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The most widely used method for detecting genome-wide protein–DNA interactions is chromatin
immunoprecipitation on tiling microarrays, commonly known as ChIP-chip. Here, we conducted the first objective
analysis of tiling array platforms, amplification procedures, and signal detection algorithms in a simulated ChIP-chip
experiment. Mixtures of human genomic DNA and “spike-ins” comprised of nearly 100 human sequences at various
concentrations were hybridized to four tiling array platforms by eight independent groups. Blind to the number of
spike-ins, their locations, and the range of concentrations, each group made predictions of the spike-in locations. We
found that microarray platform choice is not the primary determinant of overall performance. In fact, variation in
performance between labs, protocols, and algorithms within the same array platform was greater than the variation
in performance between array platforms. However, each array platform had unique performance characteristics that
varied with tiling resolution and the number of replicates, which have implications for cost versus detection power.
Long oligonucleotide arrays were slightly more sensitive at detecting very low enrichment. On all platforms, simple
sequence repeats and genome redundancy tended to result in false positives. LM-PCR and WGA, the most popular
sample amplification techniques, reproduced relative enrichment levels with high fidelity. Performance among signal
detection algorithms was heavily dependent on array platform. The spike-in DNA samples and the data presented
here provide a stable benchmark against which future ChIP platforms, protocol improvements, and analysis methods
can be evaluated.

[Supplemental material is available online at www.genome.org. The microarray data from this study have been
submitted to Gene Expression Omnibus under accession no. GSE10114.]

With the availability of sequenced genomes and whole-genome
tiling microarrays, many researchers have conducted experi-
ments using ChIP-chip and related methods to study genome-
wide protein–DNA interactions (Cawley et al. 2004; Hanlon and
Lieb 2004; Kim et al. 2005; Carroll et al. 2006; Hudson and
Snyder 2006; Kim and Ren 2006; Lee et al. 2006; Yang et al. 2006;

O’Geen et al. 2007). These are powerful yet challenging tech-
niques, which are comprised of many steps that can introduce
variability in the final results. One potentially important factor is
the relative performance of different types of tiling arrays. Cur-
rently the most popular platforms for performing ChIP-chip ex-
periments are commercial oligonucleotide-based tiling arrays
from Affymetrix, NimbleGen, and Agilent. A second factor
known to introduce variation is the DNA amplification protocol,
which is often required because the low DNA yield from a ChIP
experiment prevents direct detection on microarrays. A third fac-
tor is the algorithm used for detecting regions of enrichment
from the tiling array data. Several algorithms have been devel-
oped, but until this report there was no benchmark data set to
systematically evaluate them. In this study, we used a spike-in
experiment to systematically evaluate the effects of tiling micro-
arrays, amplification protocols, and data analysis algorithms on
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ChIP-chip results. There are other potentially important factors
that are not assessed here, and that from a practical standpoint
are more difficult to systematically control and evaluate. These
include the skill of the experimenter, the amount of starting
material (chromatin, DNA, and antibody) used, the size of DNA
fragments after shearing, the DNA labeling method, and the hy-
bridization conditions.

There have been several studies evaluating the performance
of gene expression microarrays and analysis algorithms (Choe et
al. 2005; Irizarry et al. 2005; MAQC Consortium 2006; Patterson
et al. 2006). However, tiling arrays present distinct informatics
and experimental challenges because large contiguous genomic
regions are covered with high probe densities. Thus the results
from the expression array spike-in experiments are not necessar-
ily directly relevant to tiling-array experiments. One recent study
compared the performance of array-based (ChIP-chip) and se-
quence-based (ChIP-PET) technologies on a real ChIP experiment
(Euskirchen et al. 2007). However, because this was an explor-
atory experiment, the list of absolute “true-positive” targets was
and remains unknown. Since the experiment (Euskirchen et al.
2007) was performed without a key, the sensitivity and specific-
ity of each technology had to be estimated retrospectively by
qPCR validation of targets predicted from each platform.

In our experiment, eight independent research groups at
locations worldwide each hybridized two different mixtures of
DNA to one of four tiling-array platforms and predicted genome
location and concentration of the spike-in sequences using a to-
tal of 13 different algorithms. Throughout the process, the re-
search groups were entirely blind to the contents of the spike-in
mixtures. Using the spike-in key, we analyzed several perfor-
mance parameters for each platform, algorithm, and amplifica-
tion method. While all commercial platforms performed well, we
found that each had unique performance characteristics. We ex-
amined the implications of these results in planning human ge-
nome-wide experiments, in which trade-offs between probe den-
sity and cost are important.

Results

Creation of the simulated ChIP sample

To create our simulated ChIP spike-in mixture, we first randomly
selected 100 cloned genomic DNA sequences (average length 497
bp) corresponding to predicted promoters in the human genome
(Cooper et al. 2006), individually purified them, and normalized
the concentrations of each preparation to 500 pg/µL (Fig. 1). To
create enrichment levels that ranged from 1.25-fold to 196-fold
relative to genomic DNA (Supplemental Tables 1 and 2), we
added the appropriate volume of these stock solutions to a com-
mercial human genomic DNA preparation (Methods; Supple-
mental Tables 1 and 2). The clones were validated by sequencing
and PCR both before and after dilution (Supplemental Methods).
We prepared one clone mixture to be directly labeled and hy-
bridized to arrays at the given concentration (“undiluted,” 77
ng/µL), and a different clone mixture that was diluted such that
amplification would be necessary before labeling and hybridiza-
tion (“diluted,” 3 ng/µL). The diluted mixture was created be-
cause all of the array platforms require microgram quantities of
DNA, and a typical ChIP experiment produces ∼50 ng of DNA,
making amplification essential for most ChIP-chip experiments.
Each amplification method is known to cause under- and over-
representation of certain sequences (Liu et al. 2003), which we
aimed to assess in this context.

After the mixtures were prepared, the clones and their rela-
tive concentrations were again validated by sequencing and
quantitative PCR (qPCR). Note that while the same spike-in
clones were present in the diluted and undiluted mixtures, they
were used at different enrichment levels in the two samples. In
each mixture, most of the selected enrichment levels were rep-
resented by 10 distinct clones. To challenge the sensitivity of the
array technologies, spike-in enrichment levels were biased to-
ward enrichment levels less than 10-fold. We also prepared two
samples containing genomic DNA at 77 ng/µL and 3 ng/µL, re-
spectively, without any spike-ins to serve as controls. We sheared
the DNA mixtures with a standard chromatin sonication proce-
dure (Johnson et al. 2007).

Amplification, labeling, and DNA microarray hybridization
of the simulated ChIP

We sent aliquots of the control DNA and the two mixtures to
participating groups, who labeled, amplified (the diluted
samples), and hybridized the mixtures to DNA microarrays cov-
ering the ENCODE regions (The ENCODE Project Consortium
2007) using their standard procedures (Fig. 1; Supplemental
Methods). None of the individuals involved in hybridizations or
predictions described below was aware of the identity of any of
the clones in the spike-in mixtures, the number of spike-in
clones, or the range of fold-enrichment values. For the samples
requiring amplification, we tested the effect of three different
amplification procedures: ligation-mediated PCR (LM-PCR), ran-
dom-priming PCR (RP), and whole-genome amplification (WGA)
(O’Geen et al. 2006; Supplemental Methods).

The groups labeled and hybridized the mixtures to one of
three different types of tiling arrays (NimbleGen, Affymetrix, or
Agilent). Each of the tiling array technologies covers the 1% of
the human genome selected for study by the ENCODE Consor-

Figure 1. Workflow for the multi-laboratory tiling array spike-in experi-
ment.
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tium (The ENCODE Project Consortium 2007). Because each ar-
ray technology is unique, the total number of nucleotides and
percentage of the ENCODE regions covered varies among the
platforms. However, we ensured that all of the regions corre-
sponding to the spike-in clones were well represented on all of
the platforms. Affymetrix ENCODE arrays contained short 25-
mer probes at a start-to-start tiling resolution of 22 bp (1.0R ar-
rays) or 7 bp (2.0R arrays) (http://www.affymetrix.com). The
probes were chosen from RepeatMasked (Jurka 2000) sequences
and synthesized on the arrays in situ using photolithographic
technology. Agilent ENCODE arrays consisted of isothermal 44–
60-mer probes that are unique in the human genome printed at
100-bp resolution using inkjet technology (http://www.agilent
.com). NimbleGen ENCODE arrays were comprised of unique
50-mers at 38-bp resolution, with the probes being synthesized in
situ using maskless array synthesizer technology (http://www.
nimblegen.com). We performed all hybridizations in at least du-
plicate, with a matched comparative hybridization using geno-
mic DNA where appropriate. Affymetrix does not use two-
channel comparative hybridization, thus spike-in and controls
were hybridized on separate arrays.

This study also initially included a PCR tiling-array platform
consisting of 22,180 consecutive ∼980-bp PCR products cover-
ing the ENCODE regions spotted on glass slides. However, the
PCR arrays performed poorly according to our choice of evalua-
tion metrics, apparently because of the low resolution of the
PCR array platform relative to the oligonucleotide platforms.
This prevented an equitable comparison of the results, and there-
fore the PCR array results are presented separately (Supplemental
Fig. 1).

Analysis algorithms

We used 13 different algorithms (Supplemental Methods) to
make predictions of enriched regions from the array measure-
ments. While most of the algorithms function only on a single
platform, we used two algorithms, MA2C (Song et al. 2007) and
Splitter (H. Shulha, Y. Fu, and Z. Weng; http://zlab.bu.edu/
splitter), for multiple platforms. To standardize the results across
algorithms, we required that each prediction consist of a rank-
ordered list of predicted spike-in regions, with each region rep-
resented by a single chromosome coordinate and a quantitative
value that corresponded to a predicted enrichment level. We
considered a region to be predicted correctly if the single pre-
dicted coordinate was within the spike-in region. Because the
total number of spike-ins was unknown to the predictors, each
predictor was also asked to estimate a cutoff score above which
the selected predictions were considered significant. We then
used the spike-in key to assess the performance of each microar-
ray platform, amplification method, and analysis algorithm
(Fig. 2).

Assessment of sensitivity and specificity using ROC-like curves

We used an ROC (receiver operating characteristic)-like curve
analysis to assess the sensitivity and specificity of the predictions
from the array measurements across all spike-in concentrations
(Fig. 2). All spike-in regions were considered true positives regard-
less of the degree of enrichment. All remaining regions repre-
sented on the array were considered true negatives. Standard
ROC curves are created by plotting the sensitivity (true-positive
rate; Y-axis) against 1-specificity (false-positive rate; X-axis) ob-
tained at every rank value of predicted sites. In our simulated

ChIP experiment and in many actual ChIP-chip experiments,
true negatives are represented by >99% of the arrayed probes.
This results in a large absolute number of false positives even at
extremely low false-positive rates (false positives/true negatives).
Therefore, to represent the performance of each experiment, on
the X-axis we plotted the (number of true positives)/(number of
spike-in clones), and on the Y-axis we plotted the (number of
false positives)/(number of spike-in clones). Presented in this
way, the value on either axis represents the same absolute num-
ber of true positives (Y-axis) or false positives (X-axis). Under
this framework, the best possible array prediction would yield
a graph that has a point in the upper left corner of the plot,
which would represent a case with correct prediction of all
true positives (100% sensitivity) without any false positives
(100% specificity). Our benchmark for this analysis is the area
under this ROC-like curve (AUC), which conceptually repre-
sents the average sensitivity over a range of specificities. We stan-
dardized the AUC values so that randomly selected sites would
have an AUC of nearly zero, and a perfect performance would
have an AUC of 1.

Microarray platform choice is not the primary determinant
of overall performance

For all three microarray platforms, the best combination of data
and analysis algorithm in the unamplified spike-in experiments
generally detected ∼50% of the spike-in clones at a 5% false dis-
covery ratio (number of false positives/total number of spike-in
clones; this corresponds to about a 10% false discovery rate) (Fig.
2). Most of the missed calls were for spike-ins at very low enrich-
ment values (see below) (Fig. 3). However, the AUC values
spanned a wide range, from 0.31 (NimbleGen data from Lab 4,
Tilescope algorithm) to 0.71 (NimbleGen data from Lab 2, TA-
MALg algorithm) (Fig. 2A). Among the platforms, the Splitter
algorithm was the best on Agilent tiling arrays (AUC = 0.64),
while MAT (Johnson et al. 2006) was best for Affymetrix
(AUC = 0.59). For the amplified spike-in experiments, the AUC
values also spanned a wide range, from 0.12 (RP amplifica-
tion method, Affymetrix arrays, TiMAT [David Nix; http://
sourceforge.net/projects/timat2] algorithm) to 0.57 (WGA ampli-
fication method, NimbleGen arrays, and TAMALg [Bieda et al.
2006] algorithm) (Fig. 2B). Through bootstrapping, we found the
confidence interval of AUC within each array/lab/algorithm
combination around �0.07 (Supplemental Methods), thus small
AUC differences may not reflect significant performance differ-
ences.

The wide range of AUC values was not limited to compari-
sons across microarray platforms. In fact, the variance of AUC
values between experiments performed within the same platform
is similar to, if not greater than, the variance observed between
the different platforms (Fig. 2C,D). This indicates that among
commonly used experimental and analysis procedures, microar-
ray platform choice is not the primary determinant of overall
performance. Differences within a platform could arise from a
variety of factors, most prominently by between-lab variability in
experimental procedures and differences in the analysis algo-
rithm used. For example, the hybridizations done in Lab 3 had a
lower AUC than the hybridizations done in Lab 7 using the same
Agilent microarray platform (Fig. 2A). There was at least one ma-
jor difference in the experimental protocol between these labs:
Lab 3 used Alexa dyes, whereas Lab 7 used Cyanine dyes for DNA
labeling and detection.

Systematic evaluation of variability in ChIP-chip
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All platforms were very sensitive at high enrichment levels;
at extremely low enrichment levels, long oligonucleotide
platforms are more sensitive

The enrichment levels produced by a typical ChIP experiment
vary, from less than twofold to several thousandfold. Therefore,
of particular interest is the sensitivity of arrays, amplification

methods, and analysis methods across
various ranges of fold enrichment. For
each array, amplification method, and
analysis algorithm combination, we cal-
culated the sensitivity at high (64–192-
fold), medium (sixfold to 10-fold), low
(threefold to fourfold), and ultra-low
(1.25–2-fold) enrichment ranges (Fig. 3).
Generally, as expected, sensitivity de-
creases with decreasing fold enrich-
ment. All technologies show a steep de-
crease in sensitivity at absolute enrich-
ments (as opposed to measured
enrichments) below threefold. Our
analysis demonstrated that at a false dis-
covery ratio of 5%, the NimbleGen plat-
form (with four replicates) is the most
sensitive platform at lower levels of en-
richment (less than threefold), followed
closely by Agilent (with two replicates).
The differences in sensitivity among the
platforms are not significant at levels of
enrichment higher than threefold.
These data are consistent with previous
studies that showed that longer oligonu-
cleotides are more sensitive than shorter
probes (Hughes et al. 2001).

Sensitivities were lower for ampli-
fied samples than for unamplified
samples regardless of the amplification
method across all spike-in enrichment
levels. Again, at lower-fold enrichments,
lower sensitivity was observed. Holding
the analysis method constant, Ligation
Mediated-PCR (LM-PCR) afforded the
least reduction in AUC from unampli-
fied to amplified sample on Agilent ar-
rays. On Affymetrix arrays, LM-PCR per-
formed significantly better than RP am-
plification. The WGA method was used
only on the NimbleGen platform, but
also produced results with very little re-
duction in AUC.

The simulated ChIP-chip sample
can be used to objectively assess cutoff
selection

When making predictions of enriched
regions based on ChIP-chip measure-
ments, the ideal significance threshold
or “cutoff” for selecting targets is gener-
ally unknown. This is because many
ChIP-chip experiments are discovery ef-
forts in which very few true binding
sites are known. Therefore, it is impos-

sible to calibrate the cutoff based on a truth model. Specificity
can be improved at the cost of sensitivity, and vice versa, but in
most cases a cutoff that optimally balances sensitivity and speci-
ficity produces the most useful outcome. In the context of ChIP-
chip experiments, false-positive and false-negative calls are
equally problematic. Because our simulated experiments have a
truth model, we can calibrate the optimal threshold for each of

Figure 2. Summary performance statistics for spike-in predictions. (A) Undiluted and Unamplified
samples. Raw data were provided by seven different labs, which are designated as follows: (1) M.
Brown; (2) P. Farnham and R. Green; (3) R. Myers; (4) B. Ren; (5) M. Snyder; (6) K. Struhl and T.
Gingeras; (7) S. McCuine. AUC (Area Under ROC-like Curve) values were calculated based on the
ranked list of spike-in calls provided by each group. The references for the algorithms are: (8) Johnson
et al. 2006; (9) D. Nix, http://sourceforge.net/projects/timat2; (10) Cawley et al. 2004; (11) H. Shulha,
Y. Fu, and Z. Weng, http://zlab.bu.edu/splitter; (12) Song et al. 2007; (13) Bieda et al. 2005; (14) Lucas
et al. 2007; (15) Zhang et al. 2007; (16) Scacheri et al. 2006; (17) Kim et al. 2005; (18) A. Karpikov and
M. Gerstein, unpubl. (B) The same as A, for Diluted and Amplified samples. (C) ROC-like plots for
Unamplified spike-in predictions. As an aid in interpretation, the dashed vertical line represents the
point at which a group’s number of false-positive predictions equal 5% of the total number of true-
positive spike-ins. At this point, all platforms correctly identified ∼50% of the true-positive spike-ins.
Error bars represent the two-sided 95% confidence interval of the average sensitivity at each false-
positive ratio (X-axis). (D) The same as C, for Amplified samples.
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the array experiments and peak-calling algorithms. We define
the optimal threshold as the point on the ROC-like curve that is
closest to the upper left corner, so long as the value on the X-axis
is �10%. This point equally penalizes false positives and false
negatives, and therefore minimizes false positives and false nega-
tives simultaneously. The distance in rank between empirical
threshold (submitted by each group) and the optimal threshold
along the ROC-like curve (hereafter called the E-O distance) is a
rational evaluation of the accuracy of threshold selection (Fig.
4A).

Estimates of the significance threshold are often too aggressive
or conservative, but do not vary with enrichment level

Overly aggressive threshold selection will produce a larger num-
ber of predicted peaks and many false positives, resulting in a
positive E–O distance. Conservative threshold selection will iden-
tify fewer false positives at the cost of more false negatives than
the optimal, resulting in a negative E–O distance. In the optimal
situation, the empirical threshold is exactly the same as the op-
timal threshold, so that the E–O distance will be 0. In our simu-
lated ChIP experiments, we found a broad range of E–O values,
from �59 (very conservative, Agilent arrays, LM-PCR amplified,

ADM-1 algorithm) to 74 (very aggressive, NimbleGen arrays,
LM-PCR amplified, Splitter algorithm) (Fig. 4B). However, several
analysis methods produced a cutoff very near the ideal threshold.
In particular, MAT always produced calls with a near-optimal
cutoff. We also examined the E–O distance metrics at various
spike-in enrichment levels (Supplemental Fig. 2). Across all
array platforms and peak prediction algorithms, E–O distances do
not generally vary significantly among known spike-in enrich-
ment levels. This suggests that it may not be necessary to
calibrate prediction thresholds based on presumed enrichment
levels in a ChIP experiment. Proper determination of E–O dis-
tance requires perfect knowledge of a truth model, thus spike-in
experiments such as ours will remain important for labs inter-
ested in calibrating E–O distance on their particular analysis al-
gorithm.

All platforms and most analysis methods accurately estimated
actual enrichment values

In ChIP-chip experiments, investigators are often interested in
the magnitude of the relative enrichment value for any particular
locus. These enrichment values may reflect an important aspect
of biology such as the affinity of a transcription factor to its

Figure 3. Enrichment-specific sensitivity. (A) Enrichment-specific sensitivity for Unamplified spike-in mixtures. The spike-in clones were divided into
four levels of enrichment: High fold-change (64–192); Medium fold-change (6–10); Low fold-change (3–4); and Ultra Low fold-change (1.25–2).
Enrichment-specific array prediction sensitivity (Y-axis) is defined as the percentage of correctly predicted enrichment-specific clones, with the total
number of false positives equal to 5% of the total number of spike-in clones. Letters under each bar refer to the experiment description in Figure 2A.
(B) The same as A, but for Amplified samples. Letters under each bar refer to the experiment description in Figure 2B.
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recognition sequences, or recruitment of multiple copies of one
transcription factor to clusters of binding sites. Therefore, we
evaluated the quantitative predictive power of different peak pre-
dictions from array measurements using our known quantitative
truth model (Fig. 5). For each array type and peak-calling algo-
rithm instance, we calculated Pearson’s correlation coefficient (r),
between the log2 of the provided enrichment scores and the log2

of the actual spike-in fold-change of the top 100 predicted sites
plus all the false-negative sites, and used this statistic as the final
quantitative measurement for each prediction. Among the un-
amplified samples, there was a broad range of r-values across the
various platforms and algorithms, ranging from 0.201 for the
ACME (Scacheri et al. 2006) algorithm on the NimbleGen plat-
form to 0.938 for Agilent arrays using the Splitter algorithm (Fig.
5A). Peak finding algorithms vary in their quantitative ability. A
single data set produced by Lab 2 using NimbleGen arrays was
analyzed with seven different peak detection algorithms, with
one resulting in an r-value of 0.201, while all the other six meth-
ods produced r-values of greater than 0.7. The ability of each
algorithm to quantitatively detect peaks in the array measure-
ments appears to be largely unaffected by amplification (Fig. 5B).
This demonstrates that each amplification method reproduces
the relative enrichment levels found in the original diluted mix-
ture with fidelity, although as shown previously, the sensitivity
and specificity after amplification are usually lower.

Simple tandem repeats and segmental duplications
are often associated with false calls

The ability of a tiling microarray to correctly identify a particular
sequence often depends on the nucleotide content of that se-
quence, probe coverage in low-complexity sequences, and poten-
tial for cross-hybridization (Okoniewski and Miller 2006; Royce
et al. 2007). Therefore, we used each list of predictions to exam-
ine the false positives, false negatives, and true positives with
relation to GC content, repeat content, and simple tandem re-
peat content (Benson 1999).

The spike-in mixtures are based on predicted promoters,
which are often biased toward high GC content. However, the
average GC content of our spike-in clones was actually lower
than the average across the entire genome (38% vs. 41%, respec-
tively). We found that across all platforms, peak detection algo-
rithms, and amplification methods, GC content does not vary
among false positives, false negatives, true positives, and the
spike-in key. Our spike-in clones harbor a significant number of
RepeatMasked regions (28% of total nucleotides across all
clones), which results in reduced probe coverage on most array
platforms. For one algorithm, MA2C, RepeatMasked sequences
accounted for a disproportionate number of false-positive predic-
tions on both the Agilent and NimbleGen platforms, and in am-
plified and unamplified experiments. The other algorithms and
platforms generally had fewer RepeatMasked sequences among
false positives than across all spike-in clones (Supplemental
Tables 3 and 4).

Simple tandem repeats (Benson 1999), which are often not
masked by RepeatMasker, were frequently associated with false
positives and false negatives (Supplemental Tables 3 and 4). For
many algorithms and labs, false-positive predictions on Nimble-
Gen arrays contained more than 10 times as many simple tan-
dem repeat nucleotides as the spike-in sample key. Also, particu-
larly in the amplified samples, false negatives on the NimbleGen
platform also had significantly higher simple tandem repeat con-
tent than the spike-in sample key. Therefore, the data indicate
that simple tandem repeat regions are associated with both false-
positive and false-negative calls, particularly in amplified
samples. It appears that a simple post-processing filter that re-
moves peak predictions rich with simple tandem repeats could
significantly reduce false positives.

Segmental duplications (Bailey et al. 2001) that are not Re-
peatMasked often have tiling-array coverage, but may frequently
appear as false positives under normal hybridization conditions
if present in sufficient copy number. We used BLAT (Kent 2002)
to query the RepeatMasked spike-in clone sequences against the
human genome and found that 12% of the clones in the undi-

Figure 4. Evaluation of cutoff selection used for spike-in prediction. (A) We define the optimal threshold as the point on the ROC-like curve that is
closest to the upper left corner, so long as the value on the X-axis �0.10. The distance in rank between empirical threshold (submitted by each group)
and the optimal threshold along the ROC-like curve (hereafter E–O distance) is a rational evaluation of the accuracy of threshold selection. Aggressive
and conservative thresholds will have positive and negative E–O distances, respectively. (B) The E–O distance for each set of experiments and predictions
performed on the Unamplified samples. Letters under each bar refer to the experiment description in Figure 2A. (C) The same as B for the Amplified
samples. Letters under each bar refer to the experiment description in Figure 2B.
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luted and diluted spike-in samples had more than one significant
BLAT match in the genome (Supplemental Tables 3 and 4). The
same analysis on the false-positive predictions for each array and
algorithm combination found that predictions on Agilent arrays
consistently contain fewer regions with multiple BLAT hits ge-
nome-wide than those on other platforms. Regardless of the
peak-calling algorithm or whether the samples were amplified,
false positives on the NimbleGen platform had consistently more
across-genome redundancy as indicated by BLAT than was pres-
ent in the spike-in mixtures. In one experiment, nearly 80% of

the false positives matched at least one other region in the ge-
nome (Supplemental Tables 3 and 4). The absolute number of
false positives in this experiment is small, thus eliminating se-
quences with this simple analysis could greatly improve the over-
all predictions.

Cost versus detection power

As ChIP-chip efforts scale to the full genome, the considerations
of sensitivity and specificity are complicated by the fact that
for many laboratories, oligonucleotide densities practical for

Figure 5. Analysis of quantitative predictive power. (A) Unamplified samples. Bar plots represent the Pearson’s correlation coefficient r, between the
log2 predicted score and the log2 actual spike-in fold-change of the top 100 predicted sites. Arrows below each bar graph point to scatterplots
representative of data from each microarray platform. In the scatterplots, true positives are shown as black dots, with the number of true positives
indicated above the dots in black type at each fold-change level. The number of false negatives is indicated in purple type below the points at each
fold-change level. The solid line represents the LOWESS smoothed curve for all true positives. False positives are shown as green triangles, and are on
the far left of the graph because of their actual log2 fold-change values of 0. (B) The same as A, but for Amplified samples.
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ENCODE-scale (∼30 Mb) arrays are not currently practical for
genome-wide (∼3 Gb) arrays. Different platforms offer various
depths of coverage of the genome, and often the coverage is
flexible even within a platform type. The cost of performing such
experiments varies widely (Fig. 6A). Given the variety of options,
we used our simulated ChIP-chip measurements to model the
prospective performance of arrays with lower probe densities
(Fig. 6B).

Our spike-in clones covered only ∼500 bp, but in a typical
ChIP experiment ∼1 kb of DNA surrounding a site of protein–
DNA interaction is enriched. To account for this in our estima-
tion of array performance with respect to probe density, we
evenly deleted probes in silico so that the absolute number of
probes covering the 500-bp spike-in region would be equivalent
to the number covering a 1-kb region normally enriched in a
ChIP experiment. For example, an ∼1-kb region enriched in a
hypothetical ChIP-chip experiment might span 10 NimbleGen
probes at the 100-bp whole-genome tiling resolution, whereas an
∼500-bp spike-in clone is covered by 13 NimbleGen probes on
the 38-bp resolution ENCODE array. In this scenario, to simulate
whole-genome tiling array performance, we deleted NimbleGen
probes (Methods) such that 10 probes would be left to cover each
500-bp region (∼50-bp resolution). For each platform, we used
the same probe deletion approach, and the best and the most
pragmatic current estimate for probe densities of whole-genome
tiling arrays available (Fig. 6A). Since some platforms allow cus-
tom designs that make any density and number of probes theo-
retically possible, we extended our analysis by gradually deleting
an increasing percentage of probes on the arrays so as to provide
performance estimates over a wide range of potential probe den-
sities (Fig. 6B). Lower-resolution arrays generally have a lower
AUC than their denser counterparts. Furthermore, replicates are
essential to increase the AUC for experiments with lower probe
densities, especially for Affymetrix, which requires at the very
least three replicates to generate an AUC greater than 0.4 at the
projected genome-wide tiling resolution. Researchers must cali-
brate their desired AUC values based on the number of arrays and
probe densities that are practical (Fig. 6B).

Next, we examined sensitivity at different probe densities as
a function of the true enrichment values (Fig. 6C). We again find
that arrays perform significantly better at higher enrichment lev-
els, but at lower probe densities, none of the platforms were able
to detect ultra-low enrichment. Particularly for the Low (three-
fold to fourfold) enrichment values, higher probe densities are
critical for acceptable levels of sensitivity. For example, on Af-
fymetrix arrays at the 0.5 AUC level, one would detect 100% of
the High (64–192-fold), 80% of the Medium (sixfold to 10-fold),
45% of the Low (threefold to fourfold), and almost no Ultra Low
(1.25–2-fold-change) targets. Therefore, investigators may wish
to characterize levels of enrichment in their ChIP samples to
determine the best array platforms to use and to calibrate the
optimal probe density and number of replicates to perform with-
out incurring unnecessary expenditure.

Finally, we examined the number of probes and cost re-
quired to achieve various AUC values across the three platforms.
Affymetrix offers the greatest probe density of any platform, al-
though it also requires far more probes than Agilent and Nimble-
Gen platforms to achieve similar AUC values (Fig. 6D). However,
the much lower cost per probe afforded by Affymetrix makes the
cost to achieve less than 0.5 AUC values lower overall, relative to
other platforms (Fig. 6E). If AUC levels greater than 0.5 are de-
sired, the cost of the three platforms becomes virtually identical.

Discussion

We have conducted the most comprehensive study to date of
tiling microarray platforms, DNA amplification protocols, and
data analysis algorithms, with respect to their effect on the re-
sults of ChIP-chip experiments.

Tiling arrays from all commercial companies tested worked
well at the 5% false discovery ratio (∼10% FDR) level, especially
using the optimal experimental protocol with the best analysis
algorithm. NimbleGen and Agilent arrays are more sensitive at
detecting regions with very low enrichment (1.25- to twofold),
likely owing to longer oligonucleotide probes and probe se-
quence optimization. The results of Affymetrix experiments ben-
efit more from replicates than other platforms. The variation be-
tween laboratories, protocols, and analysis methods within the
same platform is similar to, if not greater than, the variation
between the best results from different platforms. Clearly, even
investigators using the same platform must work toward better
standard operating procedures and develop quality control met-
rics to monitor quality of reagents and arrays.

We found that both the WGA and LM-PCR protocols pro-
duce results comparable to corresponding undiluted samples and
are very effective at detecting low-enrichment regions. Different
analysis algorithms are appropriate for different tiling-array plat-
forms. MAT seems to work best on Affymetrix tiling arrays. Split-
ter and Agilent’s internal WA or ADM-1 algorithms are the best
for Agilent tiling arrays. For NimbleGen tiling arrays, TAMALg,
Splitter, and NimbleGen’s internal permutation algorithms work
better for the unamplified samples, and TAMALg, MA2C, and
Tilescope (Zhang et al. 2007) work better for the amplified
samples.

We note that the conclusions we report are supported by
many aspects of the data in aggregate, rather than being depen-
dent on a specific property of any individual experiment. There-
fore, although factors such as the inclusion or exclusion of indi-
vidual investigators, the particular batches of reagents or arrays
used, or sets of algorithm parameters might have slightly
changed the results of individual experiments reported here, the
overall conclusion of the evaluation is robust with respect to
these variables. Nonetheless, as with any study, there are short-
comings here. For example, NimbleGen seems to be the relatively
more successful commercial platform in this study, but it is pos-
sible that this is a result of more experiments and analyses being
performed with this platform. In the same way that between two
people randomly drawing numbers from the same normal distri-
bution N(µ, �2), a person drawing 10 numbers is more likely to
get the highest number than a person drawing only five, the
platform with the most replicates, laboratories, and algorithms
tested has an advantage among closely matched competitors.
Another note of caution concerns our analysis of whole-genome
array performance. All commercial tiling-array companies have
proprietary algorithms for probe selection based on the hybrid-
ization quality of oligonucleotide probes. However, the effective-
ness of these algorithms diminishes when probes are tiled at very
high resolution, since there are simply not enough biochemically
optimal probes to choose from at such resolution. Therefore,
probes on the ENCODE arrays might be less optimal than those
in the whole-genome arrays (which are at a lower tiling resolu-
tion) from the same platform. As a result, our simulated probe
deletion analysis might underestimate the actual whole-genome
array performance, especially for Affymetrix tiling arrays. Finally,
the spike-in DNA used in this study has a different fragment
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Figure 6. Cost versus detection power: simulation of whole-genome experiments. (A) Summary statistics for the simulation of commercial whole-
genome tiling array experiments. (B) Array performance as a function of replicate number and tiling resolution (see Methods). AUC values are indicated
by color (key at bottom). Black numbers on the top indicate the percentage of probes remaining on the ENCODE array in the simulation. The red
coordinates at the bottom indicate the corresponding array resolution, assuming a 1-kb region of ChIP enrichment. The currently available (August 2007)
commercial whole-genome tiling array resolution is underlined. (C) Array sensitivity according to enrichment level. As in Figure 3, the spike-in clones
were divided into four levels of enrichment: High (64–192 fold); Medium (6–10 fold); Low (3–4 fold); and Ultra Low (1.25–2 fold). Sensitivity at each
enrichment level is defined as the percentage of correctly predicted clones, with the total number of false positives equal to 5% of the total number of
spike-in clones (color key at bottom). The array platforms are indicated along the X-axis. (D). Using our deletion analysis and current (August 2007) list
prices for each commercial array technology, we calculated the number of probes and dollar amount required to produce a given AUC value (left panel).
The minimum number of probes required to achieve a given AUC was determined by using the information in panel B for each platform, assuming a
1.5-Gb nonrepetitive genome. For Affymetrix, a single-channel platform, the need to perform separate ChIP and control/input hybridizations was
accounted for in calculating probe number. In the righthand panel, the minimum cost required to achieve a given AUC value is plotted.
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length distribution than a real ChIP-chip sample. Real ChIP-
enriched regions often have peak-shaped profiles instead of uni-
form enrichment across the entire region, thus algorithms mod-
eling peak shapes may perform better with real ChIP-chip data
than the spike-in signal. Nonetheless, the spike-in strategy we
used provides the most feasible benchmark for the factors we are
evaluating.

In this simulated ChIP-chip experiment, we have found that
commercial tiling arrays perform remarkably well even at rela-
tively low levels of enrichment. We also found that the cost to
achieve similar sensitivity between the commercial tiling-array
platforms is comparable. Tiling microarrays from all commercial
companies continue to get less expensive and to deliver continu-
ally higher probe densities. Simultaneously, new detection tech-
nologies such as high-throughput sequencing are emerging
(Johnson et al. 2007). To date, there has been no systematic com-
parison of ChIP-chip and ChIP-seq, or ChIP-seq performed on
different sequencing platforms. Our spike-in library and data set
might be used for such a purpose, and we hope that this study
and our spike-in library will encourage continued rigorous com-
petition and comparison between all of the genomic detection
platforms.

Methods

Validation of the simulated ChIP sample
The simulated ChIP sample was validated in three ways: (1) se-
quencing of the original clone preps before dilution, (2) sequenc-
ing of the diluted clones with PCR preamplification using uni-
versal primers, and (3) inserting specific PCR of the diluted
clones, followed by agarose gel electrophoresis. Our experimental
validation revealed no anomalies in the spike-in mixtures, and
our analysis of the array predictions adds extra evidence that the
libraries were mixed at the proper stoichiometries and that the
clone identities were correct.

Simulated ChIP amplification, array hybridization, and data
analysis
Detailed descriptions of each experimental procedure and analy-
sis algorithm are described in the Supplemental material.

Probe and replicate deletion simulation
We evenly and gradually deleted probes in silico at 2% intervals,
such that at each step there are 100%, 98%, 96%, . . . , 2% of
probes left on the arrays. At each step, we repeated this probe
deletion five times with randomly selected starting positions to
form five different array designs. Shown in this study is the av-
erage area under the ROC curve of all replicate combinations on
all five array designs. For example, the Affymetrix analysis was
generated from 15,750 different array predictions, based on 63
possible replicate combinations derived from the six available
experiments (from one to six replicates: 6 + 15 + 20 + 15 + 6 + 1 = 63),
five different array designs, and 50 different probe deletion
steps.

Sequence analysis of array predictions
For each group of array predictions, we binned the predicted
regions into false negatives, false positives, and true positives. For
false positives, 200 bp of reference human sequence was added 5�

and 3� of the predicted location. We then calculated the percent
GC, the percent RepeatMasked, and the percent simple tandem
repeats across the sequences in each group based on UCSC ge-

nome annotations (http://genome.ucsc.edu). For the BLAT (Kent
2002) analysis, we used a cutoff score >30 to find similar se-
quences in the genome for each clone.
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