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ABSTRACT
Motivation: Gene expression analysis has been widely stud-
ied to identify networks and relationships among the genes.
The target identification problem is a critical step in drug
development to minimize the undesirable side effects of a
candidate drug. Clustering and Bayesian methods[5] were
applied for the reverse engineering of gene networks; how-
ever, it is still challenging to identify the target of a com-
pound (i.e. a protein) among the potentially large amount
of genes which change their expression values due to the
compound. A major challenge in drug target identification
is that, for many drug candidates, the targets are unknown
and difficult to distinguish from the thousands of additional
gene products that respond indirectly to changes from the
activity of the target.
Results: In this paper, we present a computational frame-
work to explore gene regulatory networks for drug target
identification. We perform experiments on a publicly avail-
able data set containing profiles of gene deletions, titratable
promoter insertions and drug compound treatments. We
demonstrate our approach achieved accurate results in find-
ing the known targets and associated pathways while being
computational efficient.
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1. INTRODUCTION
Gene expression analysis has been widely studied to identify
networks and relationships among genes. The target iden-
tification problem is a critical step in drug development to
minimize the undesirable side effects of a candidate drug.
A major challenge in drug target identification is that, for
many drug candidates, the targets are unknown and difficult
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to distinguish from the thousands of additional gene prod-
ucts that respond indirectly to changes from the activity of
the target[2, 3, 4, 7, 8, 9, 11, 13, 14].

DNA microarray technology provides an opportunity to ef-
ficiently identify a compound’s target by observing all genes
with a transcriptional response to the compound treatment.
However, as stated in [4], whole-genome expression pro-
files do not distinguish the genes targeted by a compound
from the indirectly regulated genes. In the past few years,
many approaches have been proposed to overcome this prob-
lem. The association analysis techniques[9][12][15], haploin-
sufficiency profiling[7][8][11] and chemical-genetic interac-
tion mapping techniques[14] have been developed, however,
they require libraries of genetic mutants or fitness-based as-
says of drug response. The identification of the complex
regulatory networks would be extremely valuable. Cluster-
ing and Bayesian methods[5] were applied for the reverse
engineering of gene networks; however, it is still challenging
to identify the target of a compound (i.e. a protein) among
the potentially large amount of genes which change their
expression values due to the compound. Model estimation
techniques proposed in [6][16] suffered from the requirement
of knowledge of the gene targets of each training perturba-
tion. A mode-of-action by network identification (MNI) has
been proposed in [4]. Assuming that training profiles are
obtained in steady state following a variety of treatment,
including compounds, RNAi, and gene-specific mutations,
this method was able to use varied treatment types in the
training data and improved flexibility thus facilitating appli-
cation of model based approaches to higher model organisms
where gene-specific perturbations are more difficult to imple-
ment. An Expectation Maximization (EM) type of iterative
procedure was employed in [4] to infer a network model with-
out requiring gene-specific perturbations. However, such an
iterative procedure is computational expensive. In this pa-
per, we propose a first order computational framework to
infer a network model for drug target identification which
is accurate and efficient. Another difference between our
method and [4] is that, during the dimensionality reduction
step, instead of applying singular value decomposition(SVD)
to the whole training set, we pick a small set of highly cor-
related genes for each gene to learn the network model since
we believe that each gene is connected to a small set of other
genes in the regulatory network. Since during network mod-
eling we aim to have training experiments with no or small
external influences on the network, it is not accurate to ap-



ply global dimensionality reduction techniques. More details
and the statistical validation will be provided in Sec. 2.2.

In our method, given the observations of genes with tran-
scriptional responses provided by DNA microarray data, in
order to measure the effects of the test compound, we first
build a first order network model for each gene using lin-
ear regression. Once the regulatory model is trained, the
impact of the compound on the expression of a particular
gene can be quantified by the ability of the model to cor-
rectly predict its expression value and to quantify occurring
deviations. The genes are then ranked where the highest
and lowest-ranked genes are those whose expression is most
inconsistent with the model due to the external influence of
the compound on those genes. Compared with [4], instead
of using the experimental iterative approach which requires
certain convergence criteria, we used a simple two layer net-
work modeling framework, which is efficient. We also mea-
sure the difference in both positive and negative directions
since the sign of the error is also informative. The experi-
mental results demonstrate that our approach achieves ac-
curate results in finding the known targets and associated
pathways while being computational efficient.

This paper is organized as follows. In Section 2, we will
describe the material and our computational framework for
drug target identification. In Sec. 3, we will describe the ex-
perimental settings and report the results. Section 4 presents
the conclusions and future work.

2. MATERIALS AND METHODS

2.1 Expression Data
In this paper we used a publicly available data set compris-
ing of experimentally acquired expression profiles[9], which
is a compendium of 300 profiles of gene deletions, titratable
promoter insertions and drug compound treatments. For
each treatment/perturbation, a single profile was obtained
from yeast cells grown to steady state after the perturbation.
A log-transformed expression ratio was computed for each
gene in each profile relative to untreated, wild-type yeast
strains. Information regarding the identity of compounds
used to treat the cells and the identity of the mutated genes
in each profile was not provided to our algorithm and the
test expression profile was removed from the training data
set.

2.2 Regulatory Network Modeling for Drug
Target Identification

In this section, we will describe our computational frame-
work of regulatory network modeling for drug target identi-
fication. We represent a network for transcript i using a set
of ordinary differential equations:

ẏi = fi(y1, ...yN , ui) (1)

where fi(...) is the influence function for transcript i, yi is
the concentration of transcript i, N is the number of tran-
scripts measured, and ui is the net external influence on the
rate of synthesis of transcript i. Since gene expression mea-
surement technology allows only the measurement of con-
centrations relative to a baseline, following [4], we obtain

the linear network model:
∑

j

aijxj = −pi (2)

where aij are the model coefficients representing the influ-
ence of the concentration of transcript j on the rate of syn-
thesis of transcript i, xj = log10(

yj

yjb
), j ∈ [1..N ] are the

log-transformed expression-change ratios of each transcript,
and pi is the change ratio of the net external influences on
the synthesis of transcript i. Please refer to [4] for more
details.

Cross Model Building and Validation: Thus our ap-
proach can be briefly described as following:

For each compound, the following steps are processed:

• Data Separation: We divide our data into a train-
ing data set and a test data set similar to the splitting
usually applied in cross-validation. All feature vectors
belonging to the experiments related to a specific com-
pound become the test data set, all remaining feature
vectors become the training data set. In this way the
model is not influenced by the compound of interest.

• Training: A model is then built on the training data
by learning the set of coefficients of the linear combi-
nation for each gene.

• Testing: Once the model is trained, we apply it to
expression profile of a test compound. We compute
the difference between the measured expression level of
each gene and the predicted level according to the level
of other genes in the cell. Those genes with largest
prediction errors are selected as target genes since we
believe that such errors are attributed to the external
influence of the compound on those genes.

More details about our approach are described in following
sections.

2.2.1 Preprocessing
The raw data are the expression values generated by the
micro-arrays. In order to compare the data from different
experiments, we applied normalization so that for each xij ,
the value of the gene i in the experiment j, we calculate the
normalized expression value

x̂ij =
xij − µi

σi
(3)

where µi and σi are the mean and standard deviation of the
expression values of gene i across all experiments, respec-
tively.

2.2.2 Training: Learning the Model
Here we will describe how we learn the model given the ex-
pression data. As shown in Eq. 2, in order to learn the
set of model coefficients aij , we need a set of independent
experiments with measurements of xj and the external in-
fluences pi. However, we assume that the data are captured
using perturbations for which the external influences are not
known. Thus, by assuming that any treatment will directly



Figure 1: Correlation Analysis: for three randomly picked genes, the first row shows the distributions of the
absolute values of the correlation of them and the second row plots the values of the top 100 related genes.
The x-axis in the first row is the absolute value of the correlation and the y-axis is the number of genes while
the x-axis in the second row is the index of top 100 genes and the y-axis is the value of correlation. We found
that each gene is only highly related to a relatively small number of genes (i.e. 20 − 40 genes), thus a small
subset of genes can be picked for network modeling.

influence a small fraction of the genes, if we use the exper-
iments without external influence to the gene i, pi should
be 0. Thus, using experiments without external influence,
the log-transformed expression ratios of each gene can be
represented by the linear combination of other genes in the
network:

xi =
∑

j

aijxj + di (4)

where aij represent the model coefficients and di is the
linear offset. Let a represent [ai1, ..., aiN , di]

T and xm =
[xm1, xm2, ..., xmN , 1] represents the log-transformed expres-
sion ratios of the N genes of the m-th experiments. The
model coefficients a can thus be solved given a sufficient
number of independent experiments as following:

~xi = Xa (5)

where X = [x1,x2, ...,xM]T is the M × N matrix with M
as the number of experiments and N as the number of other
genes. In order to correctly compute the coefficients, the
network should have no external influences and M should
be much larger than N , while typically M is much smaller
than N . In [4], SVD was applied for the purpose of dimen-
sionality reduction. Since SVD is a global dimensionality
reduction method by taking account all the genes in the low
dimensional space, it is impossible to have training experi-
ments with no or small external influences on the network.

In our work, we pick a small number N ′ of related genes
for network learning, which is both statistically and biologi-
cally reasonable since each gene is significantly influenced by
a small number of other genes. Fig. 1 demonstrates the sta-
tistical validation where the first row shows the distributions
of the absolute values of the correlation for three randomly
picked genes and the second row plots the values of the top
100 related genes. From Fig. 1, we see that, each gene is
only highly related to a relatively small number of other
genes. Thus, it is better to pick a small number of genes for
network learning instead of using the whole set. We applied
Pearson Correlation for identifying the relationship between
the genes as following:

cxy =
1

N−1

∑
(x− x̄)(y − ȳ)

σxσy
(6)

where x, y are two genes and x̄ and σx represent the mean
value and the standard deviation of gene x across all ex-
periments respectively. For each gene, a vector of partner
genes is calculated ranked by descending strength of the co-
expression calculated by the correlation.

Cleaning the Training Set: In order to only use those
training experiments which have no external influences to
the target network, for each compound, we compute the
correlations with other experiments and pick those with low
correlations as the training data, more specifically, we select



those experiments ranking bottom 80% to remove feature
vectors correlated with the test set. After we selected the
training experiments, we can compute the model parameters
for each gene according to Eq. 5.

2.2.3 Testing: Drug Target Identification
Once we estimated the network model, we can perform drug
target identification for any compound. Since we have esti-
mated the model parameters using training experiments for
each gene, given test compound c, we can predict a value
for each gene i:

xci =
∑

j

acij xcj (7)

The external influences can be estimated by comparing the
predicted value and the true value:

εci = xp
ci − xt

ci (8)

where xp
ci represents the predicted value and xt

ci represents
the true value. Thus the targets of the compound c are those
genes having the most significant external influences. Dur-
ing model learning, since the training errors are different for
each gene, in order to have more accurate error estimation,
we choose to use the relative errors εr

ci = εci/εtra
ci where εtra

ci

is the root-mean-square calculation of the training errors as
shown in Eq. 9:

εtra
ci =

√∑
m ε2tram

M
(9)

where εtram is training error for the m-th training experi-
ment and M is the total number of training experiments.

2.2.4 Two Layer Framework
In order to find the target genes for each compound, the
computation for network modeling is expensive due to the
large number of genes in a cell which impede the usage of
comprehensive learning methods. Thus we choose to ap-
ply a two layer framework (see Fig. 2) where in the first
layer we use a simple linear regression model to estimate
the external influence for each gene and select a number
of candidate genes for the second layer, in which a more
complicated and accurate network learning algorithm is ap-
plied to achieve better results. Another advantage of using
such a two layer framework is that since in the first layer,
we compute the external influences across experiments for
each gene, we can further remove those experiments having
significant external influences from the training data for bet-
ter network modeling. More specifically, in the first layer,
we perform the cross model building and validation steps
as described above. The Gene Targets Identification step
outputs the ranked list of genes with prediction errors for
each compound. We can pick a much smaller set of genes
for each compound as candidate targets. Thus, instead of
learning a network for each gene, we only examine those can-
didates, which facilitate more complicated network learning
methods. In our experiments, we picked 500 genes for each
compound and applied the M5 linear regression method [10]
which removes the feature with the smallest standardized
coefficient until there is no improvement according to the
Akaike criterion[1]. The output from the first layer also pro-
vides the prediction errors of the experiments for each gene,
thus we can identify those experiments which have signifi-
cant errors as shown in Figure 3, which plots the prediction

Figure 2: Two Layer Framework: In the first layer,
a cross model learning and validation is applied for
each gene in each experiment. The first layer pro-
vides a smaller set of genes as candidate targets for
each compounds. Furthermore, prediction errors of
each gene cross experiments can be used for bet-
ter training data selection. More accurate network
modeling and validation are performed in the second
layer based on the outputs of the first layer.



Figure 3: Error plot of gene CDC42: the x-axis is the
index of the 300 experiments and the y-axis is the
absolute values of the prediction errors. Red dots
symbolize the experiments with significant predic-
tion errors, which are unwanted peaks in the train-
ing step. From the output of the first layer, we can
remove those experiments with significant errors for
better network estimation.

errors of gene CDC42 cross experiments. Red dots symbol-
ize the experiments with significant prediction errors, which
are unwanted peaks in the training step. Hence, we should
remove those unwanted experiments from the training set in
the second layer since we aim to learn the network under no
external perturbation. In Sec. 3, we will demonstrate that
we achieve better results by applying the two layer frame-
work.

3. EXPERIMENTS AND RESULTS
We performed our experiments on a publicly available, whole
genome yeast expression data set which contains a com-
pendium of 300 profiles of gene deletions, titratable pro-
moter insertions and drug compound treatments from Hughes
et al.[9]. For each treatment/perturbation, a single profile
was obtained from yeast cells grown to steady state after
perturbation. A log-transformed expression ratio was com-
puted for each gene in each profile relative to untreated,
wild-type yeast strains.

3.1 Network Learning Experiments
Since the drug target identification is based on the network
modeling, our first set of experiments is to evaluate our net-
work learning algorithm. It has been reported in [4] that
it is very hard to identify target genes by looking at their
original expression data. Fig. 4 demonstrates an example
of improving drug target identification by applying a net-
work analysis technique. In Fig. 4, the top row shows the
histogram of the expression data of gene ERG1 of the ex-
periments and the bottom row shows that of the prediction
errors of all experiments. In both rows, the values of apply-
ing compound Terbinafine(targeting ERG1) are marked
in red. By comparing the distributions of the original ex-
pression data and the prediction errors, we found that the

Figure 4: Histogram Comparison of gene ERG1:
The top row shows the histogram of the expression
data of gene ERG1 of the experiments: the x-axis
represents the log-transformed expression ratios and
the y-axis is the number of experiments while the
bottom row shows that of the prediction errors of
all experiments: the x-axis is the prediction errors.
In both rows, the values of applying Terbinafine are
marked in red. We found that the network analy-
sis technique improves the significance of the target
gene under the applied treatment.



Table 1: Identifying targets of genetic perturbation
using different numbers of network features.

Promoter mutant Target rank

10 20 30
tet-IDI1 IDI1 1 1 1
tet-RHO1 RHO1 2 2 2
tet-YEF3 YEF3 1 1 1
tet-AUR1 AUR1 1 1 1
tet-FKS1 FKS1 4 4 4
tet-KAR2 KAR2 1 1 1
tet-CDC42 CDC42 1 1 1
tet-HMG2 HMG2 4 2060 2
tet-PMA1 PMA1 138 19 17
tet-ERG11 ERG11 1 1 1
tet-CMD1 CMD1 1 1 2

network analysis technique improves the significance of the
target gene under the applied treatment (i.e., z-score 4.29
vs. 2.06). Fig. 5 demonstrates more histograms of the pre-
diction errors where the prediction errors of the target genes
are statistically significant. In the next section, we will also
report the target detection comparisons.

As described in Sec. 1, information regarding the identity
of compounds used to treat the cells and the identity of the
mutated genes in each profile should not be provided to our
algorithm and the network is assumed to be learned from the
data with no or very small external influences. In order to
validate that the networks are correctly learned, we compare
the learned networks cross experiments and we found that
the variances for the learned coefficients are very small (i.e.,
around 5% of the mean values), which demonstrates the
robustness of our approach.

3.2 Identifying Targets of Genetic Perturba-
tion

To evaluate the performance of our algorithm, we performed
the gene target identification experiments of the 11 pro-
moter insertions. The target identification results without
using the two layer framework are reported in Table 1 where
the results of using different numbers of features (neighbor
genes) are also compared. We found in Table 1 that the
number of features significantly affects certain genes. Such
a finding requires a second layer with a more comprehensive
and stable network modeling method. In Table 2, we report
the identification results of using the two-layer framework,
which improves identification without adding much compu-
tational cost. In Table 2, we also compare our algorithm
with the MNI algorithm and a simple identification algo-
rithm (rank R) based on the z score of RNA change. The
results of those methods are taken directly from [4]. We
found that, our algorithm performed accurately while being
efficient.

3.3 Pathway Analysis
In this section, we apply our algorithm to identify prob-
able targets of drug compounds. Since compounds affect
protein activity and only indirectly influence transcription,
it is more likely to identify genes in the same pathway as
the affected protein rather than the target itself. Similar

Table 2: Identification Comparison: we compare our
algorithm with other methods. TLF represents our
algorithm with two layer processes. MNI is method
proposed in [4] and rank R is a simple identification
algorithm (rank R) based on the z score of RNA
change. The results of MNI and rank R methods
are taken from [4] directly.

Promoter mutant Target TLF MNI rank R

tet-IDI1 IDI1 1 1 1
tet-RHO1 RHO1 2 4 1
tet-YEF3 YEF3 1 1 116
tet-AUR1 AUR1 1 1 14
tet-FKS1 FKS1 2 1 41
tet-KAR2 KAR2 1 1 64
tet-CDC42 CDC42 1 1 141
tet-HMG2 HMG2 5 1 19
tet-PMA1 PMA1 9 6 22
tet-ERG11 ERG11 1 42 2820
tet-CMD1 CMD1 1 1 1

to [4], we examine both the pathways that are represented
among the highly ranked genes. Pathways are identified
as significantly over-represented Gene Ontology (GO) pro-
cesses among the highly ranked genes. In our experiments,
instead of using the absolute value of the prediction error,
we keep the sign of the error which provides us information
about how the gene is affected. We examine the 6 com-
pounds in our data set. For each of the compounds, we
used our algorithm to rank more than 6000 yeast genes by
the prediction errors. We then applied the highest (with
highest positive errors) or lowest (with highest negative er-
rors) ranked genes for pathway analysis using the GO Term
Finder tool (http://www.geneontology.org) to identify over-
represented GO biological process annotations. In Table 3,
we report the most significantly selected pathway for each
compound and the ranked genes in that pathway. We ap-
plied the bottom 80 genes (with highest negative errors) in
our pathway analysis, which performed best. In Table 3,
the first column contains the compounds, the second col-
umn shows the known pathway, the third column shows the
known target genes with the rank we identified, where pos-
itive value means the rank from top(positive errors), nega-
tive value means the rank from bottom(negative values) and
N/A means the target is not selected through the first layer.
The fourth column shows the detected significant GO ontol-
ogy with the corresponding p-value, and the fifth column
shows the highly ranked pathway genes. We successfully
identified the target pathway for most of the compounds we
examined (5 out of 6).

In Table 4, we compare our method with other methods.
The first column is the drugs, the second column is the
known pathways and the third to fifth columns are the path-
way analysis results of our method, MNI method and 2-fold
method respectively. The MNI method is described in [4].
In the 2-fold method, for each compound, we extract a sub-
set of genes that have 2-fold changes and put the list into the
GO Term Finder tool to perform the pathway analysis. We
found that, the simple 2-fold method successfully detected
the target pathways for two of the compounds, but failed in
other cases.



Figure 5: Histogram Analysis: The histograms of the prediction errors for 6 genes (targets of titrable promoter
insertions: first row: IDI1, RHO1, YEF3; second row: AUR1, FKS1, KAR2). The titrable promoter insertion
of target genes are marked in red. The prediction errors of the target genes are found to be significant by
using the network analysis.

Table 3: Pathway Analysis: the first column contains the compounds, the second column shows the known
pathway, the third column shows the known target genes with the rank we identified (positive value means
the rank from top(positive errors), negative value means the rank from bottom(negative values) and N/A
means the target is not selected through the first layer), the fourth column shows the detected significant
GO ontology with the corresponding p-value, and the fifth column shows the highly ranked pathway genes.
Drug Known Pathway Known Target Significant GO ontology Ranked Pathway Genes

Terbinafine Ergosterol ERG1(1) Steroid Metabolism NCP1(-46), DAP1(-40), ERG7(-36)
Biosynthesis (1: 3.51e-12) ERG8(-34), ERG26(-27), ERG12(-25)

ERG2(-20), ERG28(-15), ERG24(-9)
HES1(-8), ATF2(-6)

Lovastatin Ergosterol HMG2(-8) Steroid Biosynthesis HES1(-79), NCP1(-74), ERG7(-69)
Biosynthesis HMG1(-283) (1: 2.96e-06) UPC2(-37), ERG11(-21), HMG2(-8)

Itraconazole Ergosterol ERG11(N/A) Steroid Metabolism ERG24(-34), ERG12(-17)
Biosynthesis (1: 0.00150) UPC2(-13), ATF2(-6)

Cycloheximide Protein Ribosome Ribosomal Protein NUP84(-69), NSP1(-58), NUP170(-44)
Biosynthesis import into Nucleus

(6: 0.00207)

Tunicamycin N-linked ALG7(N/A) Protein Targeting to ER SEC63(-71), SSS1(-42), SIL1(-38)
Glycosylation (1: 1.58e-05) SEC59(-35), KAR2(-12)

Nikkomycin Cell Wall Chitin CHS3(N/A) Response to Drug YKL075C(-73), YMR073C(-43)
Biosynthesis (1: 0.00062) YOR129C(-27), KAP122(-10)



Table 4: Pathway Analysis Comparison: the first column contains the compounds, the second column shows
the known pathway, the third column shows the pathway analysis results using our approach, the fourth
column shows the results using MNI approach and the fifth column shows the pathway analysis of using the
genes with a 2-fold change.
Drug Known Pathway Our approach MNI approach 2-Fold

Terbinafine Ergosterol Steroid Metabolism Steroid Metabolism Steroid Metabolism
Biosynthesis (1: 3.51e-12) (1: 10e-14) (1: 1.80e-15)

Lovastatin Ergosterol Steroid Biosynthesis Lipid Metabolism Ergosterol Biosynthesis
Biosynthesis (1: 2.96e-06) (1: 10e-04) (1: 0.00270)

Itraconazole Ergosterol Steroid Metabolism Steroid Metabolism No Match
Biosynthesis (1: 0.00150) (1: 10e-08)

Cycloheximide Protein Ribosomal Protein No Match No Match
Biosynthesis import into Nucleus

(6: 0.00207)

Tunicamycin N-linked Protein Targeting to ER Protein Targeting to ER No Match
Glycosylation (1: 1.58e-05) (1: 10e-03)

Nikkomycin Cell Wall Chitin No Match No Match No Match

Table 5: Gene Selection Comparison: the first column contains the compounds, the second column shows the
known pathway, the third column shows the pathway analysis results using the bottom 80 genes, the fourth
column shows that of using the top 40 and bottom 40 genes and the fifth column shows that of using the top
80 genes.

Drug Known Pathway Bottom 80 Top and bottom 40s Top 80

Terbinafine Ergosterol Steroid Metabolism Steroid Metabolism Lipid Biosynthesis
Biosynthesis (1: 3.51e-12) (1: 8.77e-10) (6: 0.01311)

Lovastatin Ergosterol Steroid Biosynthesis Sterol Biosynthesis Calcium-mediated Signaling
Biosynthesis (1: 2.96e-06) (3: 0.00326) (1: 0.00270)

Itraconazole Ergosterol Steroid Metabolism Steroid Metabolism Amine Metabolism
Biosynthesis (1: 0.00150) (1: 8.87e-05) (1: 0.00259)

Cycloheximide Protein Ribosomal Protein Regulation of nitrogen utilization
Biosynthesis import into Nucleus Nitrogen Metabolism

(6: 0.00207) (1: 0.00276) (1: 0.00052)

Tunicamycin N-linked Protein Targeting to ER Response phosphatidylserine
Glycosylation to unfolded protein metabolism

(1: 1.58e-05) (1: 0.00035) (1: 0.00052)



Since we have both the rank and sign information, for the 5
successfully explored compounds, we compare the pathway
analysis results using different genes in Table 4. We found
that although the prediction error of the target gene can be
positive high(ERG1 in Terbinafine), negatively high(HMG2
in Lovastatin) or not significant(ERG11 in Itraconazole), by
looking at genes with significant negative errors, we can bet-
ter identify the target pathways. After identifying the target
pathways, the prediction errors of other genes in the tar-
get pathway may provide information about the direction
of effects, i.e., for compound Terbinafine, most of the genes
in the target pathway have negative prediction errors while
ERG1 and ERG5 have significant positive errors. Thus one
of our future research directions is to explore the directions
of effects in the pathways.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a computational framework for
drug target identification. In our two-layer framework, a
simple linear regression model is applied in the first layer to
select a small subset of candidate genes for the second layer
and to refine the training data selection. A more compli-
cate network modeling is then applied in the second layer
for better results. Experimental results demonstrated that,
our approach achieved accurate results in finding the known
targets and associated pathways while being computational
efficient.

One of our future research directions is to apply more com-
plicated network modeling techniques in the second layer.
There are two major directions, one is to apply other net-
work modeling techniques such Bayesian Networks. Another
direction is to improve the feature selection step. The M5 re-
gression model does not guarantee global optimization, thus
we aim to explore other feature selection methods for better
results. We also aim to perform further validation on other
data sets.
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