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Abstract. Constraints on downside risk, measured by shortfall probability, ex-

pected shortfall, semi-variance etc., lead to optimal asset allocations which di�er

from the mean-variance optimum. The resulting optimization problem can become

quite complex as it exhibits multiple local extrema and discontinuities, in particular

if we also introduce constraints restricting the trading variables to be integers,

constraints on the holding size of assets or on the maximum number of di�erent

assets in the portfolio. In such situations classical optimization methods fail to work

eÆciently and heuristic optimization techniques can be the only way out. The paper

shows how a particular optimization heuristic, called threshold accepting, can be

successfully employed to solve complex portfolio choice problems.
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1. Introduction

The fundamental goal of an investor is to optimally allocate his in-

vestments between di�erent assets. The pioneering work of Markowitz

(1952) introduced the mean-variance optimization as a quantitative

tool which allows to make this allocation by considering the trade-o�

between risk, measured by the variance of the future asset returns,

and return. The assumptions of the normality of the returns and of

the quadratic investor's preferences allow to simplify the problem in a

relatively easy to solve quadratic program.

Notwithstanding its popularity, this approach has also been subject

to a lot of criticism. Alternative approaches attempt to conform the

fundamental assumptions to reality by dismissing the normality hy-

pothesis in order to account for the fat-tailedness and the asymmetry

of the asset returns. Consequently, other measures of risk, like e.g.
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Value at Risk (VaR), expected shortfall, mean absolute deviation, semi-

variance etc. are employed, leading to problems that can not always

be reduced to standard linear or quadratic programs. The resulting

optimization problem often becomes quite complex as it exhibits mul-

tiple local extrema and discontinuities, in particular if we introduce

constraints restricting the trading variables to be integers, constraints

on the holding size of assets, on the maximum number of di�erent assets

in the portfolio, etc.

In such situations classical optimization methods fail to work eÆ-

ciently and heuristic optimization techniques can be the only way out.

They are relatively easy to implement and computationally attractive.

This paper builds on work by Dueck and Winker (1992) who �rst

applied a heuristic optimization technique, called Threshold Accept-

ing, to portfolio choice problems. We show how this technique can be

successfully employed to solve complex portfolio choice problems where

risk is characterized by Value at Risk and Expected Shortfall.

In Section 2 we outline the di�erent frameworks for portfolio choice

as well as the most frequently used risk measures. Section 3 gives a

general representation of the threshold accepting heuristic we use. The

performance and eÆciency of the algorithm is discussed in Section 4

by, �rst, comparing it with the quadratic programming solutions in the

mean-variance framework and, second, applying the algorithm to prob-

lems minimizing the portfolio expected shortfall or VaR conditional to

some return constraints. Section 6 concludes.

2. Approaches to the portfolio choice problem

2.1. The mean-variance approach

The mean-variance optimization is certainly the most popular approach

to portfolio choice. In this framework, the investor is faced with a

trade-o� between the pro�tability of his portfolio, characterized by

the expected return, and the risk, measured by the variance of the

portfolio returns. The �rst two moments of the portfolio future return

are suÆcient to de�ne a complete ordering of the investors preferences.

This strong result is due to the simplistic hypothesis that the investors'

preferences are quadratic and the returns are normally distributed.

Denoting by xi, i = 1; : : : ; nA, the amount invested in asset i out

of an initial capital v0 and by ri, i = 1; : : : ; nA, the log-returns for

each asset over the planning period, then the expected return on the
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portfolio de�ned by the vector x = (x1; x2; : : : ; xnA)
0 is given as

�(x) =
1

v0

nAX
i=1

E(ri)xi =
1

v0
x
0
E(r) :

The variance of the portfolio return is

�
2(x) = x

0
Qx ;

where Q is the matrix of variances and covariances of the vector of

returns r.

Thus the mean-variance eÆcient portfolios, de�ned as having the

highest expected return for a given variance and the minimum vari-

ance for a given expected return, are obtained by solving the following

quadratic program

min
x

1
2
x
0
QxP

j xjrj � � v
0P

j xj = v
0

x
`
j � xj � x

u
j j = 1; : : : ; nA :

(1)

for di�erent values of �, where � is the required return on the portfolio.

The vectors x`j, x
u
j , j = 1; : : : ; nA represent constraints on the minimum

and maximum holding size of the individual assets.

The implementation of the Markowitz model with nA assets re-

quires nA estimates of expected returns, nA estimates of variances and

nA(nA � 1)=2 correlation coeÆcients.

Several eÆcient algorithms exist for computing the mean-variance

portfolios. Early successful parametric quadratic programming meth-

ods include the critical-line algorithm and the simplex method.

2.2. Scenario generation

An alternative approach to the above optimization setting is the sce-

nario analysis where uncertainty about the future returns is modeled

through a set of possible realizations, called scenarios. Scenarios of

future outcomes can be generated relying on a model, past returns or

experts' opinions.

A simple approach is to use empirical distributions computed from

past returns as equiprobable scenarios. Observations of returns over

nS overlapping periods of length �t are considered as the nS possible

outcomes (or scenarios) of the future returns and a probability of 1=nS
is assigned to each of them.
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Assume that we have T historical prices p
h, h = 1; : : : ; T of the

assets under consideration. For each point in time, we can compute the

realized return vector over the previous period of length �t, which will

further be considered as one of the nS scenarios for the future returns

on the assets. Thus, for example, a scenario r
s
j for the return on asset

j is obtained as

r
s
j = log(pt+�t

j =p
t
j) : (2)

For each asset, we obtain as many scenarios as there are overlapping

periods of length �t, i.e. nS . In this setting problem (1) becomes

min
x

1

nS

nSX
s=1

0
@ nAX

j=1

r
s
jxj �

1

nS

nAX
j=1

nSX
s=1

r
s
jxj

1
A
2

1

nS

nAX
j=1

nSX
s=1

r
s
jxj � � v

0

P
j xj = v

0

x
`
j � xj � x

u
j j = 1; : : : ; nA :

(3)

2.3. Mean downside-risk framework

If we denote by v the future portfolio value, i.e. the value of the portfolio

by the end of the planning period, then the probability

P (v < VaR) (4)

that the portfolio value falls below the VaR level, is called the shortfall

probability. The conditional mean value of the portfolio given that the

portfolio value has fallen below VaR, called the expected shortfall, is

de�ned as

E(v j v < VaR) : (5)

Other risk measures used in practice are the mean absolute deviation

E(jv �Evj)

and the semi-variance

E((v �Ev)2 j v < Ev)

where we consider only the negative deviations from the mean.

Maximizing the expected value of the portfolio for a certain level

of risk characterized by one of the measures de�ned above leads to al-

ternative ways of describing the investor's problem (e.g. Leibowitz and
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Kogelman (1991), Lucas and Klaassen (1998) and Palmquist, Uryasev

and Krokhmal (1999)). Earlier related work had suggested a safety-�rst

approach (see e.g. Arzac and Bawa (1977) and Roy (1952)).

For example, if the risk pro�le of the investor is determined in

terms of VaR, a mean-VaR eÆcient portfolio would be solution of the

following optimization problem:

max
x

Ev

P (v < VaR) � �P
j xj = v

0

x
`
j � xj � x

u
j j = 1; : : : ; nA :

(6)

In other words, such an investor is trying to maximize the future value

of his portfolio, requiring that the probability that the future value of

his portfolio falls below VaR is not greater than �.

If the uncertainty in the future asset returns is handled via scenario

generation, the above optimization can be further explicited as follows:

min
x

�
1

nS

nSX
s=1

v
s

#fs j vs < VaRg � � nSP
j xj = v

0

x
`
j � xj � x

u
j j = 1; : : : ; nA :

(7)

Furthermore, it would be realistic to consider an investor who cares not

only for the shortfall probability, but also for the extent to which his

portfolio value can fall below the VaR level. In this case, the investor's

risk pro�le is de�ned via a constraint on the expected shortfall toler-

ated � if the portfolio value falls below VaR. Then the mean-expected

shortfall eÆcient portfolios are solutions of the following program for

di�erent values of �:

max
x

Ev

E[v j v < VaR] � �P
j xj = v

0

x
`
j � xj � x

u
j j = 1; : : : ; nA :

(8)
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Again if the future returns are generated by scenarios, the optimization

problem becomes:

min
x

�
1

nS

nSX
s=1

v
s

1
#fsjvs<VaRg

X
sjvs<VaR

v
s � �

#fs j vs < VaRg � � nSP
j xj = v

0

x
`
j � xj � x

u
j j = 1; : : : ; nA :

(9)

3. The threshold accepting optimization heuristic

Heuristic approaches prove useful in situations where the classical op-

timization methods fail to work eÆciently. Heuristic optimization tech-

niques like simulated annealing (Kirkpatrick et al., (1983)) and genetic

algorithms (Holland (1975)) are used with increasing success in a vari-

ety of disciplines. The reason for their success is that they are relatively

easy to implement and that the cost of computing power is no longer

a matter of concern.

Threshold accepting (TA) has been introduced by Dueck and Scheuer

(1990) as a deterministic analog to simulated annealing. It is a re-

�ned local search procedure which escapes local minima by accepting

solutions which are not worse by more than a given threshold. The

algorithm is deterministic in the sense that we �x a number of iterations

and explore the neighbourhood with a �xed number of steps during each

iteration. The threshold is decreased successively and reaches the value

of zero in the last round.

The threshold accepting algorithm has the advantage of an easy

parameterization, it is robust to changes in problem characteristics and

works well for many problem instances.

Let us formalize our optimization problem as f : X ! R where X is

a discrete set and where we may have more then one optimal solution

de�ned by the set

Xmin = fx 2 X j f(x) = foptg (10)

with

fopt = min
x2X

f(x) : (11)
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The threshold accepting heuristic described in algorithm 1 will after

completion provide us with a solution x 2 Xmin or a solution close to

an element in Xmin. The complexity of the algorithm isO(niter�steps).

Algorithm 1 Pseudo-code for the threshold accepting algorithm.

1: Initialize niter and steps

2: Initialize sequence of thresholds thr, r = 1; 2; : : : ;niter

3: Generate starting point x0 2 X

4: for r = 1 to niter do

5: for i = 1 to steps do

6: Generate x
1 2 Nx0 (neighbour of x0)

7: if f(x1) < f(x0) + thr then

8: x
0 = x

1

9: end if

10: end for

11: end for

The parameters of the algorithm are the number of iterations niter ,

the number of steps per iteration steps and the sequence of thresholds

th. In practice we start with the de�nition of the objective function,

which can be a non-trivial task if f comprises several dimensions. Sec-

ond we construct a mapping N : X ! 2X which de�nes for each x 2 X

a neighbourhoodN (x) � X . Third we de�ne the sequence of thresholds

by exploring the neighbourhood of randomly selected elements x 2 X .

These di�erent steps of the implementation and parameterization of

the algorithm will be illustrated with the application presented in the

next section.

4. Application

The working of the TA algorithm is �rst illustrated to solve a standard

mean-variance optimization problem for which the solution is also com-

puted with the quadratic programming algorithm which will be used

as a benchmark. Second we apply the TA algorithm to a non-convex

optimization problem with integer variables and a variety of constraints

such as holding and trading size.

4.1. Mean-variance optimization

In the following application we consider an investment opportunity set

of ten assets from the Swiss market index (SMI) and cash. The annual

mean return r and the matrix of variances and covariances Q are based

on the closing prices of the last 90 trading days before 30{6{1999.
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The mean-variance optimization problem has already been de�ned

in (1). The following is a reformulation of the problem where the initial

capital v0 has been normalized to one:

min
!

1
2
!
0
Q!

!
0
r � �

�
0
! = 1

!
l
j � !j � !

u
j j = 1; : : : ; nA + 1 :

The composition of the portfolio is de�ned by the shares !i = xi=v
0 and

!nA+1 is the proportion of cash in the portfolio. The risk-free return of

cash is rnA+1.

De�nition of objective function

The variance can now be minimized by exploring with the threshold

accepting algorithm 1 the elements in the set X which satisfy the

constraints. However a better way is to accept in the search process

solutions which violate the return constraint. This can be done by

minimizing the following objective function

F (!) = V (!) + p (��R(!))

where p is a penalty function de�ned as

p =

(
Vmax�Vmin

��R
if � > R(!)

0 otherwise:

V (!) and R(!) denote respectively the variance and the return of a

portfolio de�ned by !. The values for Vmax, Vmin and R which de�ne

the scaling constant (Vmax � Vmin)=(� � R) are estimated from 1000

randomly drawn portfolios.

De�nition of neighbourhood

To generate a point x
1 in the neighbourhood Nx0 of a given point

x
0 we draw with a probability 1=(nA + 1) two assets i and j out of

all nA assets and cash. The amount of i and j in the portfolio is !i,

respectively !j. We then sell a fraction q of asset i, i.e. q !i and buy

for the corresponding amount asset j. After this move the amount of i

and j in the portfolio is (1� q)!i, respectively !j + q !i. The fraction

q is a �xed parameter.

In order to avoid short selling and respect the constraints on the

holding size of the assets the procedure for the selection of a neighbour

solution must be re�ned. Algorithm 2 describes the procedure of the

selection of a neighbour-solution in detail.
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Algorithm 2 De�nition of neighbourhood.

1: Select two assets i and j with probability 1=(nA + 1)

2: t = q !i

3: if (!i � t) � !
l

i
then

4: !i = !i � t

5: else

6: t = !i

7: !i = 0

8: end if

9: if (!j + t) � !
u

j
then

10: !j = !j + t

11: else

12: !nA+1 = !nA+1 + t

13: end if

De�nition of thresholds

In order to de�ne the sequence of thresholds we compute the empiri-

cal distribution of the distance of the objective function evaluated at

random points and its neighbours. Figure 1 shows this empirical distri-

bution computed from 5000 random points. The quantiles which deter-

0 0.005 0.01 0.015 0.02
0

0.5

1

Figure 1. Empirical distribution of distance between x
0 and neighbours x1.

mine the sequence of thresholds are then 10�3
�
22:5 3:4 1:1 0:7 0:4 0

�
.

Choosing niter = 6 and steps = 1000 we have determined all the

parameters of our TA algorithm. The following �gure illustrates how

the algorithm searches its way to the solution. At the optimal solution

the expected return and the variance are practically the same for the

QP and TA algorithm. The optimal portfolio contains asset 3, 5 and 8

and cash (column 11). The weights of the assets in the optimal portfolio

for both algorithms are given in Figure 3.
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Figure 2. Working of the TA algorithm. EÆcient frontier with cash (upper line) and

without cash (lower curve).

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4
QP and TA solution for w

Figure 3. Composition of the optimal portfolio for QP and TA.

4.2. Mean downside risk optimization

Our second illustration of the working of the TA algorithm is a non-

convex optimization problem with integer variables and a variety of

constraints such as holding and trading size.

In the following the quantity of each asset in the portfolio is de�ned

by an integer number. The generation of neighbours x1 2 N 0
x to a given

solution x
0 is again performed by drawing randomly two assets i and

j. We then sell ki assets i, transfer the amount to the cash and buy

kj assets j from cash. In order to make sure that each transfer is of

approximatively of the same amount, the number of assets ki and kj

to be transferred are de�ned as ki = d
pmax
pi
e and kj = d

pmax
pj
e. This

procedure is summarized in algorithm 3 where we omitted the details

necessary to check for short selling and holding constraints.

Using the same data set as for the previous problem but considering

an investment opportunity set of 20 assets (including cash) we now
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Algorithm 3 De�nition of neighbourhood in case of integer variables.

1: Randomly select asset i to sell

2: xi = xi � ki

3: cash = cash + ki p
0
i

4: Randomly select asset j to buy

5: xj = xj + kj

6: cash = cash� kj p
0
j

solve the mean-VaR problem de�ned in (7). To compute the capital vs

at the end of the planning period we use simulated prices ps, computed

as

p
s = p

0
r
s

s = 1; : : : ; nS

where the rate of return r
s has been de�ned in (2). We assume an

initial capital v0 = 800 000, a shortfall probability � = 0:05 and VaR =

750 000. Figure 4 shows the results of the TA algorithm with the setting

niter = 6, steps = 1500 and k = 4.

0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08
8.05

8.055

8.06

8.065

8.07

8.075

8.08

8.085

8.09

8.095

8.1
x 10

5

Shortfall probability beta

E
xp

e
ct

e
d

 v
a

lu
e

 (
E

v)

Figure 4. Search path of the TA algorithm in the �, E(v) plane.

The solution veri�es VaR = 749 760, E(v) = 808 190 and an em-

pirical shortfall probability of :0491. The composition of the optimal

portfolio is given in �gure 5.

In �gure 4 we observe that the solutions lie in planes. The reason

for this is the integer formulation of the problem.

Figure 6 illustrates the working of the TA algorithm in the �, VaR

plane and in �gure 7 we see its working in the E(v), VaR plane.
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0 5 10 15 20 25
0

5

10
x 10

4 TA solution for x and cash

Figure 5. Optimal portfolio computed by TA for the mean VaR problem.

0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08
7.3

7.35

7.4

7.45

7.5

7.55

7.6
x 10

5

Shortfall probability beta

V
a

R

Figure 6. Search path of the TA algorithm in the �, VaR plane.

5. Concluding remarks

In this paper we tried to illustrate how heuristic optimization algo-

rithms like the threshold accepting method can be successfully ap-

plied to solve realistic non-convex portfolio optimization problems. We

showed that, in the cases where these problems contain non-linear

and non-convex constraints, the heuristic methods are the only rea-

sonable way out. Examples of these situations can be problems where

constraints on downside risk preferences are introduced, where the

solutions are required to be integers, etc.

We mainly focus on the cases where the distribution of the asset

future returns are modelled by equally weighted scenarios of past re-

turns. The sensitivity of optimized portfolios with respect to alternative

scenario generations procedures should be further investigated.
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VaR

Figure 7. Search path of the TA algorithm in the E(v), VaR plane.
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