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Nonredundant Representation of Ancestral
Recombinations Graphs

Laxmi Parida

Abstract

The network structure that captures the common evolutionary history of a diploid population has been
termed an ancestral recombinations graph. When the structure is a tree the number of internal nodes is
usuallyOðKÞ whereK is the number of samples. However, when the structure is not a tree, this number has
been observed to be very large. We explore the possible redundancies in this structure. This has implications
both in simulations and in reconstructability studies.
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1. Introduction

In keeping with the theme of the book, we study in this chapter the
common evolutionary history of a diploid population. This com-
mon history is a phylogeny with the extant members at the terminal
or leaf nodes. The internal nodes of the topology are some com-
mon ancestors while the edges can be viewed as conduits for the
flow of genetic material. The direction on the edges represents the
direction of flow. A directed edge from node v1 to node v2 is to be
interpreted as v1 being an ascendant of v2 or v2 is a descendant of v1.
The topology has no cycles since, no matter what the underlying
model, a member is not an ancestor of itself. Thus, the topology is
always a directed acyclic graph (DAG). Under uni-parental (unilin-
ear) transmission each member at a generation derives all its genetic
material from only one parent whereas under a biparental model a
member derives the material from two parents. Then does this
simple difference in inheritance in the two models have an effect
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on the overall topology of the common evolutionary history?
Under uniparental model a unit has only one ancestor (ascendant)
in an earlier generation while under biparental model a unit can
have multiple ancestors. But in both models, a unit can have
multiple descendants at a future generation. Thus, the DAG for
only the uniparental model is guaranteed to be a tree.

One of the primary genetic events shaping an autosomal chro-
mosome is recombination which is a process that occurs during
meiosis that results in the offsprings having different combinations
of homologous genes, or chromosomal segments, of the two
parents. The topology incorporating this has been called the ances-
tral recombinations graphs (ARGs) and is an annotated network
structure that captures the common evolutionary history of the
extant haplotypes. This subject is also discussed in the chapter on
“Ancestral Population Genomics” in this book. The random math-
ematical object, ARG, was introduced in the context of modeling
population evolution in the field of population genetics (1, 2).
Thus, the ARG is not only used for modeling population evolution
(3), but is also the object of interest in the reconstruction of the
evolution history from the haplotypes of extant samples (4, 5). For
the latter, the ARG is viewed as a phylogeny of the extant samples.
The reader must keep this general view of ARG in mind for the
chapter.

In summary, the topology of the evolutionary history of a
diploid population is a rather complicated network that represents
the flow of the genetic material down to the extant units. See Fig. 1
for a visualization of the ARG that simulates the history of 210
samples or extant units (see the figure caption for details). The
complexity of this combinatorial structure begs the following ques-
tion: Is it possible to identify a substructure that really matters to the
extant units? The problem addressed in this chapter is the extent of
topological redundancies, if any, in such structures. This under-
standing of redundancy is useful both for reconstruction as well as
simulation studies. While in the former it is possible to obtain an
algorithm-independent bound on the recoverability of common
history, in the latter it has the potential for producing simpler
simulation systems. In any case the issue of redundancy of a
model is never an irrelevant mathematical question to ask.

2. Background

The ideal population or Wright–Fisher model assumes some prop-
erties of the evolving population such as constant population size
and nonoverlapping generations. While these conditions appear
nonrealistic at first glance, the assumptions are reasonable for the
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purposes of the study of the genetic variations at the population
level. In fact, models with varying population size and/or over-
lapping generations can be reparameterized for an equivalent
Wright–Fisher model (see texts such as ref. 3, 6). Yet another
property of the evolving Wright–Fisher population is panmixia.
Panmictic means that there is no substructuring of the population
due to mating restrictions caused by mate selection, geography, or
any other such factors. Thus the model assumes equal sex ratio and
equal fecundity. Figure 2a shows the complete pedigree history of
four (K ¼ 4) samples with a population size of eight males and
eight females (N ¼ 8). The network structure is a random graph
written asGPG(K,N). An ARG, which tracks some fixed locus on all
the K samples, is a subgraph of this complete pedigree history and
an instance is shown in Fig. 2b. To mimic the genetic diversity
patterns seen in worldwide human populations, it is important to
also weave in other influencing factors such as different migration,
(site) selection, and expansion models.

As discussed earlier, if the locus under study is always transmit-
ted from a single parent, then the topology of the evolutionary
history is a tree (i.e., no closed paths in the directed graph). The
mitochondrial genome and nonrecombining Y chromosome satisfy
this property. The former is always transmitted from the mother

Fig. 1. The terminal (leaf) nodes are as follows: the 60 brown nodes represent African samples, the 50 blue nodes African-
American samples, the 50 yellow nodes Asian samples and the 50 green nodes European samples. The internal cyan and
red nodes are recombination nodes and gray nodes are coalescent nodes. The simulation was generated with COSI (2) and
the visualization using Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/). The red recombination nodes are the ones
reconstructed by the method in (1).
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and the latter from the father. However, if the locus is on the
autosome or even the X chromosome then the genetic material
may be transmitted from two parents. This implies that the topology
of the evolutionary history is no longer a tree, but a network (i.e., it
may have closed paths in the directed graph). Thus, due to the
occurrence of genetic exchange event, such as recombination, the
common evolutionary history can no longer be captured by a tree.
The network that captures both the genetic exchange event (such as
recombinations) and events that do not exchange genetic material
between parents (such as mutations) is the ARG. For simplicity of
exposition we call the class of latter events as nonexchange events.

Notice that this important distinction in the topological char-
acteristics arises simply from the basic locus-inheritance model, that
is uniparental or biparental. The rest of the model characteristics
define the depth (or age) distribution of the nodes. Thus, it is
important to note the subtlety that an ARG is a random object
and there are many (infinite) instances of the ARG. Usually, when
we say that a topological property holds for the ARG, we mean that
the property that holds for every instance of the ARG, i.e., the
property holds with probability 1. Note that some may hold for a
subset of instances (such as unboundedness).

Focusing on the topology of the ARG and its effect on the
samples provides us with insights to identify vertices that “do not
matter.” Modeling these as missing nodes in the ARG leads to a
core that preserves the essential characteristics. The random object
ARG is defined by at least two parameters: K, the number of extant
samples and 2N, the population size at a generation. A GrandMost
Recent Common Ancestor (GMRCA) plays an important role in
restricting the zone of interest in the common evolutionary

a b

Complete pedigree graph GPG(4;8) Tracking a locus in (a).

Fig. 2. (a) The first ten generations of the relevant part of the complete pedigree graph (GPG (K, N) with K ¼ 4 and N ¼ 8).
The solid (blue) dots represent one gender, say males and the hollow (red) dots represent the other gender (females). Each
row is a generation with the direction on edges indicating the flow of the genetic material and the four extant units are at
the bottom row, i.e., row 0. Under the Wright–Fisher population model, there are equal number of males and females in
each row and the two distinct parents, one male and one female from the immediately preceding generation are randomly
chosen. (b) Tracking a locus gives a subgraph of (a).
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structure. A GMRCA is defined as a unit whose genetic material is
ancestral to all the genetic materials in all the extant samples (6).
Thus, while the relevant common evolutionary history of some
K > 1 units is potentially unbounded, it is reasonable to bound
this structure of interest with this single GMRCA. Thus when a
GMRCA exists, it is unique and we say the ARG is bounded. When
an ARG has no GMRCA, we call it unbounded.

The least commonancestor (LCA)of a set of verticesV in a graph
is defined as a common ancestor ofVwithnoother commonancestor
of V on any path from the LCA to any vertex of V. A combinatorial
treatment, based on random graphs, of the ARG is presented in (7).
The directed graph representation is acyclic, a root is analogous to a
GMRCA, and the leaf nodes to the extant samples. Though tantaliz-
ingly similar GMRCA and LCA do not define the same entity in an
ARG. The edges (or nodes) of the ARGmust be annotated with the
genetic material it transmits. The absence of any annotation leads to
the ancestor without ancestry paradox: It is possible for an individual
with finite amount of genetic material to have an infinite number of
unrelated (i.e., no genetic flow between any pair) ancestors. This
paradox is averted by annotating the ARG (7).

3. A Combinatorial
Definition of ARG

The random object ARG is usually parameterized by three essential
parameters: K the number of extant samples, 2N the population
size, and recombination rate r (see texts such as ref. 3 for a detailed
description). The following theorem is paraphrased from (7):

Theorem 1. Every ARG G on K > 1 extant samples is the topological
union of some M � 1 trees (or forests).

The alternative definition of an ARG suggested by this theorem
is illustrated in Fig. 3. Here an ARG, defined on four (K) extant
samples, is decomposed into three (M) trees. Note that M is the
number of nonmixing or completely linked segments in the extant
samples. In both the models, all the samples are of same length say l
and additionally the length of each of theM segments is specified as
l1, l2, . . ., lM with

PM
i¼1 li ¼ l, in the latter.

We describe the graph G (ARG) here. Although the figures do
not show the direction of the edges to avoid clutter, the direction is
toward the more recent generation (or the leaves). In other words,
the leaf (extant) nodes have no outgoing edges and the root node
has no incoming edges. The edges of the ARG are annotated with
genetic events and these labels are displayed in the illustrations. See
Fig. 4a for an example. An edge in G is defined to have multiple
strands. In the illustrations, the multiple strands are shown as
distinct colors, each color corresponding to one of the component
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trees 1 � i � M. Between any pair of vertices v1 and v2, no two
strands can be of the same color. Thus, the number of multiple
strands, corresponding to an edge, between a pair of vertices can be
no more thanM. An i-path from node v1 to node v2 is a path where
all the edges in the path are on the component tree i.

The annotations on the edges play a critical role since it is
these annotations that ultimately shape the units on the leaf nodes.
In the chapter, samples refer to extant samples. The two kinds of
genetic events represented in the graph are genetic (1) nonex-
change and (2) exchange events. While the former is modeled by
the genetic exchange nodes, the latter is modeled by labels on the
edges. To keep this discussion simple, let the nonexchange genetic
event correspond to single nucleotide polymorphisms (SNPs). The
set of labels of edge v1v2 is written as lbl(v1v2). Then xi 2 lbl(v1v2)
is a label on strand i of edge v1v2. For example in Fig. 4a, the labels
on the green tree are the SNPs a, b, c, d. Also, the exact position of
the SNP on the genome does not matter. However, in the ARG, a
particular ordering of the M trees is assumed and hence the SNPs
of each of the M trees respect this order (this is reflected in the
sample definitions below where green is the leftmost segment and
blue the rightmost). Each strand of an edge is labeled by a set of
genetic events (SNPs), possibly empty. A node with multiple
ascendants (parents) is called a genetic-exchange node. A node
with multiple descendants (children) is a coalescent node. Note
that a node can be both a coalescent as well as a genetic-exchange
node. In the figure a genetic-exchange node is hatched.

1 2 3

a b

4 1 2 3 4

G Three embedded trees

Fig. 3. Here K ¼ 4 and the extant samples are numbered 1, 2, 3, and 4. The hatched nodes are the genetic exchange
nodes. (a) The topology of an ARG, where the GMRCA is marked by an additional rectangle (on top). (b) A possible
embedding of (a) by three trees (shown in green, red, and blue, respectively).
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Next, we define the samples represented by the graph instance
G of the ARG. This is denoted as S(G) which is a set ofK sequences
which is also the number of leaf nodes in G. Each sequence is
obtained simply by “flowing” the genetic event labels of tree i,
1 � i � M, along paths of color i all the way down to the leaf
(samples) units. In other words, for each extant unit u on G, let the
corresponding sequence be s(u) (2 S(G)). Each label is associated
with a chromosomal position and its exact location on the
sequence really does not matter in this framework. However, we

q

1 2 3 4

a

b

c

d

p

r

s

v

w

x

z

Genetic flow

d

c

a

b

r

s

q

p

x

1 2 3 4 1 2 3

a

b c d

4 1 2 3 4

w

z

v

Tree 1 Tree 2 Tree 3

Fig. 4. (a) Genetic event labels on the edges. At each node the nonmixing segment corresponding to the embedded tree is
shown in the same color as that of the tree. The three embedded trees are shown separately in (b), (c), and (d).
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use the value of the label to define the sequence s(u). Let P(s(u))

denote the elements of s(u). Then PðsðuÞÞ ¼ SM
i¼1

xi xi 2 lblðv1v2Þjf
and there exists an i - path from v2 tou:g: Although the exact
location does not matter, the labels of a strand (tree or color) i are
adjacent on the chromosome sequence s(u). Let s1, s2, s3, and s4 be
the sequences corresponding to the extant units marked 1, 2, 3, and
4, respectively in Fig. 4a. Assigning colors and a relative ordering to
the strand labels, the aligned four samples are:

SðGÞ ¼
ðs1Þ
ðs2Þ
ðs3Þ
ðs4Þ

� b � � � � r � v w � z;
a b � � p � � � � � x �;
a b � � p q � � � � x �;
� � c d � � � s � � x �

8>><
>>:

9>>=
>>;
:

(1)

The “—” here is to be interpreted as the ancestral allele.
To summarize,

1. An ARG G must satisfy the following

(a) (topology) Every node v in Gmust have multiple children
or multiple parents (since chains are not informative).

(b) (annotations) The nonexchange genetic event label (say,
SNP) corresponding to a position on the samples must
transmit down to at least one extant sample.

2. Further, a nontrivial G must encode at least M � 1 genetic
exchange events.

It is quite possible to have unbounded ARGs, i.e., ARGs with
no GMRCA. Figure 5 shows such an example. See the “Exercise”
for other families of unbounded structures on the Wright–Fisher
population.

31 2

Fig. 5. Example of an unbounded ARG. Here K ¼ 3 corresponding to the samples
numbered 1, 2, and 3 and M ¼ 2, for the two segments colored red and green. The
pattern of vertices and edges can be repeated along the dashed edges to give an
unbounded structure.
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4. Redundancies
in an ARG

How do we identify redundancies in the topology of an ARG?
Studying the effect of the topology on the samples provides us
with insights to identify vertices that “do not matter.” Modeling
these as missing nodes in the ARG leads to a core that preserves the
essential characteristics.

To maintain biological relevance, a “missing” node is modeled
by the following vertex removal operation. Note that in an ARG,
each node has an implicit depth associated with it that reflects its
age (in generations). An alternative view is that the edge length
denotes the age. Note that in the following the age of the nodes
does not change and the new edges get the edge length from the
ages of the nodes they connect. Given G and a node v in G, G\{v} is
obtained in the following steps. This is not the only possible defini-
tion of vertex removal, but it is a simple and natural one and is used
in this chapter

1. For each child vc,i of v, that is in the embedded tree 1 � i � M

(a) (adding new edges) This child is connected by a new edge
to vp,i, a parent of v in i.

(b) (annotating the new edges) The new edges between vp,i
and vc,i are annotated as follows: for each strand i, the label
of the new edge is the union of the labels on the i-path
from vp,i to vc,i. Next if a label xi appears on multiple new
outgoing edges of vp,i, then it is removed from all but one
of the outgoing edges. (This is to avoid introducing paral-
lel mutations, i.e., the same label appearing multiple times
on the embedded tree i.)

2. The node vwith all the edges incident on it are removed fromG.

4.1. Samples-

Preserving

Transformation

Two distinct ARGs G and G 0 are samples preserving if and only if
S(G) ¼ S(G 0). When two instances are samples preserving, all the
allele statistics, including allele frequencies, LD decay, and so on are
identical in the two.

A node v of G is called nonresolvable if S(G) ¼ S(G\{v}). The
intuition is that if removing the node v has no effect on the samples,
then no algorithm can detect the node using only the samples.
Node v is called resolvable if S(G) 6¼ S(G \{v}). Again, the intuition
is that some algorithm may be able to detect the node in this case.

4.2. Structure-

Preserving

Transformation

Next we identify the vertices in G that determine the topology (as
well as the branch lengths) in the M embedded trees. Given G and
G 0, if each of the M embedded trees in G and G 0 are identical in
topology as well as branch lengths (in generations), then G 0 pre-
serves the structure of G and vice versa.
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Note that the embedded trees (also called marginal trees) are
very important in an ARG and critical in defining the ARG: Not just
the topology but also the branch lengths, which represent the time
(in generations) to the next coalescent event. Then is it possible to
characterize a node that can lead to structure-preserving transfor-
mation? A coalescent vertex inG is t-coalescent if and only if it is also
a coalescent node in at least one of the M embedded trees. In fact
the following is proved in (8).

Theorem 2. If G 0  G \U and no t-coalescent vertex of G is in U, then
G 0 is structure-preserving.

In other words, if a set of coalescent nodes that are not t-
coalescent are removed from G to obtain G 0, then G and G 0 are
structure preserving. With this useful property, we are ready to
zero-in on a core preserving structure.

4.3. Minimal Descriptor We begin with the following theorem (8) that relates t-coalescent
with resolvability.

Theorem 3. A resolvable coalescent node v is also t-coalescent in G.

The theorem shows that the vertices that ensure the invariance
of the branch lengths of each embedded tree are also resolvable,
leading to the following definitions.

1. An ARGG is aminimal descriptor if and only if every coalescent
vertex, except the GMRCA, is t-coalescent.

2. An ARG Gmd is a minimal descriptor of G if and only if (a) Gmd

is a minimal descriptor, (b) Gmd preserves the structure of G,
and (c) G and Gmd are samples preserving, i.e., S(G) ¼ S(Gmd)
holds.

Given G, let U be the set of all coalescent vertices in G, other
than the GMRCA, that is not t-coalescent. Let G0  G\U. By the
definition of a minimal descriptor and the following statement,G0 is
a minimal descriptor.

If v1 is a t-coalescent vertex in G and v2 is not, then v1 continues to be
a t-coalescent vertex in G\{v2}. Further if V1 is a set of t-coalescent
vertices in G, and none of the vertices in V2 is, then each v 2 V1

continues to be t-coalescent in G\V2.

The following gives a constructive description of a minimal
descriptor. Let G0 be a minimal descriptor of G. Then G0 is biologically
and evolutionarily relevant as

1. (Structure preserving) the embedded (marginal) trees of G and
G0 are identical.

2. (Samples preserving) the allele statistics (including allele fre-
quencies, LD decay) in the samples in both G and G0 are identical.
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5. Properties
of Minimal
Descriptor

Although, a minimal descriptor of an ARG is not unique (see
Subheading 8), it nevertheless has very interesting properties. Fig-
ure 6 shows an example of a minimal descriptor of an ARG.

1. Boundedness. It is quite surprising that even an unbounded
ARG G always has a bounded minimal descriptor. It takes
some mathematical ingenuity to prove this and the interested
reader is directed to (8) for details. We just illustrate this
through an example here in Fig. 7a.

2. Overlap of genetic segments. This is a local property of a node
that can be potentially used in designing sampling algorithms.
Let v be a coalescent node, except the GMRCA, in a minimal
descriptor ARGwith descendants u1, u2, . . ., ul, for some l > 1.
Then for each descendant ui of v there exists another descen-
dant uj of v overlapping with ui, 1 � i 6¼ j � l. Figure 7b shows
an example. Note that it is adequate that the overlap is only
pairwise.

3. Small size. The number of vertices in a minimal descriptor ARG
is not just guaranteed to be finite (by 1 above) but is also quite
small. Let nc be the number of coalescent events, ne be the
number of genetic exchange events, and nv be the number of
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Fig. 6. Overall picture: (a) A generic ARG and all its genetic flow, thus defining the samples S(G). The two marked nodes are
not t-coalescent. (b) Aminimal descriptor, Gmd as it preserves the structure ofG. Although the graphs are clearly topologically
very different, yet they define exactly the same samples, i.e., S(G) ¼ S(Gmd) and Gmd preserves the structure of G.
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vertices, excluding the leaf nodes, in a nontrivial minimal
descriptor ARG. Then

1 � nc � M ðK � 1Þ þ 1;

0 � ne � KðM � 1Þ þM ðK � 1Þ;
nv ¼ OðMKÞ:

This property is surprising, since most current simulators pro-
duce an extremely large number of internal nodes. It appears that
most of them have no effect either on the marginal tree structures
or on the samples. We end this discussion with this interesting
observation.

6. Population
Simulators

A modelless approach to simulations is to take an existing popula-
tion sample S and perturbs it to obtain S0 that has similar properties
as S. However, here we discuss systems that explicitly model the
population evolution evolving under the Wright–Fisher model (9).
It is important to point out that literature abounds with population
simulation systems and the list of simulators mentioned here is by
no means complete. However, the attempt here is to classify them
based on the underlying approaches. The simulation systems are
aligned along two approaches: forward and backward. In the for-
mer the simulation of the events proceeds forward in time, that is
from past to present. While this is a natural direction to proceed a
trickier approach is to simulate backward in time that is from
present to past. In principle, this is more economical in space and
time. In both approaches an implicit phylogeny structure is con-
structed. We call the reduced version of this as the ARG in Fig. 8.
An internal node in an ARG is either a coalescent node or a genetic
exchange node but not neither. A mathematically interesting
approach is to simulate the time to the next coalescent, or recom-
bination, event without explicit simulation of every generation.

31 2

a b

v

Fig. 7. (a) Bounded Gmd of unbounded G of Fig. 5. (b) Pairwise overlap of genetic segments in the children of node v.
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The coalescent model captures this in the backwardmodel. Figure 8
gives a classification of a few simulators along these lines.

The primary output for the simulators is theK sample (genetic)
sequences, given the population size N along with other para-
meters. The primary genetic exchange event captured in the simu-
lators is recombinations, although some simulators also incorporate
gene exchange. Realistic worldwide human population requires the
modeling of at least two more classes of parameters: (1) selection-
related and (2) migration-related parameters. Due to the inherent
complexity of the variations in the human population, the simula-
tors generally handle population at the level of continents, that is,
African, Asian, and European. Most of the programs do not make
the ARG available. The authors of cosi made the internal ARG
accessible to us (which has been visualized in Fig. 1).

6.1. Forward Simulators Forward simulation is conceptually the simpler of the two
approaches. An advantage of this approach is its easy adaptability
to diverse evolutionary forces. simuPOP (10) is an individual-based
forward simulation environment. The system also allows for inter-
active evolution of populations. For ease of use, many basic

Non−redundant

Non−redundant

Approximate coalescent

Spatial Algo

SMC

SMC’; FastCoal
MaCS

(ARG)
Model−based

Backwards

COSI; SelSim
MS

(binary ARG)
Coalescent

Minimal Descriptor

Forwards

[simuPOP]

SFS_CODE; FREGENE

Hybrid

GENOME

Exact coalescent

FORWSIM

Fig. 8. A classification of the model-based (hence an associated ARG) population evolution systems based on their
underlying architectures. The software systems are shown either in red or green. The systems in green additionally
incorporate selection and/or demographics to produce genetic diversity patterns that somewhat reflect the current
populations. Bottom to top: Backward and forward are the two basic schemes with hybrid as a combination of the two.
Coalescent is a mathematically interesting backward scheme whose ARG topology characterizes it as a binary ARG. A set
of simulators are listed here as approximate coalescent which are attempts at removing redundancies in the underlying
binary ARG. The minimal descriptor, by its definition, is a nonredundant representation of the ARGs resulting from all the
schemes (and additionally it is an exact coalescent model, hence the bifurcation in the coalescent “lineage” above).
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population genetics models are available through their “cook-
books.” This is a suitable system for experimentations since the
user can engineer complex evolutionary scenarios in the environ-
ment.

Next we discuss a few simulators that directly provide the
population samples based on a set of input parameters. SFS_CODE
(11) is a forward simulator that additionally handles effects of
migration, demographics, and selection. The migration model is
the general island model with complex demographic histories.
FREGENE (12) additionally incorporates selection, recombination
(crossovers and gene conversion), population size and structure,
and migration.

6.2. Backward

Simulators

In the softwareGENOME (13), the authors simulate the coalescent
and recombination events at every generation proceeding backward
in time. The standard coalescent model, however, simulates the
time to the next event. However, GENOME models an evolution-
ary history, more general than the standard coalescent model. In
the random graphs framework in (7), the genetic exchange model or
mixed subgraph represented this more general model. In this chap-
ter, to avoid confusion in terminologies, such a general model is
simply called the generic ARG or just ARG. On the other hand, the
standard coalescent model is called the binary ARG, for reasons
discussed below.

FORWSIM (14) simulates the Wright–Fisher population of
constant size under natural selection at multiple sites, moving
forward in time. However, the authors describe this as a forward–-
backward simulator, since they simulate only those chromosomes in
the next generation that can potentially contribute to the future
population. This handling of multiple generation in a single step is
possible only by some backward insight. Hence in Fig. 8, this is
classified as a hybrid scheme. Additionally, it also models self-fertili-
zation, making it a possible candidate for plant populations.

The Standard Coalescent. Coalescent theory provides a continuous-
time approximation for the history of a relative small sample of
extant units from a large population. Under this framework, the
genealogy of a sample of DNA sequences is modeled backward in
time and mutations (neutral) are superposed on the structure to
generate sequence polymorphism data. Hudson introducedMS the
seminal implementation to sample sequences from a population
evolving under the Wright–Fisher model. COSI (15) is an imple-
mentation of simulation with the addition of human population
demographics to the coalescent model. In fact, the same parameters
were used in the forward simulator FREGENE discussed above.
SelSim (16) is yet another simulator based on the coalescent frame-
work that incorporates natural selection. It is important to point
out a subtlety here. Usually under the coalescent model, the coa-
lescence is between exactly two lineages and multiple genetic events
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do not occur in the same generation in the common evolutionary
history. These simplifications help in defining the model as an
ordered sequence of events as well as in estimating the time from
one event to the next. Thus in these simulators, every node has no
more than two descendants and no more than two ascendants,
hence is called the binary ARG.

Approximate Standard Coalescent. While the above methods gen-
erate events backward in time, an orthogonal approach, introduced
in (17), samples the events along the sequence. This is called the
Spatial Algorithm (SA) and one of its characteristic effects is that
the density of recombination breakpoints increases as one moves
along the sequence. Another (perhaps related) characteristic of SA
is that the process is not Markovian. The Sequentially Markov
Coalescent (18) introduces modifications to the process to make
the structureMarkovian. Based on this model, in FastCoal (19), the
authors use an additional heuristic of retaining only a subset of local
trees while moving along the sequence. MaCS (20) is an implemen-
tation including human population demographics. It turns out that
all the models discussed here, including the Markovian structure,
only approximate the standard coalescent model. While each model
is defined algorithmically as a sequence of precise steps, yet the
reason for this lack of exactness is not clear enough to provide
algorithmic modifications to close or reduce the gap with the
standard model. These simulators that address redundancies are
labeled “approximate coalescent” in Fig. 8.

6.2.1. Minimal Descriptor The minimal descriptor is a compact version of the ARG which is
both samples preserving and structure preserving. It is a nonredun-
dant structure that can be extracted from any ARG, no matter its
underlying model. The model could be based on forward or back-
ward simulations or even backward coalescent. Notice that any
probability measure, such as the above, immediately induces (by
push forward) a measure on the space of minimal descriptors. Thus
when the ARG is binary coalescent, it models the underlying stan-
dard coalescent exactly. Figure 8 illustrates this generality of the
minimal descriptor.

Assume that the “true” probability space of the ARGs is the one
implicated by the Wright–Fisher model. In fact, the standard coa-
lescence also does not exactly capture the Wright–Fisher for high
enough recombination rate (see ref. 21). To address the issue of the
true probability space, Parida (7) defines a natural measurable space
over the combinatorial pedigree history structures and presents a
sampling algorithm based on it.

Any method that directly samples the space of minimal descrip-
tors, such as in a statistical sampling setting say, needs to (implicitly)
incorporate an underlying probability space. For instance, incor-
poration of the standard coalescent primarily manifests itself as the
problem of estimation of branch lengths in the structures.
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7. Conclusion

Population evolution models are important to understand the dif-
ferences and similarities in individual genomes, particularly due to
the explosion of data in this area. While these faithfully model the
genetic dynamics of the evolving population, their structure is
usually very large involving tens of thousands of internal nodes
for say a few hundred samples with a thousand SNPs each. The
complexity of this combinatorial structure raises the question of
redundancies in this structure. This chapter addressed this precise
question and gave mathematical description of such a substructure.
This is important not only for simulations and reconstruction
purposes, but also opens the door for a comprehensive understand-
ing of genetic dynamics that ultimately shape the chromosomes.

8. Exercises

1. Construct an instance of GPG(4, 3) with no LCAs.

What is the probability of an instance of GPG(4, 3) having no
LCAs?

(Hint: see ref. 7 for the definition of a natural probability
measure).

2. (a) What is the difference in topology of a pedigree history
graph and ARG?

(Hint: How many parents must a diploid have?)

(b) When tracing a haploid, at most how many parents can the
extant unit have? Why? Does this hold for a unit at every
generation? (Hint: Fig. 9a.)

3. Is it possible to assign labels to the nodes of the ARGs in
Fig. 9b, c, why?

4. Argue that the number of resolvable nodes decreases with
depth of the nodes.

5. Argue that an ARG may have multiple minimal descriptors.
(Hint: Fig. 10.)
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Fig. 9. (a) Tracking haploids in diploids. (b) and (c) The pattern of connectivity is repeated in both to produce infinite graphs.
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