Comparison of Database Buffer Management Algorithms – 2Q and CLOCK-Pro
Dennis Shasha
Department of Computer Science
Courant Institute of Mathematical Sciences
New York University
shasha@cs.nyu.edu

Ashish Walia
Department of Computer Science
Courant Institute of Mathematical Sciences
New York University
ashish.walia@nyu.edu

Dennis Shasha
Department of Computer Science
Courant Institute of Mathematical Sciences
New York University
shasha@cs.nyu.edu

June 04, 2012

1. Introduction
Database management systems (DBMSs) typically maintain a database buffer to provide efficient access to database pages [1]. A database buffer consists of page frames of the size of disk blocks [1]. Blocks are copied from disk into buffer without any change in format [1]. Since it’s more expensive to access a database page from disk than to access a page from the buffer [2], the problem space reduces to effectively managing pages in the buffer. Finding an efficient solution for database buffer management is a well- researched problem. Many algorithms have been proposed so far in the same context, such as [what about LRU] 2Q, LIRS, Clock-Pro, 2Q, CAR, ARC etc. In this report, our focus is restricted to comparing 2Q and CLOCK-Pro algorithms in terms of hit rate (ratio of number of pages requested that are already in the buffer to the total number of pages requested) over a series of real-time workloads. [Nce intro. If any phrases come from other papers, please make sure you put them in quotes]

2. Optimal Page Replacement Algorithm (OPT)
The oOptimal page replacement algorithm or clairvoyant algorithm replaces a page whose next access will be farthest in future [3]. It’s impossible to implement OPT algorithm for practical purposes because the point when a page will be referenced next in the future is not known in advance [3]., Hhowever, OPT gives a natural best case amongst all the page replacement algorithms and can be used as a standard point of reference against which to compare performance of other page replacement algorithms. Our experiments were based on memory traces; hence we could easily look ahead in the future to see which page would be accessed farthest in the future. We leveraged the sameused that information in our OPT algorithm implementation.

On accessing a page X :
begin
		if X is in the buffer then
			increment page hit counter
		// if X is not in the buffer
else // X not in the buffer
			increment page miss counter
			if buffer is not full then
				add X to the buffer
			//if buffer is full
else // buffer is full
//Select a page that will not be referenced in the future for the /	//longest time
page Y:=selectPageForEviction()
remove Y from the buffer
			end if
		end if
end
__
		
selectPageForEviction()
begin
		create a sub list, SL, of all the pages that have not been accessed so far
		//iterate over all the pages present in buffer
for i in 1..buffer.length loop
			page X := buffer(i)
			//calculate when a page will be accessed next time in the future
X.next_reference_time:=SL.indexOf(X.pageNum)
//if the page is not referenced in the future
if X.next_reference_time==-1 then
		//this page is the ideal candidate for page eviction
		return X
end if
		end loop
		//page with the highest value of next_reference_time will be selected for eviction
		page Y:= buffer(1)
for i in 1..buffer.length loop
			page X := buffer(i)
			if X. next_reference_time > Y. next_reference_time then
				Y:=X
			end if
		end loop	
		return Y
end

3. Two Queue Page Replacement Algorithm (2Q)
2Q maintains two families of queues: hot and cold. When a page is referenced for the first time, 2Q places it in the “cold” A1 queue, a cold queue managed as FIFO (first-in first-out) queue [4]. If the page is accessed again while in the cold A1 queue, then it’s probably a hot page and is promoted to “hot” Am queue, a hot queue managed as a LRU (least-recently-used) queue [4]. If the page is not accessed while in the cold queue, then it’s probably a cold page and iseventually removed from the cold queue [4]. 2Q deals with the problem of correlated references by further dividing the A1 queue into A1in (of maximum size Kin) and A1out (of maximum size Kout) queues where Kin and Kout are tuning parameters [4]. The A1in queue keeps track of newly referenced pages whereas A1out queue keeps track of pages that have high long-term access rates [4]. [say at this point how you set these parameters]

Pseudo code of 2Q algorithm as described in [4]:
On Accessing a Page X:
begin
 		if X is in Am then
 		Move X to the head of Am
 		else if X is in A1out then
 		reclaimfor(X)
 		Add X to the head of Am
 		else if X is in A1in
 	 	//do nothing
 		 else
 		reclaimfor(X)
 		Add X to the head of A1in
 		end if
end
__

//If there is space, we give it to X.
//If there is no space, we free a page slot to make room for large page X
reclaimfor(page X)
begin
 	 	if there are free page slots then
 		 put X into a free page slot
 		else if (|A1in|>= Kin)
 		page out the tail of A1in, call it Y
 		add identifier of Y to the head of A1out
 		 if (|A1out|>Kout)
 			remove identifier of Z from the tail of A1out
 		end if
 		put X into the reclaimed page slot
 		 else [Ashish: Why would you page out from Am in this case? Doesn’t this case correspond to |A1in| < Kin?]
 		page out the tail of Am, call it Y
 		 //do not put it on A1out, it has not been accessed for a while
 		put X into the reclaimed page slot
 		end if
end

4. CLOCK-Pro Page Replacement Algorithm
In [5], S. Jiang, F. Chen and X. Zhang describes reuse distance as the period of time in terms of the number of other distinct pages accessed since its last access. CLOCK-Pro uses reuse distance to categorize a page as either a hot page or a cold page [5]. A page is categorized as a hot page if it has a small reuse distance or as a cold page if it has large reuse distance [5]. CLOCK-Pro algorithm maintains a single circular list where all hot and cold pages are placed in the order of their accesses [5]. Hot pages are placed at the tail of the list whereas cold pages are placed at the head of the list [5].
Once a cold page is added to the list, it’s assigned a test period so that it gets a fair chance to compete with other hot pages in the list [5]. [How is this parameter set?] If the cold page is re-accessed during its test period, it turns into a hot page [5]. However, if the cold page is not re-accessed during its test period, it is removed from the list [5]. More about CLOCK-Pro algorithm i.e. its data structure search for the victim page and adaptive version of the algorithm is explained in greater details in [5].

5. Experiments
1.
2.
3.
4.
5.
1.
2.
3.
4.
5.
5.1. Simulation on file I/O traces
The file I/O traces used in this section are same as used for evaluation of the CLOCK-Pro algorithm in [5]. Quoting from [5]:
1. cpp is a GNU C compiler pre-processor trace and is a member of the probabilistic pattern group.
2. multi2 is a member of the mixed pattern group and is obtained by executing three workloads, namely, cs, cpp and postgres, together.
3. sprite is a Sprite network file system trace which contains requests to a file server from client workstations for a two-day period. It’s a member of temporally-clustered pattern group.
4. glimpse is a text information utility trace and is a member of the loop pattern group.

For workload cpp, the performance of 2Q algorithm is comparable to that ofand CLOCK-Pro algorithm are comparable (see Table 1). Clock-PRO definitely performs significantly better than 2Q for workloads multi2 and glimpse (see Table 2 and Table 4). However, for the sprite workload, the hit ratioe of the 2Q algorithm is remarkably higher than CLOCK-Pro algorithm (see Table 3). [In all experiments, round off all results to three significant digits]

	Cache Size
	2Q (Kin = 25% Kout=65%)
	CLOCK-Pro
	OPT

	100
	.79009616
	.771
	.8251354

	500
	.86116946
	.860
	.8648171

	1000
	.8648171
	.864
	.8648171

	2000
	.8648171
	.865
	.8648171

	3000
	.8648171
	.865
	.8648171

	4000
	.8648171
	.865
	.8648171

	5000
	.8648171
	.865
	.8648171

Table 1: Hit Rate of 2Q, CLOCK-Pro and OPT algorithms on workload cpp.

	Cache Size
	2Q (Kin = 25% Kout=65%)
	CLOCK-Pro
	OPT

	100
	.2587511
	.266
	.3538824

	500
	.3922694
	.495
	.53604954

	1000
	.50640416
	.567
	.6215651

	2000
	.6884573
	.702
	.74645585

	3000
	.7666375
	.778
	.7839687

	4000
	.7839687
	.782
	.7839687

	5000
	.7839687
	.784
	.7839687

	6000
	.7839687
	.784
	.7839687

	7000
	.7839687
	.784
	.7839687

	8000
	.7839687
	.784
	.7839687

	10000
	.7839687
	.784
	.7839687

	20000
	.7839687
	.784
	.7839687

Table 2: Hit Rate of 2Q, CLOCK-Pro and OPT algorithms on workload multi2.

	Cache Size
	2Q (Kin = 25% Kout=65%)
	CLOCK-Pro
	OPT

	100
	.36642885
	.280
	.50797784

	500
	.8571748
	.768
	.8788322

	1000
	.9239156
	.884
	.93238604

	2000
	.9422445
	.923
	.9457969

	3000
	.9462148
	.932
	.94719994

	4000
	.94719994
	.937
	.94719994

	5000
	.94719994
	.941
	.94719994

	6000
	.94719994
	.943
	.94719994

	7000
	.94719994
	.947
	.94719994

	8000
	.94719994
	.947
	.94719994

	10000
	.94719994
	.947
	.94719994

	20000
	.94719994
	.947
	.94719994

Table 3: Hit Rate of 2Q, CLOCK-Pro and OPT algorithms on workload sprite.

	Cache Size
	2Q (Kin = 25% Kout=65%)
	CLOCK-Pro
	OPT

	100
	.009142287
	.058
	.07662899

	500
	.012134309
	.319
	.34258643

	1000
	.4609375
	.501
	.53125

	2000
	.5794548
	.580
	.5794548

	3000
	.5794548
	.580
	.5794548

	4000
	.5794548
	.580
	.5794548

	5000
	.5794548
	.580
	.5794548

Table 4: Hit Rate of 2Q, CLOCK-Pro and OPT algorithms on workload glimpse.

5.2 Simulation on an Online Transaction Processing (OLTP) workload
The I/O traces used in this section are obtained from [5]. These traces are from OLTP applications running at two large financial institutions as mentioned in [5]. We had to tweak a little bit with the original implementation of CLOCK-PRO algorithm provided by Dr. Song Jiang, for successfully executingin order to execute it successfully on Finanical1.spc. We had experienced segmentation fault errora upon running CLOCK-Pro algorithm on the Financial.spc trace and had to change the page table implementation from array to map in the original source code. We recorded a slightly better performance of the 2Q algorithm over compared with the CLOCK-Pro algorithm for OLTP workload (see Table 5 and Table 6).

	Cache Size
	2Q (Kin = 30% Kout=60%)
	CLOCK-Pro
	OPT

	50000
	.672292
	.640
	

	100000
	.7155877
	.674
	

	500000
	.86674607
	.839
	.86674607

	1000000
	.86674607
	.867
	.86674607

	2000000
	.86674607
	.867
	.86674607

	3000000
	.86674607
	.867
	.86674607

Table 5: Hit Rate of 2Q, CLOCK-Pro and OPT algorithms on workload Financial1.spc.

	Cache Size
	2Q (Kin = 30% Kout=60%)
	CLOCK-Pro
	OPT

	50000
	.8823328
	.859
	

	100000
	.90932566
	.896
	

	500000
	.9199631
	.920
	.9199631

	1000000
	.9199631
	.920
	.9199631

	2000000
	.9199631
	.920
	.9199631

	3000000
	.9199631
	.920
	.9199631

Table 6: Hit Rate of 2Q, CLOCK-Pro and OPT algorithms on workload Financial2.spc.

6. Sensitivity of Parameters
6.1 2Q
Choosing a value for Kin and Kout parameter for 2Q algorithm is essentially a tuning task. We experimented with different values of Kin and Kout parameters (see Table 7, Table 8, Table 9 and Table 10) and noted that Kin = 25% and Kout=65% of cache size did reasonably well for cpp, multi2, glimpse and sprite traces.

	Cache Size
	2Q
(Kin = 30%
Kout=60%)
	2Q
(Kin = 20%
Kout=60%)
	2Q
(Kin = 25%
Kout=60%)
	2Q
(Kin = 25%
Kout=65%)
	2Q
(Kin = 30%
Kout=65%)

	100
	.7831325
	.7947386
	.7878855
	.79009616
	.78468

	500
	.8610589
	.8610589
	.8610589
	.86116946
	.86116946

	1000
	.8648171
	.8648171
	.8648171
	.8648171
	.8648171

	2000
	.8648171
	.8648171
	.8648171
	.8648171
	.8648171

	3000
	.8648171
	.8648171
	.8648171
	.8648171
	.8648171

	4000
	.8648171
	.8648171
	.8648171
	.8648171
	.8648171

	5000
	.8648171
	.8648171
	.8648171
	.8648171
	.8648171

Table 7: Hit Rate of 2Q algorithm with different values of Kin and Kout on cpp workload.

	Cache Size
	2Q
(Kin = 30%
Kout=60%)
	2Q
(Kin = 20%
Kout=60%)
	2Q
(Kin = 25%
Kout=60%)
	2Q
(Kin = 25%
Kout=65%)
	2Q
(Kin = 30%
Kout=65%)

	100
	.25198585
	.25719282
	.2543423
	.2587511
	.2587131

	500
	.39147124
	.39147124
	.39147124
	.3922694
	.3922694

	1000
	.50572
	.50572
	.50572
	.50640416
	.50640416

	2000
	.6780814
	.6998974
	.6884573
	.6884573
	.67815745

	3000
	.7609365
	.7731747
	.7666375
	.7666375
	.7609365

	4000
	.7839687
	.7839687
	.7839687
	.7839687
	.7839687

	5000
	.7839687
	.7839687
	.7839687
	.7839687
	.7839687

	6000
	.7839687
	.7839687
	.7839687
	.7839687
	.7839687

	7000
	.7839687
	.7839687
	.7839687
	.7839687
	.7839687

	8000
	.7839687
	.7839687
	.7839687
	.7839687
	.7839687

	10000
	.7839687
	.7839687
	.7839687
	.7839687
	.7839687

	20000
	.7839687
	.7839687
	.7839687
	.7839687
	.7839687

Table 8: Hit Rate of 2Q algorithm with different values of Kin and Kout parameters on multi2 workload.

	Cache Size
	2Q
(Kin = 30%
Kout=60%)
	2Q
(Kin = 20%
Kout=60%)
	2Q
(Kin = 25%
Kout=60%)
	2Q
(Kin = 25%
Kout=65%)
	2Q
(Kin = 30%
Kout=65%)

	100
	.35724947
	.36425716
	.36110035
	.36642885
	.36315262

	500
	.8542867
	.8570331
	.8562793
	.8571748
	.8551897

	1000
	.92252755
	.9236171
	.9229753
	.9239156
	.92367685

	2000
	.9420953
	.9422371
	.9421177
	.9422445
	.9422371

	3000
	.94475955
	.94475955
	.94475955
	.9462148
	.9462148

	4000
	.94719994
	.94719994
	.94719994
	.94719994
	.94719994

	5000
	.94719994
	.94719994
	.94719994
	.94719994
	.94719994

	6000
	.94719994
	.94719994
	.94719994
	.94719994
	.94719994

	7000
	.94719994
	.94719994
	.94719994
	.94719994
	.94719994

	8000
	.94719994
	.94719994
	.94719994
	.94719994
	.94719994

	10000
	.94719994
	.94719994
	.94719994
	.94719994
	.94719994

	20000
	.94719994
	.94719994
	.94719994
	.94719994
	.94719994

Table 9: Hit Rate of 2Q algorithm with different values of Kin and Kout parameters on sprite workload.

	Cache Size
	2Q
(Kin = 30%
Kout=60%)
	2Q
(Kin = 20%
Kout=60%)
	2Q
(Kin = 25%
Kout=60%)
	2Q
(Kin = 25%
Kout=65%)
	2Q
(Kin = 30%
Kout=65%)

	100
	.009142287
	.009142287
	.009142287
	.009142287
	.009142287

	500
	.012134309
	.012134039
	.012134309
	.012134309
	.012134309

	1000
	.44431517
	.47755983
	.4609375
	.4609375
	.44431517

	2000
	.5794548
	.5794548
	.5794548
	.5794548
	.5794548

	3000
	.5794548
	.5794548
	.5794548
	.5794548
	.5794548

	4000
	.5794548
	.5794548
	.5794548
	.5794548
	.5794548

	5000
	.5794548
	.5794548
	.5794548
	.5794548
	.5794548

Table 10: Hit Rate of 2Q algorithm with different values of Kin and Kout parameters on glimpse workload.

[Could you see whether there is one setting for Kin/Kout for all workloads that worked well?]

6.2 CLOCK-Pro
CLOCK-Pro adapts to the different workloads and doesn’t require predetermined parameters [5]. [What about its cold time?]

7. Conclusion
CLOCK-Pro and 2Q give comparable performance in all cases of interest. The differences are rarely more than 1 or 2%. Based on these experiments, we would recommend the use of whichever algorithm is easier to implement. It would be difficult to compare these two algorithms and conclude one algorithm as better than other, as results varied for different access patterns and workloads. There was no clear winner in our experiments. However, we would like to stress on the point that 2Q algorithm is not at all a bad choice for database buffer management and is at least comparable with CLOCK-PRO algorithm.

8. Acknowledgements
Many thanks to Dr. Song Jiang for providing us source code for CLOCK-Pro algorithm and memory traces used in [5]. We are also thankful to Laboratory of Advanced Systems Software, University of Massachusetts, Amherst, for making OLTP traces available on the web [6] courtesy of Ken Bates from HP, Bruce McNutt from IBM and the Storage Performance Council.

9. References
[1] J. M. Hellerstein, M. Stonebraker and J. Hamilton. Architecture of Database System.
 [2] W. Effelsberg and T. Haerder. Principles of Database Buffer Management.
	[3] OPT, http://en.wikipedia.org/wiki/Page_replacement_algorithm
[4] T. Johnson and D. Shasha. 2Q: A Low Overhead High Performance Buffer
 Management Replacement Algorithm. In Proc. of VLDB’94, 1994, pp 439-450.
[5] S. Jiang, F. Chen and X. Zhang. CLOCK-Pro: An Effective Improvement of the Clock
 Replacement. In Proc. of USENIX’05, April 2005.
[6] UMASSTraceRepository, http://traces.cs.umass.edu/index.php/Storage/Storage

