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Abstract  

Background 

While progresses have been made in mapping transcriptional regulatory networks, 

posttranscriptional regulatory roles just begin to be uncovered, which has arrested 

much attention due to the discovery of miRNAs. Here we demonstrated a 

combinatorial approach to incorporate transcriptional and posttranscriptional 

regulatory sequences with gene expression profiles to determine their probabilistic 

dependencies. 

Results 

We applied the proposed method to microarray time course gene expression profiles 

and could correctly predict expression patterns for more than 50% of 1,132 genes, 

based on the sequence motifs adopted in the network models, which was statistically 

significant. Our study suggested that the contribution of miRNA regulation towards 

gene expression in plants may be more restricted than that of transcription factors; 

however, miRNAs might confer additional layers of robustness on gene regulation 

networks. The programs written in C++ and PERL implementing methods in this 

work are available for download from our supplemental data web page. 

Conclusions 

In this study we demonstrated a combinatorial approach to incorporate miRNA target 

motifs (miRNA-mediated posttranscriptional regulatory sites) and TFBSs 

(transcription factor binding sites) with gene expression profiles to reconstruct the 

regulatory networks. The proposed approach may facilitate the incorporation of 

diverse sources with limited prior knowledge.  



 - 3 - 

Background 

Transcription factors (TFs) regulate gene expression by binding selectively to DNA 

sequences in promoters, and genes regulated by the same TFs have been assumed to 

share the common binding sites in their promoter regions and exhibit similar 

expression patterns [1]. Numerous experimental and computational studies [2] have 

been done on locating transcriptional regulator DNA binding sequences and 

understanding their working mechanisms. These binding motifs can be used as 

building blocks of gene regulatory networks and several approaches were developed 

to identify how a set of cis-regulatory elements in a gene’s promoter region governed 

its behavior and explained the observed expression profiles [3-5]. Using different 

approaches, Segal et al. [3] and Beer and Tavazoie [4] both showed that a substantial 

fraction of yeast gene expression profiles could be explained in terms of the 

combination of cis-regulatory elements. However, a limitation of such approaches is 

that many genes are posttranscriptionally regulated [3]. The progresses have been 

made in mapping transcriptional regulatory networks in recent years, whereas 

posttranscriptional regulatory roles just begin to be uncovered [6, 7]. 

Posttranscriptional regulation through RNA-RNA interaction has arrested much 

attention due to the discovery of microRNAs (miRNAs). 

miRNAs regulate gene expression by inducing mRNA cleavage or translational 

repression of their targets [8]. Plant miRNAs are usually perfectly complementary to 

their targets and cause the cleavage of their targets by RNA-induced silencing 

complex (RISC), whereas in animals targets with weaker complementarities appear to 

have decreased translational efficacy [9]. However, the role of miRNA in regulatory 

networks needs to be further explored [7]. To address this need, we introduced a 
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combinatorial approach to determine the transcriptional and posttranscriptional 

regulatory elements based on gene expression profiles.  

Various plant growth and development processes are critically influenced by 

light [10-12]. Wild type Arabidopsis seedling development follows two patterns, 

etiolation in darkness and photomorphogenesis in the light [13]. COP/DET/FUS 

(CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETIOLATED/FUSCA) is a class of 

genes which were identified as downstream signalling components of all 

photoreceptors [14-16]. Mutation in COP/DET/FUS causes constitutive 

photomorphogenic development even in the dark [14, 17]. One important light-

signalling component involved in plant light responses is COP1 [14], which regulates 

not only photomorphogenesis but also other developmental processes. The 

constitutive photomorphogenic phenotype of cop1 mutation indicates that COP1 acts 

as a negative regulator of photomorphogenesis [13, 18]. 

We applied this approach to a CONSTITUTIVE PHOTOMORPHOGENIC1 

(COP1) mutant time course microarray dataset to detect sequence elements that 

selectively bind to TFs and miRNAs in the process. Inspired by Beer and Tavazoie 

[4], we used Bayesian network -- a probabilistic model to integrate gene expression 

profiles, transcription factor binding sites (TFBSs) as well as miRNA target motifs to 

deduce the combination of sequence elements that modulate gene expression, and we 

tried to explain the observed gene expression profiles in terms of the adopted motifs. 

Firstly, we conducted a genome-wide screening to detect potential miRNA target 

motifs in Arabidopsis based on an inhomogeneous Hidden Markov model (HMM), 

and cross-species conservation as well as minimum binding energy of miRNA/mRNA 

duplex were used as additional filters to reduce the rate of false positives. Secondly, 

genes in the cop1 mutant time course microarray dataset were clustered into 12 
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expression patterns and overrepresented sequence elements in the upstream of the 

genes belonged to the same cluster were detected using AlignACE [19]. Thirdly, 

Bayesian network strategy was applied to selecting these motifs in both upstream 

sequences and transcript sequences that were most related to the gene expression 

patterns. Lastly, we measured the degree to which gene expression could be 

determined merely by these adopted regulatory motifs. Figure 1 illustrated the flow 

diagram of the approach. 
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Results 

miRNA target motifs in Arabidopsis 

Various algorithms developed to predict plant miRNA targets are on the same basis 

that miRNAs and their targets are perfectly complementary, and most of the 

algorithms predict miRNA targets through detecting transcripts that have less than or 

equal to 4 mismatches to miRNAs [20]. However, there are natural targets with 5 

mismatches [21], which are not able to be found by these algorithms. Moreover, we 

believe that sequences with the same number of mismatches to a miRNA might not 

have the same probability to be cleaved by the miRNA owing to the mechanism of 

RISC. In several cases, particular miRNA-target mismatches are conserved through 

the evolutionary distance that separates Arabidopsis and rice [22], suggesting that 

certain mismatches might be under positive selective pressure rather than merely 

being tolerated. Furthermore, properly placed mismatches might improve the enzyme 

turnover rate [22]. 

We chose HMM because of its capability of capturing the position specific 

information about particular matches/mismatches. In spite of the variable miRNA 

sequences, the complementarities between miRNA-target duplex might follow some 

rules according to the RISC mechanisms, and we believed that the HMM could be 

used to find these hidden rules by learning from a training set of potential miRNA 

targets of only 19 mature miRNAs contained in miRBase 3.0, a three years old 

release, and in this way we also assessed the ability of our method to extrapolate from 

a limited prior knowledge [23]. To obtain the training set, we set the maximum 

number of mismatches tolerated at 4, and the direct search detected 223 genes whose 

mRNAs had the complementary sites with at least one of the 19 miRNAs. The 223 

miRNA-target candidates were used as training data. The Baum-Welch algorithm 
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estimated the transition and emission probabilities and the optimal state chains of each 

of the miRNA-mRNA pair were computed using Viterbi algorithm, which represented 

possible miRNA-target duplexes that could be recognized by RISC and cleaved by its 

Argonaute component. 

Totally 103 non–redundant optimal state chains were produced by using Viterbi 

algorithm, which were much less than the number of possible chains that randomly 

allowed up to 4 mismatches for a 20mer mRNA. After scanning the genome, we 

found about 150,299 potential miRNA target motifs for all the 212 miRNAs in the 

miRBase newest release (Release 12.0). This result covered almost all the 

experimentally validated miRNA targets (90/91) in Arabidopsis [20, 21, 24]. To 

reduce the false positive rate of our HMM predictions we used the cross-species 

conservation and minimum binding energy of miRNA/mRNA duplex to do two rounds 

of filtering. There are 122, 844 HMM predictions passed through the first round of 

selection, and among them 30,451 passed through the second round of selection. 

Almost all of the 91 experimentally validated miRNA targets (90/91) passed through 

the first round of selection, and among them 75 passed through the second round of 

selection. The majority of the 91 experimentally validated miRNA targets (58/91) 

were the targets for those miRNAs that were not included in the training set. 

We did simulation study by random shuffling of miRNA sequences to test 

whether our method could distinguish a miRNA from its shuffled version during the 

detecting process. Two kinds of randomly shuffled sequences were generated, i.e. 

monoshuffled and dishuffled sequences. The monoshuffling method generated a truly 

permuted random sequence while the dishuffling method further made the count of 

each dinucleotide the same as that of miRNAs. Fifty cohorts of randomly shuffled 

sequences were generated.  The noise to signal ratio (the average number of predicted 
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targets in 50 cohorts of randomly shuffled sequences versus the number of targets 

detected for authentic miRNAs) was 0.49 (monoshuffling) and 0.50 (dishuffling), 

respectively. The detailed simulation results are available in our supplemental web 

page (http://vhp.ntu.edu.sg/cop1/). 

Discovery of transcriptional and posttranscriptional regulatory motifs in 

cop1 mutant time course microarray data 

In the cop1 mutant time course experiment, there were in total 10 time points, i.e. 0
th 

hour, 12
th

 hour, 24
th

 hour, 36
th

 hour, 48
th

 hour, 60
th 

hour, 72
nd 

hour, 4
th

 day, 5
th

 day and 

6
th 

day. The log expression ratio reflected the difference between the expression level 

of cop1 mutant and that of wildtype for each gene. 

Maximal log likelihood value obtained by BIC showed that the optimal number 

of clusters was 12, so we divided the 5,689 genes into 12 clusters using GQLCluster 

[25]. Each cluster contained 755, 157, 400, 509, 275, 638, 725, 374, 658, 422, 186 

and 590 genes, respectively. The mean expression profiles were calculated for each 

cluster (Figure 2), and the 12 gene clusters and their mean expression profiles are 

available in our supplemental data web page (http://vhp.ntu.edu.sg/cop1/index.html). 

Sequences that were 3000 bp upstream of transcription start sites (TSSs) were 

retrieved for each gene and TFBSs were detected using AlignACE for the genes 

belonged to the same cluster. The computer program ScanACE 

(http://arep.med.harvard.edu/mrnadata/mrnasoft.html) with default parameters was 

used to identify the TFBSs in the upstream region of each gene. The predicted TFBSs 

for each cluster are available in our supplemental data web page. We also added 15 

known hexamer motifs described in Gao et al. [26] to the TFBS dataset. 
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The TFBSs and miRNA target motifs were fed to the Bayesian network model 

and the models weighted sequence motifs according to their contribution to the 

expression profiles. There had been no evidence that the TF binding to a gene’s 

upstream region could also posttranscriptionally affect its cleavage by miRNA and 

vice versa, therefore the TFBSs and miRNA target motifs were treated independently 

in the network construction. No interaction is allowed between two motifs of different 

kinds. For TFBSs, their distances to TSSs, their orientations, copy numbers and the 

interaction between any two adopted TFBSs are all taken into account. Our 

microarray time course experiment was not specially designed to test miRNA targets 

expression, so we gave upstream motifs the priority in the network construction. 

Therefore, a network might only have upstream motif nodes without any miRNA 

target nodes, but could not only have miRNA target nodes instead. About 80% of the 

genes (4,557) were used to train the Bayesian network model and the rest 20% genes 

(1,132) were used to estimate the proportion of the genes whose expression patterns 

could be correctly predicted by merely the adopted transcriptional and 

posttranscriptional regulatory motifs in the networks.  

The average number of nodes was 7 for the 12 networks, and in average 3 were 

upstream motif nodes and 4 were miRNA target nodes (listed in supplemental Tables 

S1 and S2). The most frequent constraints added to each TFBS node was its distance 

to TSS. Two known upstream motif nodes had been added, respectively, to two 

networks, namely MYB1At to network 8 and I-box to network 12. Totally 48 miRNA 

target nodes were adopted by the 12 networks.  

Predicting gene expression patterns  

We used the upstream motif nodes and the miRNA target nodes adopted in the 

Bayesian network model to predict gene expression patterns. Each of the 1,132 genes 
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was assigned to the respective network with the highest probability ),|1( cc SDvp = . 

Some expression patterns were quite similar; hence we calculated the correlation 

coefficient of the mean expression pattern between any two of the 12 clusters. If two 

expression patterns have a correlation coefficient greater than 0.9, they are regarded 

as overlapped expression patterns. We regarded overlapped expression patterns as in a 

single cluster, in this way we classified the 12 expression patterns into 4 qualitative 

distinguished super-clusters (Table 1). A gene assigned to  the correct super-cluster 

would be regarded as correctly predicted [4]. 

More than 50% genes (569/1132) were correctly assigned. We did simulation 

study by randomly assigning the 1,132 genes to the 4 super-clusters for 100,000 

times. The number of correctly assigned genes was 329 in average, and the P-value of 

correctly assigning 569 genes was less than 1e-05. Moreover, 552 out of the 569 

genes could still be correctly assigned without miRNA nodes and the introducing of 

miRNA nodes could further correctly assigned 17 genes. We retrieved the functional 

annotation of these 17 genes and found that two genes (At5g63460 and At5g67300 ) 

have the annotation term “DNA or RNA binding” in the GO [27]. Furthermore, we 

made a 5-fold cross validation test and the average number of correctly assigned 

genes was 530. 
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Discussion 

Transcriptional and posttranscriptional regulatory networks 

We applied our method to shorter promoter regions; say 1000 upstream to 500 

downstream of each TSS. And the accuracy of the expression pattern prediction with (-

1000, 500) region is lower than that of (-3000, 0) region. Only 486 genes could be 

correctly assigned to its respective expression pattern; and without the integration of 

miRNA nodes, 474 genes could be correctly assigned merely based on TFBSs nodes. 

Most genomic studies of gene expression regulation focus on transcriptional 

rather than on posttranscriptional regulation. Based on a model in which upstream 

motifs contribute additively to the log-expression level of a gene, Bussemaker 

presented a computational method [28] for discovering cis-regulatory elements that 

circumvented the need to cluster genes based on their profiles. Beer and Tavazoie [4] 

correctly predicted 70% of the gene expression patterns by use of Bayesian network 

only based on upstream motifs. Li et al. developed a promoter classification method 

using a Relevance Vector Machine (RVM) and Bayesian statistical principles to 

identify discriminatory features in the promoter sequences of genes that could classify 

transcriptional responses and they correctly predicted 70% genes as being up- or 

down-regulated [29], based on a small set of discriminative promoter motifs. 

In the meanwhile, Foat et al. identified functional 3’ UTR motifs (including 

miRNA target sites) that best correlated with the observed changes in mRNA levels 

[30, 31]. Sood et al. used computational methods to explore the effects of endogenous 

miRNA expression on endogenous steady-state mRNA levels [32]. In their model, 

changes in mRNA levels of a given gene (measured by the microarray experiment) 

are written as a sum over contributions from all sequence motifs in the 3’ UTR of that 
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gene, which could explain changes in mRNA levels for 50% genes. In order to 

understand the importance of sRNAs in gene regulation, Levine et al. [6] studied 

examples from two distinct classes of bacterial sRNAs based on a quantitative 

approach combining experiments and theory. Their results suggested that sRNA 

provides a distinct mode of gene regulation from that of protein-mediated one. 

Although Beer and Tavazoie as well as Rajewsky [4, 31] all suggested the 

integration of posttranscriptional and transcriptional motifs in the future studies of 

gene regulatory networks, respectively, none of the aforementioned groups had 

correlated both transcriptional and posttranscriptional regulatory elements together 

with the gene expression data. Recently Hobert  [7] briefly reviewed the principles of 

TF and miRNA working mechanisms and how they control gene expression. 

Plant miRNA target prediction 

In the Rhoades et al.’s study [33], random permutation was used to evaluate the 

performance of the proposed method of plant miRNA target prediction. Annotated 

Arabidopsis mRNAs were searched for targets for 16 Arabidopsis miRNAs. Identical 

searches with 10 cohorts of 16 randomized miRNAs were also performed. When 

constrained to 0-4 mismatches, 157 targets were predicted for 16 miRNAs, whereas in 

average 55.4 targets were predicted for the cohorts of random sequences, which gave 

a noise to signal ratio of 0.35 (55.4/157). When the number of mismatches was 

exactly 4 in their prediction method, the ratio became 0.53 (51/96). In our simulation 

study using two different shuffling methods (see Figure S1 in our supplemental web 

page), the noise to signal ratio (the average number of predicted targets in 50 cohorts 

of randomly shuffled sequences versus the number of targets detected for authentic 

miRNAs) were 0.49 (monoshuffling) and 0.50 (dishuffling), respectively.  
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If the number of mismatches allowed in Rhoades et al.’s method was 0 to 4, our 

method may generate more false positives (0.50 or 0.49 versus 0.35), which might be 

due to the fact that our HMM method allows for more mismatches. However, when 

the number of mismatches was fixed at 4 in Rhoades et al.’s method, the noise to 

signal ratio increased to 0.53. Our proposed HMM method of plant miRNA target 

prediction allows for more than four mismatches in the target sequences, however, we 

proposed this method here as an alternative instead of a replacement of the published 

method, since the HMM method may increase the number of false positive 

predictions due to the allowance of more than 4 mismatches. 

Contribution of miRNAs in gene regulation networks 

In our study, 3% of the 569 genes could only be correctly assigned after introducing 

miRNA nodes, which might suggest that the consequence of miRNA-mediated 

posttranscriptional regulation was marginal in our time course expression profiles 

though miRNA is considered as one of the most important posttranscriptional gene 

regulators. This might result from a possible bias in the predictive power of TFBS 

since the motif finding was done for each fixed cluster. In view of this, we did a 

reference test using only the aforementioned 15 known hexamer motifs [26] and 

miRNA target motifs. Using the 15 known hexamer motifs, we could only correctly 

assign 296 genes, which was even less than that from random assignment (P-value < 

0.98) and this suggested that the observed expression profiles could not be explained 

solely by the combination of the 15 known motifs. After adding miRNA target nodes, 

we could correctly assign 509 genes (P-value < 1e-05). The result suggested that 

miRNAs might confer additional layers of robustness on gene regulation networks. 

Exploration of miRNA regulatory mechanism together with known transcriptional 
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regulatory interactions and other functional genomics data might help to further 

elucidate the function of miRNAs at a system-wide level [7, 31]. 

The 213 genes, which could only be correctly assigned once miRNA nodes were 

adopted, might have functions related to miRNA regulation mechanism. We retrieved 

the functional annotation of these 213 genes and found that three of them, namely 

At5g12840, At5g60120 and At5g43780 are experimentally validated miRNA targets. 

Furthermore, we grouped these genes based on their GO annotations (Table 2). It is 

not surprising to find that both functional annotation terms “DNA or RNA binding” 

and “transcriptional factor activity” are enriched as it is well-known that plant 

miRNAs are biased toward to target TFs and other regulatory genes [24]. Functional 

annotation of “response to abiotic or biotic stimulus” and “response to stress” are also 

significantly enriched (the corrected  P-values < 1e-10), which is consistent with the 

fact that miRNAs play important roles in plant responses to environmental stresses as 

well as in development and genome maintenance [34]. 

Conclusion 

Aiming at integrating transcription factor binding motifs and posttranscriptional 

regulatory motifs toward a better quantitative modeling of changes in mRNA level, 

we proposed a probabilistic approach to determine the context-dependent role of 

genomic TF binding motifs together with miRNA binding motifs in transcriptional 

and posttranscriptional regulation. Regardless the simple strategy employed, our 

method may provide an incomplete or coarse-grained portrait of the underlying 

transcriptional and posttranscriptional regulatory network. Consequently, our method 

facilitated the incorporation of diverse sources with limited prior knowledge. The 

relationship between sequence motifs and gene expression profiles could be 

investigated more precisely from datasets that observe expression profiles of 
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miRNAs, mRNAs and proteins from the same samples simultaneously. Other 

posttranscriptional mechanisms, such as alternative splicing, may also be taken into 

considerations in the further network construction. 
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Methods 

Dataset 

The 212 Arabidopsis mature miRNA sequences were downloaded from miRBase 

(Release 12.0) released in September 2008 [35]. The 19 miRNA sequences in Release 

3.0 were used to generate the training set of potential miRNA targets for the HMM of 

miRNA target prediction.  

The entire intergenic region or 3000 bp, whichever was shorter, in the upstream 

of the TSS for each Arabidopsis gene was retrieved from TAIR (The Arabidopsis 

Information Resource) released in Mar 2006, and sequences of all the Arabidopsis 

transcripts were retrieved from the same site. GO annotation file of Arabidopsis genes 

was also downloaded from TAIR released in April 2007. 

The cop1 mutant time course microarray dataset was kindly provided by Prof 

Deng Xingwang’s lab in Yale Department of Biology. Both wildtype (reference 

sample) and cop1 mutant (test sample) were grown at 30 degree for a 10 time periods 

(0hrs, 12hrs, 24hrs, 36hrs, 48hrs, 60hrs, 72hrs, 4days, 5days and 6days) before 

transferred to 22 degree. The protocols for hybridization to the Arabidopsis 

microarray,
 
microarray slide washing, and scanning were as described previously

 
in 

Ma et al. [36]. Microarray spot intensity signals were acquired by using Axon 

GenePix Pro 3.0 software package (Axon Instruments Inc). The ratios were the 

expression intensities of cop1 mutant divided by that of wild type, respectively. The 

microarray time course gene expression data can be downloaded from 

http://vhp.ntu.edu.sg/cop1/index.html. Average normalized log-transformed 

expression ratios of 5,689 genes were subjected to clustering analysis.  
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Clustering and motif finding 

To take into account the temporal relationship between time points, a HMM based 

approach, GQLCluster [37], was chosen for clustering analysis. The related software 

was downloaded from: http://ghmm.org/gql. BIC (Bayesian Information Criterion) 

was used to determine the ‘optimal’ number of clusters for the dataset, and the 5,689 

genes were divided into 12 clusters. AlignACE [38] was then used to detect 

overrepresented sequence motifs (TFBS candidates) in the 3000 bp upstream of the 

genes in the same cluster. The upstream sequences of all the genes were scanned 

using ScanACE for the motifs found by AlignACE [4].  

Potential miRNA targets prediction using HMM 

In our HMM model, hidden states are defined over the binary space },{ FT , where T 

means a true matching state, namely an endogenous miRNA needs to match to its 

target on the specific site. A matching state could generate A-U, U-A, G-C or C-G as 

an emission symbol. F means a false matching state, namely a miRNA dos not need 

to match to its target on this specific site. A false matching state could emit one of the 

remaining combinations except the aforementioned four symbols (Figure 3). Two 

types of probabilities need to be estimated: transition probabilities and emission 

probabilities. These probabilities are position specific in the inhomogeneous HMM. 

The parameters were estimated from a training set of the potential targets with up to 4 

mismatches to one of the 19 miRNAs. Baum-Welch algorithm was used to update the 

parameters in the model until it reached (local) maximal log likelihood [39]. 

Convergence of the negative log-likelihood was checked up to a precision of 1e-12.  

The Viterbi algorithm was used to find the most probable (optimal) state 

transition paths in the HMM [39]. We got 103 optimal paths in total after removing 

the redundant ones. The experimentally verified miRNAs and their optimal state paths 
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obtained above were then used to scan for miRNA target motifs in the Arabidopsis 

genome. 

The HMM was implemented as a Perl script and a genome-scale scanning for 

miRNA targets took about 10 hrs on a UNIX work station with 2GHz processor and 

2G memory. 

We  used the cross-species conservation and minimum binding energy of 

miRNA/mRNA duplex as two additional filters to reduce the false positives in our 

HMM prediction.  If a predicted Arabidopsis miRNA target can be mapped to a rice 

cDNA with the matched region longer than 15 bps and the identity higher than 80%, we 

keep this predicted target for further analysis. In the second round of filtering, we used 

RNAcofold [40] to calculate the minimum binding energy of miRNA/target duplex, and 

we only keep a predicted target when its minimum binding energy is less than -15 

kcal/mol. 

Building Bayesian network 

We followed the approach established by Beer and Tavazoie [4] and considered two 

layer networks with parent nodes representing sequence motifs (TFBS or miRNA 

target motifs) and descendent nodes representing gene expression patterns. Edges are 

directed and connected only from sequence elements to expression profiles. The 

network structure could be described with a 0-1 matrix, with M rows, as many as 

genes under consideration, and N columns, where N is the number of nodes [41].  

The descendent nodes are gene expression pattern
cv , where c=1,2,….,C, and C 

is the total number of clusters (expression patterns). The parent nodes are TFBSs with 

specific constraints or miRNA target motifs. The constraint of a TFBS is its 

orientation, its distance to TSS, and the presence or absence of other TFBSs. If two or 
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more TFBSs are present, the interactive constraints are the distance between them, 

and/or their order relative to TSS, respectively. Let ),...,,( 21 Kσσσω = be the 

sequence constraints. If a constraint n is satisfied for a particular gene, then we 

have 1=nσ , otherwise 0=nσ . The final networks encode the distribution 

of )...,,|( 21 KcvP σσσ , namely the probability of the gene being a member ( 1=cv ) or 

not being a member ( 0=cv ) of the cluster c , given the states of the sequence 

constraintsω . About 80% of the total genes were used as training set and the rest 20% 

genes were used as testing set [4]. 

From Bayes’ theorem, we have: 

)(/)|()()|( DpSDpSpDSp = , 

where D  is the data and S  is the network structure. In our case, a network was learnt 

for each cluster. Assuming unrestricted multinomial distribution, parameter 

independence, Dirichlet priors and complete data, the )|( SDp was given by 
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where  r  is the number of unique instantiations for each descent node,  so we have 

2=r , and q  is the number of parent instantiations. We use jkN  to denote the number 

of cases in D in which variable cv  has the value k  and its parent was instantiated as j, 

and ∑
−

=
=

1
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k jkj NN . We assume uniform priors, such that 1=jka  
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k jkj αα . Parents are added progressively to a node until no additional 

parent could increase the structure probability [42].  
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A model with the highest log marginal likelihood (or the highest posterior 

probability, assuming equal priors on structure) is the best sequential predictor of the 

data D. For any given gene, the probability that this gene is a member of cluster c 

could be calculated by [43]:  

**

**
),|1(

jj

kjkj

cc
N

N
SDvp

+

+
==
α

α
, 

where *j is the parent instantiate of the network structure for gene expression pattern 

c and k =1. 

        The algorithms for Bayesian network building and gene expression pattern 

prediction were implemented as C++ programs and the total runtime is about 1 hour 

on a desktop PC with 1G memory. 

Enrichment of functional annotation terms from Gene Ontology 

Genes with the same annotation terms from Gene Ontology (GO) were grouped. The 

size of each group was compared to the total number of genes having the same GO 

annotation term in the Arabidopsis genome. P-value, which indicated the significance 

of enrichment, is calculated from the hypergeometric tail [44, 45]:  

∑
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where C is the number of genes with a particular GO annotation term in the 

Arabidopsis genome, G is the total number of genes in Arabidopsis which is 25,676, c 

is the number of genes in a group with the particular GO annotation term and g is the 

total number of genes in that group. In our case, g is 213. The P-value was adjusted 

for multiple tests using Bonferroni correction. 
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Availability and requirements 

The C++ and Perl programs that implement the methods in this work are available for 

download from our supplemental data web page ( http://vhp.ntu.edu.sg/cop1/ ) , and a 

README file can be found in the package for the instructions to run  these programs. 

Additional files are available in the above web site: Tables S1 and S2 listed TFBSs 

and miRNA target nodes adopted in the networks, respectively. Table S3 listed the 

known motifs that were adopted by the networks. The COP1 microarray time course 

gene expression data, the 12 gene clusters and their mean expression profiles, the 

simulation results of miRNA target prediction as well as the predicted TFBSs for each 

of the 12 gene cluster are also available for download.  
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 Tables 
 

Table 1: Gene expression patterns (clusters) in each of the four super-clusters 

Super-cluster 1 Cluster 1, 3, 8, 9 

Super-cluster 2 Cluster 3, 4, 9, 10, 11 

Super-cluster 3 Cluster 5 

Super-cluster 4 Cluster 6 

 

Table 2: The functional enrichment for the 213 genes in GO annotation  

GO annotation Within group 

(213 genes) 

All genes 

(25,676 genes) 

P-Value 

DNA or RNA binding 41 2801 8.8e-003 

Transcription factor activity 62 3212 5.1e-009 

Transcription 41 2466 5.0e-004 

Nucleus 57 3087 1.9e-007 

Transport 43 2780 1.8e-003 

Response to abiotic or biotic 

stimulus 
97 3911 5.1e-024 

Response to stress 47 1821 9.9e-011 

 The P-values were adjusted for multiple tests using Bonferroni correction. 
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Figures 

Figure 1 

Flowchart of the combinatorial approach to determine the transcriptional and 

posttranscriptional regulatory motifs based on gene expression profiles. Firstly, we 

conducted a genome-wide screening to detect potential miRNA target motifs in 

Arabidopsis based on an inhomogeneous HMM and cross-species conservation and 

minimum binding energy of miRNA/mRNA duplex were used as additional filters to 

reduce the rate of false positives. Secondly, genes in the cop1 mutant time course 

microarray dataset were clustered into 12 expression patterns and overrepresented 

sequence elements in the upstream of the genes belonged to the same cluster were 

detected using AlignACE. Thirdly, Bayesian network strategy was applied to 

selecting these motifs in both upstream sequences and transcripts that were most 

related to the gene expression patterns. Lastly, we measured the degree to which gene 

expression could be determined merely by these adopted regulatory motifs. 

Figure 2  

Maximal log likelihood value obtained by BIC showed that the optimal number of 

clusters was 12, so we divided the 5,689 genes into 12 clusters using GQLCluster. 

Each cluster contained 755, 157, 400, 509, 275, 638, 725, 374, 658, 422, 186 and 590 

genes, respectively. The mean expression profiles for each of the 12 clusters were 

calculated and plotted. 

Figure 3 

An exemplar diagram of the inhomogeneous HMM. Hidden states are defined over 

the binary space },{ FT , where T means a true matching state and a matching state 



 - 28 - 

could generate A-U, U-A, G-C or C-G as an emission symbol. F means a false 

matching state and a false matching state could emit one of the remaining 

combinations except the aforementioned four symbols. The position specific 

transition probabilities and emission probabilities would be estimated using a training-

set of potential miRNA targets. (The transition probabilities and emission 

probabilities shown in the diagram were arbitrarily assigned.) 
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