynamical model of regulation for each gene xi. As potential
regulators of xi we consider only the P highest confidence (non-zero) regulators from Ztl−clr (highest
scoring xj ’s, in row i of Ztl−clr). Note that we cannot guarantee that every xi will have P regulators
meeting this criteria, thus we denote by P i(P i ≤ P ) the number of regulators that do. Accordingly,
for each gene, xi, we denote this subset of potential regulators as xi. We use Inferelator 1.0 to learn a
sparse dynamical model for each xi as a function of xi’s. We assume that the time evolution in the xi’s
is governed by

dxi(t)

dt
= −αixi +

P i∑
j=1

βi,jx
i
j(t), i = 1, . . . , N (9)

which is exactly (4) with our constraint on the number of regulators. Least Angle Regression (LARS) [39]
is used to efficiently implement an l1 constraint on β, which minimize the following objective function,
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amounting to a least-square estimate based on the ODE (9):

E(β) =

N∑
i=1

Ei(β) (10)

where

Ei(β)=

K−1∑
k=1

∣∣∣∣∣∣xi(tk+1)− xi(tk)

tk+1 − tk
+ αixi(tk)−

P i∑
j=1

βi,jx
i
j(tk)

∣∣∣∣∣∣
2

(11)

under an l1-norm penalty on regression coefficients,

P i∑
j=1

|βi,j | ≤ si
P i∑
j=1

|βols
i,j | (12)

where βols is the over-fit ordinary least-squares estimate (i.e. the minimizer of (11) with no penalty), and
si is a number between 0 and 1 referred to as the shrinkage parameter; setting si = 1 corresponds to
ordinary least-square regression. To avoid over fitting, we chose the shrinkage parameter si by ten fold
cross-validation at one standard deviation away from the minimum error (as described in [32]). Each
resultant model (row of β) is a parameterization of an ODE describing the temporal evolution of xi. The
l1 constraint ensures that Inferelator 1.0 results in a sparse matrix, β, with a small number of entries
|βi,j | > 0. These entries are dynamical parameters that can be used to predict the response of the system
to new conditions, such as the removal of genes or future time-points (given initial time points in a time
series).

Step 4: Estimating the relative explanatory power of each model and regulatory interaction

The dynamical parameters stored in β describe the regulation of each gene (target) as a function of
regulators (TF’s) in the system, with |βi,j | corresponding to the strength of the regulation, and the
sign of βi,j indicating repression or activation. For the DREAM3 in-silico challenge we ranked regulatory
interactions using |βi,j | as the measure of confidence for a regulatory interaction (xj → xi) [31]. However,
this ranking does not take into account the explanatory power of each predictor xj in the ODE model for a
target xi (e.g. |βi,j | may be large even though the model for the regulation of xi is not a good one). Here,
we propose a confidence measure that incorporates the explanatory power of predictors (i.e. the quality of
the model for xi). When inferring a regulatory model for xi we treated the finite difference approximated
values, yi, as the response variable, and modeled yi as a function of corresponding explanatory variables,

xj , j = 1, . . . , N (j 6= i). We refer to the predicted expression of yi as ŷi, calculated as ŷi = τi
∑P i

j=1 x
i
jβi,j .

The error in this approximation was measured as sum-of-squares,
∑M
i=1(yi − ŷi)2, where M is the total

number of observations. We estimated the predictive error of our model for yi using mean error obtained
from ten fold cross-validation. In order to place all model errors on the same scale, we normalized the

absolute sum-of-squares error to derive a measure of relative error,
∑m

i=1(yi−ŷi)2∑m
i=1 y

2
i

. Given this relative error,

we defined the explanatory power of the model for yi to be given by 1 minus relative error:

γi=1−
∑M
i=1(yi − ŷi)2∑M

i=1 y
2
i

(13)

where γi represents the merit of the model for yi (i.e. how good of an estimate is ŷi). We can now
calculate the contribution of each predictor βi,j to the explanatory power of the model for yi, (i.e. the
explanatory power of each regulatory interaction) as a weighted average

zγi,j=
βi,j

βi,0 +
∑N
j=1 βi,j

γi (14)
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where βi,0 is the bias term for the regulatory model of yi. Note that here we use the fact that all the
observations of the regulators xj ’s, are on the same scale, as they were normalized to have zero mean
and standard deviation of 1 before model selection by Inferlator 1.0 (a common step in a regression
framework). We stored these values in the form of an N ×N matrix, Zγ . Next, we describe how we used
β to generate predictions of the system’s response to double knockouts.

Step 5: Generating the double knockout predictions

The challenge of predicting the response of the system to double knockouts (double-KO) can be phrased
as: given a simultaneous knockout of two genes (i.e. xi, xj = 0 for some i and j), predict the steady-state
expression of all other genes. In order to predict steady-state expression levels for each gene we used the
steady-state limit of the core Inferelator 1.0 model [32] (7), which we rewrite here (in matrix notation)
for the case of predicting the steady state data:

xij(−/−) = τβx0 (15)

where xij(−/−) is the level of all genes for the double-KO of genes xi and xj , and x0 is some vector of
initial conditions (satisfying xi, xj = 0). Throughout we had set τi to 40 (for all genes), which is the
time-interval between measurements, assuming that the sampling frequency was on the time order of most
regulatory reactions. Note that the only unknown left to determine (before we can make a prediction) is
the vector of initial conditions, x0. The rest of this section deals with computing a good initial condition
vector. A simple way to pick this vector would be to set x0 = xwt

′
, with the exception that x0

i , x
0
j = 0.

The results that we submitted for the DREAM4 bonus-round challenge were calculated using this initial
condition. Note, however, that the system’s response to the KO of genes xi, xj individually was already
given to us in the single-gene knockout dataset, Xko. Upon revisiting our initial results, after submission
of the predictions, we reasoned that using the single gene knockout (single-KO) information to predict
double-KO expression would most likely yield better results, as it reflects a system state that is closer
to the state we are trying to predict. Indeed, using the single-KO data to determine initial conditions
markedly improved the accuracy of our double knockout predictions. Next, we describe how we used
single-KO observations to determine initial conditions.

It is clear that in order to determine x0, given that xi and xj have been knocked out, it would be
advantageous to use the single-KO observations of xi and xj . The remaining question is how to integrate
the two single-KO observations into a single initial condition. One approach is to simply take their
mean. However, a more informed approach is to use our previous knowledge regarding likely regulatory
interactions, such as the confidence scores from MCZ (stored in Zko). We do so by computing the
following weighted average:

x0
l =

zkol,ix
ko
l,i + zkol,jx

ko
l,j

zkol,i + xkol,j
l = 1, . . . ,K (16)

where x0
l is our estimate for the initial expression level of gene xl, x

ko
l,i and xkol,j are the observed levels of xl

when genes xi and xj were knocked out, respectively, and zkol,i or zkol,j are the confidence scores (calculated
by MCZ) for each regulatory interaction xi → xl and xj → xl, respectively. In this manner we computed
an initial condition vector, x0, for every double-KO we were asked to predict. We now use these initial
conditions to calculate a prediction of the expression of all genes in the presence of a double-KO of xi, xj
via (15). We denote this prediction as x̃ij(−/−).

Note, however, that some models had more predictive merit than others, as measured by the explana-
tory power of each model (13). Thus we weighted the prediction of double knockouts by the predictive
merit of each model. We computed the final double-KO predictions as follows:

xij(−/−) = x̃ij(−/−)γ + x0(1− γ) (17)
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where γ = (γ1, γ2, . . . , γN )T . Note that in (17) the final prediction xij(−/−) is weighted by our estimate of
the predictive performance the models, γ calculated in (13), and constrained, using the initial conditions,
by our estimate of the model errors (1− γ).

Ranking regulatory interactions using their explanatory power, TL-CLR-Inferelator
1.0 confidence scores, and MCZ confidence scores

It is natural to think that the regulatory information gathered using different datasets and different
methods is complimentary. Thus, we combined the results of the measures of confidence described
above: Zko, Ztl−clr, and Zγ . The main challenge in combining these confidence scores is that they are
not guaranteed to be on the same scale. Thus, we developed a single rank based heuristic (described
previously in [31]) to combine two separate sets of confidence scores. Our approach is best explained
by an example: Let Zpl denote the resultant matrix from combining the confidence scores contained in
Ztl−clr and Zγ (i.e. the results of our dynamic pipeline TL-CLR → Inferelator 1.0). We first replace
the value of the highest-ranking entry in Zγ with the value of the highest-ranking entry from Ztl−clr.
We then replace the value of the second highest-ranking entry from Zγ with the value of the second
highest-ranking entry from Ztl−clr. We continue in such a way until all entries in Zγ have been replaced
by equally ranked entries in Ztl−clr. This produces two ranked lists of regulatory interactions that are
on the same scale. Once this assignment is done we can combine the two matrices as follows:

Zpl=
√

(Zγ)2 + (Ztl−clr)2. (18)

Note that here Zγ refers to the matrix after the assignment of values from Ztl−clr. We used the confidence
scores in Zpl to generate the ranked list of regulatory interactions for the TL-CLR → Inferelator 1.0
pipeline. We will refer to this method as tlCLR-Inferelator.

In order to assess how complimentary tlCLR-Inferelator and MCZ were we combined the confidence
scores stored in Zγ with those in Ztl−clr (replacing scores of equal ranks from Zko into Zpl, as above):

Zfinal=
√

(Zpl)2 + (Zko)2. (19)

The confidence scores contained in Zfinal were generated by a combination of our three methods, and we
will refer to this integrated method as tlCLR-Inferelator+MCZ. Next we describe a resampling method
that we used to generate an ensemble of predicted neworks. Picking the median network based on the
ensemble (we describe this step below) dramatically improved our performance in recapitulating network
topology, showing that the two methods, tlCLR-Inferelator and MCZ, held unique information with
regard to the network topology, and were indeed complimentary (at least in this resampling approach).

Combining genetic and dynamic information in a resmapling approach

We generated an ensemble of networks, as opposed to a single network, as follows. Consider all of the
provided observations as a single N ×M matrix, D = {Xwt, Xko, Xkd, Xts}, with M being the number
of total observations (columns). Let c = {1, . . . ,M} be the vector of column indices. We sample with
replacement M times from c, storing the selected indices in c∗ = i1, i2, . . . , ij , . . . , iM , ij ∈ {1, . . . ,M}.
We now consider a permuted data matrix, D∗, comprised of the c∗ columns of D. We generate β, Zpl,
and Zfinal, as described before, with the only difference being that we use D∗ instead of D. We repeat
this procedure B times, with B = 200 for the DREAM4 networks, each time generating β, Zpl, and
Zfinal. We store this ensemble of regulatory network predictions in:

E={[β(1), Zpl(1), Zfinal(1)], [β(2), Zpl(2), Zfinal(2)], . . . , [β(B), Zpl(B), Zfinal(B)]} (20)
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where [β(b), Zpl(b), Zfinal(b)] corresponds to the dynamical parameters, rankings based on tlCLR-Inferelator,
and rankings based on tlCLR-Inferelator+MCZ, respectively at resample b = 1, 2, . . . , B. Note that
throughout this resampling procedure the ranks generated by MCZ remain constant. We used this en-
semble of network predictions by selecting, for each regulatory interaction xj → xi (corresponding to

entries βi,j and zfinali,j ), the median dynamical parameters in {β(1),β(2), . . . ,β(B)} and the median

tlCLR-Inferelator+MCZ rank in {Zfinal(1), Zfinal(2), . . . Zfinal(B)}. We store these median values in
βeMed and ZeMed, respectively. These matrices have entries:

zeMed
i,j =median(zfinal

i,j (1), zfinal
i,j (2), . . . , zfinal

i,j (B)) (21)

βeMed
i,j =median(βi,j(1), βi,j(2), . . . , βi,j(B)). (22)

To rank regulatory interactions we used ZeMed. To estimate dynamical parameters we used βeMed. We
refer to this resampling approach as Resampling+MCZ.

Results

Performance of tested methods: ranking putative regulatory interactions

The main challenge in the DREAM4 100 gene in-silico regulatory network competition was to predict
the topology of five networks. Predictions were made in the form of a list of regulatory interactions
ranked in decreasing order by confidence. We evaluated the performance of four methods for learning
regulatory networks, namely: MCZ (2), tlCLR-Inferelator (18), tlCLR-Inferelator+MCZ (19), and Re-
sampling+MCZ (21). In all four cases we evaluated the quality of the rankings of all possible regulatory
interactions, as this was the basis for the evaluation of performance in DREAM3 and DREAM4. We
submitted the results of MCZ as our ranked list of regulatory interactions for the DREAM4 challenge.
This method tied for first place (out of 19 teams). In Figure 1 we show that MCZ (a relatively simple
method) performs well (red). The tlCLR-Inferelator pipeline exhibits lower performance for most of
the networks (yellow), but has the advantage of allowing us to calculate dynamical parameters (which
we show below offer the ability to predict the system’s response to double knockouts). In the method
tlCLR-Inferelator+MCZ we combine the predictions made by MCZ with those made by tlCLR-Inferelator
(orange). We see an improvement in performance as compared to the performance of tlCLR-Inferelator
alone, but do not outpreform MCZ. However, if we use a resampling approach, Resampling+MCZ (20—
22), to generate an ensemble of likely networks, we see a marked improvement over the performance of
any other method (shown in purple). This improvement is most evident in networks 3-5, which appear
to be more difficult to predict for all of the methods we tested.

Performance of methods based on genetic knockout data decreases with de-
creasing expression of the regulators

For the DREAM3 in-silico challenge all methods, including several similar to the ones we test herein,
were found to perform significantly worse for networks with very high in-degree (targets regulated by
many TFs) and to be relatively insensitive, performance-wise, to the out-degree of TFs [31, 48]. We
did not find this trend in the current challenge (Figure 2C,D). However, we did find that performance
varies considerably across the five 100 gene networks for all tested methods; performance was best for
the first network and dramatically worse for the fifth network (Figure 1). We investigated possible
reasons for this, finding that performance is correlated with the median expression of the regulators.
Given a regulatory interaction, xj → xi, our chance of correctly predicting that regulatory interaction
(based on MCZ) tends to be higher if the median expression of xj over all conditions in the knockout
data-set, Xko, is high. Conversely, the smaller the median expression of xj , the worse our performance.
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Figure 2A shows that our predictions for the regulatory interactions in network 1 have relatively low
error (black box plot), and the corresponding median expression of the regulators in this network is
relatively high (grey box plot). For network 5 we see relatively poor predictive performance, and the
corresponding median expression of the regulators in this network is the lowest of the five networks. In
Figure 2B we see a high correlation, R2 = .95, between the median expression of the regulators and the
performance of MCZ in terms of AUPR. By combining ranks from MCZ with our resampled network
inference pipeline, Resampling+MCZ, we significantly improve performance on networks 3-5 (Figure 1),
and lower the correlation between performance and median TF expression over all five networks to 0.81
(Figure 2B).

Regulatory interaction rankings derived from genetic knockout data and rank-
ings derived from the resampling tlCLR-Inferelator are complimentary

In the above section we focused on differences between the performance of each method for each of the five
networks. In this section we focus on the performance of each method in a gene-by-gene manner, in an
effort to better understand how to best utilize heterogeneous data collections. Specifically, we investigated
the performance of each network inference method MCZ, tlCLR-Inferelator, tlCLR-Inferealtor+MCZ, and
Resampling+MCZ as a function of the median expression of the regulators, xj ’s, in the network. We bin
regulators based on their median expression, and compare the error made in predicting their respective
targets.

In Figure 3 we see the performance of the ranks from MCZ is worse for regulators with low median
expression than for the most actively expressed regulators (shown in red). This trend is more apparent in
this gene-by-gene view than in our network-centric analysis. Looking at each bin, shown from low to high
median expression, we see that predictions made by methods that incorporate rankings made by tlCLR-
Inferelator perform better than the predictions made by MCZ for regulators whose median expression
is less than .2. The error distributions of the predictions made by Resampling+MCZ (purple bars) are
lower than those of MCZ (red bars) for regulators with a median expression upto .4, and on par with the
predictions made by MCZ for regulators with a median expression of up to .6. The predictions made by
Resampling+MCZ are better than those made by tlCLR-Inferelator and tlCLR-Inferelator+MCZ for all
bins.

Predicting the effect of double knockouts

For each 100-gene network we were asked to predict the cell’s steady-state mRNA levels given that a
pair of genes is knocked out. There are twenty such pairs of genes (xi, xj = 0) for each network. We
make these predictions using the parameterization, β, of the system obtained from our inference pipeline,
tlCLR-Inferelator. We also make these predictions using the parameters obtained by taking the median
weight from the ensemble, βeMed (22), generated by Resampling+MCZ.

The measure of performance for the DREAM4 double knockout predictions was mean squared error
(MSE). As a baseline, we compare the error of our prediction to the error we would make if we used
xwt

′
as the prediction. We reason that a completely wrong parameterization will cause drastic changes

resulting in a complete distortion of the system, hence the the wild-type expression is a satisfactory
baseline.

In Figure 4 we take a gene-centric approach and see that both sets of predictions have lower error
than the baseline (shown in green). Additionally, the error made by the baseline predictions increases
significantly as the median expression of the knocked-out genes increases, while the error of our predictions
increases only marginally. The predictions made by using parameters derived from Resample+MCZ
show almost idenitical performance as those made by using the parameterization derived from tlCLR-
Inferelator. Table 1 summarizes the accuracy of double knockout predictions for each network. We see
that the performance of both sets of parameters is nearly indentical. Additionally we see (in columns
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2 and 3) that using initial conditions derived from the wild-type expression, xwt
′
, to make predictions

by tlCLR-Inferelator beat the baseline but performed much worse than the predictions made if we use
initial conditions based on the knockout data, Xko. This is also the case for predictions made using
Resampling+MCZ (data not shown).

Discussion

We participated in the DREAM4 100-gene in-silico network inference competition. The method that
we submitted, and that was the co-best performer on the 100-gene in-silico challenge, was the rankings
derived from the median corrected Z-scores of the genetic knockout data, MCZ. The power of the genetic
knockout data, as also shown by Yip et al. in DREAM3 [48], is an important point to consider for
experimental design. However, it does have limitations that can be complemented by integrating other
data-types, particularly time-series data. We observed that as the median expression of the regulators
in a network decreases, error in predicting regulatory interactions using MCZ increases (Figure 2). A
plausible explanation for why a low median expression of regulators leads to poor performance is that if an
active regulator (i.e. a regulator whose wild-type expression is high) is removed, then the corresponding
effect on its targets will be relatively large. Conversely, if a regulator that is not very active (i.e. its wild-
type expression is low) is removed, then the effect on its targets will be marginal. Perhaps, the targets
of such regulators will be most apparent in over-expression experiments. If over-expression experiments
are not available the poor performance in predicting the targets of these regulators can be mitigated by
combining the predictions made by MCZ with predictions made by a method that takes advantage of
time-series data (where the regulator was active at some point).

We used tlCLR-Inferelator, which takes advantage of the time-series data, to predict topology and
dynamical parameters for each network in a way that was more robust to the median expression of the
regulators than methods that use solely genetic knockout data. We submitted topology predictions and
bonus-round (double knockout) predictions generated by tlCLR-Inferelator. The topology predictions
ranked 8th out of 19 teams. Using a very similar inference pipeline for the DREAM3 challenge resulted
in predictions that ranked 2nd out of 22 teams. Notably, in terms of AUPR the results of the inference
pipeline on the DREAM4 networks were better then on the DREAM3 networks [31]. This discordance be-
tween a worse performance relative to other teams, but improved ability to recapitulate network topology
is probably due to a more concentrated use of the knockout data by participants of DREAM4.

Upon receiving the gold-standard networks we analyzed our ability to predict topology using tlCLR-
Inferelator. Dissecting our performance, in a gene-by-gene manner, we saw the that there are instances
when predictions made by tlCLR-Inferelator are more accurate than those made by MCZ. Given the
performance of each of the methods, as evaluated by AUPR (Figure 1), this is a surprising and promising
result, implying that methods that use only genetic knockout data and those that take advantage of
time-series data produce complimentary topology predictions. Further demonstrating this point, we
showed that applying a resampling approach to tlCLR-Inferelator and combining the results with MCZ,
by aggregating the ranks derived from each method, produces a final prediction that is better than
the predictions generated by either method alone. The improvements from Resampling+MCZ are most
evident on networks 3-5 (Figure 1), which have the lowest median expression of the regulators (Figure
2A), and are hence hardest to predict using the genetic knockout data alone. We note that alternate ways
of combining predictions from multiple methods may further improve upon our results. We also note that
in our resampling approach the predictions of MCZ remain constant for each network in the ensemble.
This implies that although a single network generated by tlCLR-Inferelator may perform poorly, our
resampling approach generates sufficient alternate topologies such that picking a network based on the
ensemble-median produces a much more accurate topology prediction. This resampling approach also
infers an ensemble of dynamical parameters, retaining the ability to predict the response of the network
to new conditions.
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We submitted predictions of system-wide expression in the presence of double knockouts for the
DREAM4 bonus-round challenge. The predictions we submitted were based on the initial conditions
derived from the wild-type (xwt

′
). The quality of our double knockout predictions was very sensitive to

the initial conditions (Table 1). We found that using single-knock out data, Xko, as the basis of our initial
conditions dramatically improves our predictive performance (compared to using initial conditions based
on the wild-type). This is due to the fact that the single-gene knockouts present a closer network state
to what we are trying to predict (network response to double knockouts) than does the wild-type. Once
we properly picked the initial conditions we observed that we can accurately predict the response of the
system to new genetic perturbations (Figure 4). We accurately predicted the response of the network to
double knockouts using dynamical paramters calculated by tlCLR-Inferelator (whose topology prediction
was poor relative to those of other methods). Thus, we show that our ability to predict data can tolerate
a remarkable amout of error in the predicted topology and still make accurate predictions of the system’s
response to new perturbations. This is perhaps not surprising, as the Inferelator 1.0 [32] was designed to
optimize data prediction error. We have also shown that a parameterization picked from the median of
an ensemble of networks retains, but does not significantly improve, our predictive performance. Perhaps
an alternative way of picking parameters from the ensemble of networks can improve upon the ability to
predict new data.

We have shown the complementarity between predictions made using genetic knockout data and those
made using time series data. We have shown that using solely genetic knockout data can result in accurate
topology predictions, which can be further improved upon by correctly incorporating predictions made
using time-series data. To this end, we have developed a relatively simple method for combining the
predictions made from genetic knockout and time-series datasets, showing an improved ability to infer
network topology while maintaing the ability to predict the response of the system to new conditions.
We suggest that investigating alternate means of combining genetic and dynamic experimental designs
(leveraging the complementarity between these two data-types), as well as methods that incorporate
direct binding data, will continue to be fruitful avenues of future investigation.
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Figure 1. Area under precision recall curve for each ranking scheme We evaluated our
performance in predicting the topology for each network using area under the precision recall curve
(AUPR). We developed and tested four methods: 1) the TL-CLR → Inferelator 1.0 network inference
pipeline — tlCLR-Inferelator, shown in yellow 2) combing the confidence scores of the inference pipeline
with those derived from Z-scores based on the knockout data —tlCLR-Inferelator + MCZ, shown in
orange 3) Z-scores on the genetic knockout data —MCZ, shown in red 4) resampling the network
inference pipeline and combining with Z-scores—Resampling + MCZ, shown in purple. We see that
Resampling + MCZ generally outpreforms all other methods.
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Figure 2. Trends in performance over the five networks For panels A,C,D we consider only the
performance of MCZ, and use relative rank as an estimate of error. We compute relative rank in the
following way. Denote by L the total number of possible regulatory interactions, and by l the rank that
was given to each regulatory interaction, xj → xi. The relative rank of xj → xi is defined to be l

L .
Error distributions of the predictions for the five networks are shown as black boxplots in panels A,C,D.
Distributions of median expression of the regulators, in-degree of the regulators, and out-degree of the
regulators are shown as grey boxplots in panels A,C,D, respectively. A) Relative rank (Error) in
network prediction increases as the median expression of the regulators decreases. C) There is no
apparent relationship between relative rank (Error) and the in-degree of the regulators. D) there is no
relationship between relative rank (Error) and out-degree of the regulators. B) we show the relationship
between median expression of the regulators and the performance in predicting topology, in terms of
AUPR, across all five networks. A correlation of (R2 = .95) exists between MCZ-derived predictions
and AUPR (shown in red), while there is a smaller correlation of (R2 = .81) between resampling-based
predictions (Resampling+MCZ) and AUPR (shown in purple).
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Figure 3. Error as a function of binned median expression for all regulatory interactions
We further investigate the relationship between the median expression of the regulators and our
performance in predicting topology. We use relative rank as an estimate of error (as in Figure 2). We
bin the regulators for all five networks based on their median expression. We show the distribution of
relative ranks (Error) for each method in each bin of regulator expression. We see that all of the
methods that incorporate the predictions of the inference pipeline (tlCLR-Inferelator,
tlCLR-Inferelator+MCZ, Resampling+MCZ) outperform MCZ for regulators with low median
expression (0-.2).
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Figure 4. Performance on double knockout prediction We assess the accuracy of predicting the
system’s response to the simultaneous removal (knockout) of two genes xi, xj . In total, there were
one-hundred pairs of genes that were knocked out. We bin these pairs of genes based on the average of
their respective median expression in the single-gene knockout data. We compare the error of our
prediction to the error made by using the wild-type expression, xwt

′
, as a prediction (baseline, show in

green). We evaluate the error of a prediction by mean squared error (MSE). We show the error
distributions using parameters calculated by the inference pipeline (tlCLR-Inferelator, gray boxplot) are
smaller than the error distributions of the baseline. Additionally, the error distributions using
parameters calculated by the resampling approach (Resampling+MCZ, red boxplots) are essentially
identical to the error distribution obtained by tlCLR-Inferelator derived parameters.
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Table 1. Error in predicting double knockouts for each network

baseline x0 =w.t. tlCLR-Inferelator Resampling+MCZ
Network 1 .04346 .03487 .00484 .00435
Network 2 .02909 .02570 .00757 .00696
Network 3 .01782 .01492 .00591 .00585
Network 4 .02064 .01970 .00562 .00564
Network 5 .04362 .04089 .00578 .00551

Here we present the error in double knockout predictions (i.e. predicting the response of the network to
the removal of two genes). For each network twenty predictions were made. We present our average
performance for each network (evaluated by mean squared error). Column 1 (”baseline”) shows the
average error if use the wild-type as the prediction. Column 2 (”x0 =w.t.”) shows the average error
made by tlCLR-Inferelator derived parameters when the initial conditions are based on wild-type.
Column 3 (”tlCLR-Inferelator”) shows the average error made by tlCLR-Inferelator derived parameters
when the initial condition vector is chosen from the knockout dataset (16). Column 4
(”Resampling+MCZ”) shows the average error made by Resampling+MCZ (the parameters derived
from the ensemble) using initial conditions from the knockout dataset.


