
Chapter 5

Reconstruction of Non-Cartesian Data

5.1 Introduction

There are many alternatives to spin-warp, or
2DFT, acquisition methods. These include spi-
ral scans, radial scans, variations of echo-planar,
and many other less common acquisitions (rosette,
Lissajou, ...). All of these are relatively easy
to program on modern commercial imaging sys-
tems. Many of these have specific advantages over
spin-warp, such as speed, flow performance, and
SNR efficiency. The main disadvantage with these
methods is the difficulty of reconstructing the re-
sulting data sets. This chapter concerns methods
for reconstructing these data sets that do not fall
on a regular Cartesian grid in spatial-frequency
space. This is a very important topic. Once the
reconstruction limitations are removed, there are
many more options for collecting MRI data.

One of the most important advantages of spin-
warp, is that the reconstruction can be performed
with a simple 2D DFT. This is easily implemented,
and very efficient. For non-Cartesian data sets
there are many options. The first approach is to
collect the non-Cartesian data in a way that a pre-
viously known reconstruction method, like projec-
tion reconstruction, can be applied. While this
solves the reconstruction problem, it usually re-
quires compromises in data acquisition. Second,
the non-Cartesian data can be demodulated point-
by-point with the conjugate phase reconstruction.
This works, but is slow. Better approaches in-
volve first resampling the data to a Cartesian grid,
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Figure 5.1: Sampling of a constant angular rate spiral
(a) at an even integer number of samples per rotation
results in the samples falling on diameters in k-space.
The 1D Fourier transform along each diameter is a pro-
jection at that angle, by the central section theorem.
The image can then be reconstructed via backprojec-
tion.

and then using a 2DFT for the reconstruction.
There are many different approaches to resam-
pling, which will be our main concern here.

5.2 Reconstruction Using Spe-
cific Geometries

Originally MRI was done with projection-
reconstruction, and then later with spin-warp.
Hence when methods like spirals came along,
they were adapted to fit within the well known
projection-reconstruction framework. This was
done by using a spiral trajectory that rotates at
a constant angular rate. Then, if the number of

39



40 CHAPTER 5. RECONSTRUCTION OF NON-CARTESIAN DATA

samples per rotation is constant and even, all of
the samples line up on diameters, as is shown in
Fig. 5.1. The data along a diameter is the trans-
form of a projection, by the central section theo-
rem. Hence, a full set of projections can be com-
puted, and the image reconstructed using backpro-
jection, as in X-ray CT. The drawback of this ap-
proach is that a constant angular rate spiral does
not make efficient use of the gradient system per-
formance, and typically results in acquisitions that
are

√
2 longer than would be required for a con-

stant slew rate spiral.

Another example where an acquisition is fit into a
specific geometry for reconstruction is echo-planar
imaging. In conventional EPI, the slow phase
encode axis is applied continuously as the fast
axis oscillates. The result is a sinusoidal trajec-
tory through k-space. For reconstruction conve-
nience it is assumed the trajectory actually fol-
lows a raster scan, which results in ghosting arti-
facts from objects with high spatial frequencies in
x. To improve this, blipped EPI uses a blipped
phase-encode gradient, so that the kx–ky trajec-
tory is in fact a raster scan. However, this still
leaves problems with off-resonance, which has to
follow the conventional EPI trajectory, since off-
resonance precession happens continuously. A po-
tentially better alternative is to use a conventional
EPI trajectory, where y and the off-resonance fre-
quency ω are indistinguishable, and reconstruct
using the true non-Cartesian reconstruction trajec-
tory. Then off-resonance produces only geometric
distortion, without ghosting.

5.3 Sensitive Point and Conju-
gate Phase Reconstruction

Some of the early imaging methods could not eas-
ily be fit into the framework of known reconstruc-
tion methods. One of the earliest methods for MRI
imaging was called “sensitive point.”The basic idea
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Figure 5.2: Lissajou k-space trajectory.

was to continuously vary the gradients in three di-
mensions. The point at the isocenter of the gra-
dients sees no change, and continues to produce
a constant signal thoughout the experiment. All
other points see some time-varying field. If the
gradient waveforms are properly chosen, the sig-
nal from these other points will integrate to zero,
while the signal at the origin will integrate coher-
ently to a value proportional to the magnetization
there. In the original implementation, the subject
was translated in the magnet to move a new voxel
to isocenter, and the process repeated.

For sensitive point imaging, the sinusoidal gradi-
ents are applied. In multiple dimensions the fre-
quencies of the sinusoids are chosen to be relatively
prime. Otherwise the trajectory can retrace itself,
and not all of k-space will be covered with the de-
sired density. A sample Lissajou pattern k-space
trajectory is shown in Fig. 5.2

The k-space trajectory is

kx(t) = kmax sin(2πΩxt/T ) (5.1)
ky(t) = kmax sin(2πΩyt/T ) (5.2)

where Ωx is 19, and Ωy is 20 in this case. The
gradient waveforms that produce this trajectory
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Figure 5.3: Pulse sequence that generates a Lissijou
k-space trajectory.

are

Gx(t) =
kmaxT

(2π)2γΩx
cos(2πΩxt/T ) (5.3)

Gy(t) =
kmaxT

(2π)2γΩy
cos(2πΩyt/T ) (5.4)

These waveforms are plotted in the pulse sequence
shown in Fig. 5.3.

The interesting thing about sensitive point is that
it was one of the first imaging methods that didn’t
fall under one of the previously known reconstruc-
tion methods. The samples don’t fall on a recti-
linear grid, so a simple 2DFT is inadequate for re-
construction. The samples also don’t fall on radial
lines, so projection-reconstruction can’t be used.
This required a new perspective on reconstruction.

The new idea was to demodulate the signal for
each individual output voxel. Effectively the re-
ceiver is made to track the phase of a particular
voxel so that its signal coherently adds over the
duration of the acquisition. Ideally, the signal from
other voxels do not add coherently, and integrate
to zero. By selectively tuning to one voxel after
another, an image can be built up. And, since the
demodulation can be performed in software after
the data is acquired, a single acquisition can be

used to resolve all of the voxels in an image by
postprocessing.

5.3.1 Conjugate Phase Reconstruction

The method developed to reconstruct sensitive
point data was called a conjugate phase reconstruc-
tion. From Chapter 1, the signal from an acquisi-
tion is

s(t) =
∫
X

Mxy(x)e−i2πk(t)·xdx. (5.5)

For a conjugate phase reconstruction of the signal
at some point x0 we take this acquired signal and
multiply it by the conjugate of the phase at the
point throughout the acquisition, and then inte-
grate over the duration of the acquisition,

m(x0) =
∫ T

0
s(t)ei2πk(t)·x0dt. (5.6)

If we substitute for s(t) and change the order of
integration,

m(x0) =
∫
X

Mxy(x)
(∫ T

0
e−i2πk(t)·(x−x0)dt

)
dx.

(5.7)
This is the spatial convolution of Mxy(x) with the
integral in parentheses. At x = x0 this clearly does
the right thing. The inner integral becomes the
integration time T , and the image value m(x0) is
simply TMxy(x0). At other values of x the results
are less clear, and depend on the characteristics
of the particular k-space trajectory. In fact, the
inner integral is the impulse response of an imaging
system using that particular k-space trajectory,

A(x) =
∫ T

0
e−i2πk(t)·xdt. (5.8)

The goal is that the impulse perform as a delta
function, sifting out only the value of the image
at x0. Interestingly, this does not work well for
Lissajou trajectories, which leads to the next de-
velopment in image reconstruction.
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Figure 5.4: Sampling density of a Lissajou trajectory
(a), and the impulse response that results from this
density (b).

5.3.2 Density Correction

The problem with a Lissajou pattern can be im-
mediately appreciated by examining Fig. 5.2. That
is, the pattern is not at all uniform. The sampling
density is much higher at the edges than in the
middle. The result is an impulse response that
“rings” significantly, and does not do a very good
job of localization. This is illustrated in Fig. 5.4.
This led to the realization that conjugate phase
reconstruction by itself was inadequate, and that
some weighting must be included to account for
the sampling density.

For convenience we will just concern ourselves with
the x axis for the time being. The impulse response
is

A(x) =
∫ T

0
e−i2πkx(t)xdt (5.9)

where

kx(t) = kx,max sin(2πΩxt/T ) (5.10)

If the time T is an integer number of cycles at Ωx,

A(x) =
∫ T

0
e−i2πxkx,max sin(2πΩt/T )dt (5.11)

is the one dimensional projection of a two dimen-
sional delta ring. The impulse response is then

A(x) = J0(
πx

∆x
) (5.12)

which is not a particularly good localization func-
tion.

The reason can be seen by rewriting the expression
for the impulse response as an integral in kx. If we
look at one half cycle of the sinusoid, say from 3π/2
to 5π/2, and change variables so that

dkx =
∣∣∣∣dkx

dt

∣∣∣∣ dt = |γGx(t)| dt, (5.13)

A(x) =
∫ 5π/2

3π/2
e−i2πkx(t)xdt (5.14)

=
∫ kmax

−kmax

e−i2πkxx

|γGx(t(kx))|dkx. (5.15)

The problem is that Gx(t) goes to zero at kx =
±kmax, resulting in impulses in the k-space weight-
ing. In order to make the impulse response behave,
it is necessary to add an additional weighting fac-
tor

W (t) = |Gx(t)| (5.16)

so that

A(x) =
∫ T

0
W (t)e−i2πk(t)·xdt. (5.17)

This produces the desired impulse for an impulse
response.

The conjugate phase reconstruction is then

m(x0) =
∫ T

0
s(t)W (t)ei2πk(t)·x0dt. (5.18)

This is a solution to the problem. Unfortunately it
is very slow to compute. If the image size is N×N
pixels, there are on the order of N2 data samples in
the acquisition. The reconstruction of each point
requires an N2 element inner product, and this
must be repeated for each of the N2 pixels, requir-
ing on the order of N4 operations for a reconstruc-
tion. The next step is to look for approaches that
perform the same functions, but more efficiently.
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5.4 k-Space Resampling Meth-
ods: Overview

A much faster approach is to resample the k-space
data onto a 2D Cartesian grid first, and then use
a 2D DFT to reconstruct the image. There are
many options for resampling algorithms. These
will be grouped into three broad areas. The first is
“ grid driven” interpolation. Here the value at each
grid point is interpolated from the neighboring k-
space data. The second is “data driven” interpola-
tion, where the contribution from each data point
is added to the adjacent grid points. This includes
the gridding algorithm that we will be examining
in detail. Finally, there are a number of approaches
that try to compute local approximations to opti-
mum interpolators for the specific locations of the
sample points and grid points.

5.4.1 Grid-Driven Interpolation

The idea of grid-driven interpolation is to estimate
the value at each grid point based on the immedi-
ately surrounding data. An example is illustrated
in Fig. 5.5

One advantage of this approach is that it is easy to
implement if the location of the neighboring data
points can be determined analytically. One exam-
ple is projection-reconstruction. For other trajec-
tories the locations of the neighboring data points
can be found in a initialization stage.

It does have the disadvantage that it won’t in gen-
eral use all of the input data, and hence won’t be
as SNR efficient as some of the other approaches
we will consider. This isn’t as much of a drawback
as it might appear, though, because the unused ex-
cess data is usually at low spatial frequencies where
the SNR is already high, and the eye is relatively
insensitive to errors in low spatial frequencies. Be-
cause it doesn’t use all the data, this approach
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Figure 5.5: Grid-driven interpolation for a projection
data set. Data samples lie on diameters in k-space. In
this example the surrounding four data samples (o’s)
are located for each grid point (+’s), and a value at the
grid point determined by bilinear interpolation.

doesn’t require a density estimate, which can be a
significant advantage.

The fidelity of image reconstructions using this ap-
proach are a tradeoff between interpolator com-
plexity and k-space oversampling. If a simple bi-
linear interpolator is used, image quality is poor if
the k-space grid is the same as sampling density
required to support the desired image FOV. This
is called a “1X” grid. However, if the k-space grid
is twice as finely sampled, a “2X” grid, the recon-
structions are quite acceptable. Sampling artifacts
are below the noise floor for typical MRI images.
Alternately, the use of a higher-fidelity interpola-
tor could be used with a 1X grid, at the cost of
some complexity.

In practice, this approach is seldom if ever used.
Mostly this is due to the general convergence of
the MRI community on the data-driven interpola-
tion method called gridding, which we will discuss
next. However, grid-driven interpolation is a rea-
sonable alternative that can produce high-fidelity
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Figure 5.6: Data-driven interpolation for a projection
data set. Again, data samples lie on diameters in k-
space. Each data point is conceptually considered to
be convolved with a small kernel, and the value of that
convolution added to the adjacent k-space grid points.

reconstructions. This is particularly true when the
sampling density is varying, such as undersampled
PR, difficult to compute, or continually changing.

5.4.2 Data-Driven Interpolation

The idea of data-driven interpolation is to take
each data point, and add its contribution to the
surrounding grid points. There are a number of
ways this can be done. We consider here the case
where each data point is handled uniformly. The
next section on optimum interpolators concerns
the case where each data point is considered specif-
ically as a special case.

Each input sample is conceptually considered to be
convolved with a small kernel, which is chosen to
be wide enough to extend to the neighboring grid
points. In this way, each data point is “resampled”
at the adjacent grid points. This approach has
the advantage that all of the data is used, so it is

more SNR efficient than the grid-driven approach
described above. However, as a result, it needs a
density estimate to correct for the fact that the
samples may be concentrated in particular areas
of k-space.

As for the grid-driven approach, reconstruction fi-
delity is a tradeoff between interpolator complex-
ity and k-space oversampling. Using a large kernel
(e.g. 4 sample radius) on a 1X grid produces a
high-fidelity reconstruction. Usually a good trade-
off is a simpler kernel on a 2X grid, where the
k-space oversampling allows for a faster interpola-
tion. We will examine this in more detail below.

5.4.3 “Optimum” Interpolators

The data-driven interpolators use the same convo-
lution kernel for each k-space sample. Better per-
formance can be achieved if each data sample is
considered independently, and has its own unique
interpolation function. This is typically computed
over a local neighborhood to keep the computation
within reason, so it is only an approximation to the
optimum interpolators. The computation of these
functions for each data sample requires a signifi-
cant amount of setup time. However, once these
have been computed they can be used repeatedly.
The main advantage of this approach is the abil-
ity to produce high fidelity reconstructions on a
1X grid. There are two examples we will examine.
One is called BURS, and the other is the nuFFT
algorithm that has been increasingly of interest.

5.5 Gridding Reconstruction

The reconstruction method that we will consider
in the greatest detail is called gridding. After in-
troducing the basic idea, we will examine the three
main design concerns in implementing a gridding
reconstruction. These are the choice of a convolu-
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Figure 5.7: Basic gridding idea. The data samples line
on some trajectory through k-space (dashed line). Each
data point is conceptually convolved with a gridding
kernel, and that convolution evaluated at the adjacent
grid points.

tion kernel, the density of the reconstruction grid,
and the estimation of the sample density. Then we
will consider the problem of inverting the gridding
operation, and going from Cartesian image space
data to non-Cartesian k-space data.

The basic idea of gridding is illustrated in Fig. 5.7.
Data points lie along some trajectory through k-
space. Each data point is convolved with a grid-
ding kernel, and the result sampled and accumu-
lated on the Cartesian grid. After all the data sam-
ples have been processed, a 2D DFT−1 produces
the reconstructed image.

This simple version of gridding can be described
mathematically. The non-Cartesian sampling
function S(kx, ky) is

S(kx, ky) =
∑

i

2δ(kx − kx,i, ky − ky,i). (5.19)

The sampled data is then M(kx, ky)S(kx, ky). This
is convolved with the gridding kernel C(kx, ky),
and then sampled on the Cartesian grid,

M̂(kx, ky) = [(M(kx, ky)S(kx, ky)) ∗ C(kx, ky)]

×III
(

(
kx

∆kx
,

ky

∆ky

)
(5.20)

After the Fourier transform, this becomes

m̂(x, y) = [(m(x, y) ∗ s(x, y)) c(x, y)]

m(x,y)

x

m(x,y)*s(x,y)

x

(m(x,y)*s(x,y))c(x,y)

x
[(m(x,y)*s(x,y))c(x,y)]
                         *III(x/FOV,y/FOV)

x

Figure 5.8: Effects of the various terms in the image
domain gridding expression given in Eq. 5.21.

∗III
(

x

FOVx
,

y

FOVy

)
.(5.21)

The effects of the various elements of this equation
are illustrated in Fig. 5.8. The ideal image m(x, y)
is first blurred by convolution with the transform
of the sampling function. In addition, sidelobes are
usually created due to the pattern of the samples
in k-space. For example, for spirals there is a spiral
ring sidelobe. Next, the image is apodized by the
transform of the gridding kernel. While this has
the undesireable effect of producing shading in the
image, it also has the very desireable effect of sup-
pressing the sidelobes that were generated by the
convolution with the sampling function. Finally,
the rectilinear sampling in k-space causes replica-
tion in image space. Sidelobes from the first repli-
cas interfere with the desired image.
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There are many design issues with the implemen-
tation of a gridding reconstruction, that are illus-
trated in Fig. 5.8. One is the density of the Carte-
sian grid ∆kx and ∆ky. Since we are impressing
this grid, we are free to choose its density to be
whatever we like. This has an effect on the amount
of aliasing from the adjacent replica lobes, and in-
directly on the apodization that the kernel pro-
duces. Other important parameters are the shape
and size of the gridding kernel C(kx, ky), which
also effects both the apodization and aliasing. Fi-
nally, the sampling pattern S(kx, ky) determines
the impulse response of the system. This must be
corrected for the k-space sampling density, which
must be estimated.

5.5.1 Apodization and C(kx, ky)

The ideal apodization function would be
rect( x

FOV )rect( y
FOV ). In this case the ideal

gridding kernel function would be

C(kx, ky) = sinc
(

kx

∆kx

)
sinc

(
ky

∆ky

)
. (5.22)

The x component of the ideal apodization and ker-
nel are illustrated in Fig. 5.9. Unfortunately the
ideal kernel is infinite in extent. We need to trun-
cate the kernel at some point. The tradeoffs in de-
ciding this point are how much of the FOV is lost
to apodization, and how much aliasing folds back
into the image from the first replica side lobes.

Windowed Sinc Kernels The first approach
is to take the infinite sinc and truncate it with a
smooth window function, such as a Hamming win-
dow. Examples of apodization function, and the
windowed sinc kernel are shown in Fig. 5.10. For
most of the image the apodization is constant, and
doesn’t need to be corrected. At the edges of the
image there are transition bands where there is in-
creasing apodization, as well as aliasing from the
first replicas. The exact width of this region xtw

x

kx

Ideal Apodization
      rect(x/fov)

Ideal Kernel
     sinc(kx/Dkx)

-FOV/2 FOV/2

Figure 5.9: Ideal apodization function rect
(

x
FOV

)
and the corresponding ideal kernel function sinc

(
kx

∆kx

)
.

x

kx

Windowed Sinc Apodization
      rect(x/FOV)*w(x)

Windowed Sinc Kernel
     W(kx)sinc(kx/Dkx)

-FOV/2 FOV/2

kw

Figure 5.10: Apodization function and kernel for a
windowed sinc kernel.

depends on the particular window, but is approx-
imately

xtw ≈ 1
kw

=
1

n∆kx
=

1
n

FOV (5.23)

where kw is the half-amplitude width of the win-
dow. The overall window width will be about twice
this. Hence, a kw of 4 as illustrated in Fig. 5.10
results in a loss of 25% of the FOV due to apodiza-
tion and aliasing. Larger windows require more
computation, however, so we must trade off com-
putation for usable FOV. The computation per
data point is ∼ (2n)2 operations, and there are



5.5. GRIDDING RECONSTRUCTION 47

x

kx

Single Lobe Gridding
Kernel

-FOV/2 FOV/2

-Dkx Dkx

Figure 5.11: Apodization function and kernel for a
single lobed gridding kernel.

∼ N2 data points for an N × N image. As a re-
sult, we want to keep n small as we can.

Small Kernels (Gridding) When gridding was
first applied to CT and MRI in the early to mid
1980’s, computing power was limited, so it was im-
portant to keep gridding kernels as small as pos-
sible. The emphasis at that time was on single
lobe kernels, and that has continued. In general
the width of the single lobe kernel is wider than
that of the main lobe of the windowed sinc. This
makes the apodization function narrower in space,
which reduces aliasing at the cost of FOV. The
apodization in this case is significant, and must be
corrected almost everywhere in the FOV.

Deapodization The apodization function is the
transform of the gridding kernel, which can either
be calculated analytically for most popular win-
dows, or can be computed numerically. Once it has
been computed, the apodization can be corrected
completely by dividing by the image by the ideal
apodization function. In practice, is often a bet-
ter idea to divide out only part of the apodization.
There are several reasons for this. There are typ-
ically significant artifacts at the edge of the FOV,
and these get accentuated by the deapodization.

x-FOV/2 FOV/2

x-FOV/2 FOV/2

Apodization

Partial Deapodization

Figure 5.12: Partial deapodization limits artifacts
from aliasing at the edges of the FOV.

Also, if a feature is of interest, it is most likely
in the middle of the FOV anyway. This is par-
ticularly true with real-time interactive imaging.
Finally, the eye is not particularly sensitive to low
frequency variations, so some residual apodization
is not objectionable. An example illustrating par-
tial deapodization is shown in Fig. 5.12. One way
to limit the deapodization is to divide by c(x, y)+a
instead of c(x, y),

m̂(x, y) =
1

c(x, y) + a
{[(m(x, y) ∗ s(x, y)) c(x, y)]

∗III( x

FOVx
,

y

FOVy
)}. (5.24)

Note that the deapodization occurs after the con-
volution of the III(·) function.

5.5.2 Oversampling

For the examples we have considered so far, we
have a serious problem in that the adjacent replica
sidelobes have the same amplitude as the desired
image at the edge of the FOV. The problem is
that we have no space for a transition band be-
tween the image and the replica sidelobes. This is
a consequence of reconstructing the image using a
grid that is the same as the underlying sampling
of the k-space data, which is called a “1X” grid.
Fortunately, there is nothing fundamental about
the grid density that we use to perform the recon-
struction. We impose the grid, and we can choose
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Figure 5.13: Reconstruction on a denser grid (over-
sampling) moves the replica sidelobes out, reducing
aliasing, and allowing less apodization.

the grid density to be anything we would like. By
choosing the grid to be denser than the sampling
of the underlying k-space data, we can allow for a
transition band, and reduce both the apodization
and aliasing significantly. If α > 1, we reconstruct
on a grid (∆kx

α
,
∆ky

α

)
(5.25)

The reconstructed image is then

m̂(x, y) = [(m(x, y) ∗ s(x, y)) c(x, y)]

∗III( x

αFOVx
,

y

αFOVy
). (5.26)

where we have neglected the deapodization term
for simplicity.

The effect of oversampling is illustrated in
Fig. 5.13. Increasing the spacing between replica
sidelobes reduces aliasing dramatically. Because of
this, narrower gridding kernels can be used, which
produce less apodization.

2X Grid In practice, a 2X grid is commonly
used. This is very forgiving. Almost any reason-
able window works well. Optimized parameters
for a number of variations are given in [2]. The
aliased signal from the adjacent replica sidelobes
is typically beneath the noise floor for most MRI
images. In addition, the apodization is relatively
minor, and can often be ignored. The only disad-
vantage is the increased computation time for the

2D FFT Size Time, ms
128 1.96
160 3.23
192 5.37
224 8.28
256 15.63
288 15.50

Table 5.1: 2D FFT times using the FFTW pack-
age. Note that smaller non-power-of-two transforms
are much faster than the next larger power of two,
256 × 256. In fact, even the 288 × 288 FFT is faster
than the 256× 256 FFT.

DFT, and the fact that it becomes expensive in 3D
in terms of memory requirements.

Other Oversampling Factors One of the rea-
sons for the 2X grid is the desire to use the
next larger power-of-two FFT. However, recently
very fast implementations of the FFT have be-
come available for a whole range of FFT lengths.
This is due to the FFTW package available from
fftw.org. Previously, it was usually faster to
use the next larger power-of-two FFT, rather
than a small non-power-of-two FFT. That has all
changed. Table 5.1 show the times for N×N FFTs
on a 700 MHz AMD Athlon. Note that smaller
non-power-of-two transforms are much faster than
the next larger power of two, 256 × 256. In fact,
even the 288×288 FFT is faster than the 256×256
FFT.

The availablity of fast FFT implementations al-
lows great flexibility in choosing the oversampling
factor. This must be chosen as a tradeoff with the
size and shape of the gridding kernel, the amount
of aliasing that can be tolerated, and reconstruc-
tion speed. The nature of these tradeoffs is a cur-
rent research topic.

Oversampling Verses Zero Filling In general
when a non-Cartesian acquisition is designed, the
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acquisition parameters are the overriding concern.
These include duration of the A/D window, how
many acquisitions are required, and the perfor-
mance of the gradient system. As a result, the res-
olution and FOV of the acquisition seldom works
out to convenient numbers. For example, the ac-
quisition might support a 102× 102 image at 2.24
ms resolution, for an FOV of 22.85 cm. This is
usually reconstructed using a 128 × 128 FFT (1X
grid) or 256× 256 FFT (2X grid). However, there
are several alternatives as to how this is done.

The two extremes are illustrated in Fig. 5.14. The
first, which is more common, is to grid the data to
the central part of the larger reconstruction ma-
trix. The data is effectively zero padded, and the
image interpolated. The reconstructed image has
the same FOV as supported by the original data.
The disadvantage of this approach is that the alias-
ing is that of the 1X grid reconstruction, unless we
oversample by a factor of 2.

The other alternative is to grid the data so that
it fills the larger reconstruction matrix. The data
is oversampled by the ratio of the acquisition ma-
trix size to the reconstruction matrix size. The
oversampling increases the FOV, so that the de-
sired FOV is central portion of the reconstructed
image. This is seldom done, because the unusual
image sizes are not handled well by the scanner
data base and display programs.

The advent of fast non-power-of-two FFT’s allows
these two concerns to be addressed together. We
can design both oversampling and zero padding
into the reconstruction, so as to produce an image
that is a conventional power of two in size. If we
start with the N × N acquisition, want an over-
sampling factor of α, and a zero filling factor z of
M/N (i.e. we want an M ×M image), we need to
reconstruct on a grid that is

Nαz = Nα(M/N) = Mα (5.27)

in size. We do this by gridding the data into the
central Nα×Nα part of the reconstruction matrix,

Zero Filling

Oversampling

k-space

k-space

image

image

Figure 5.14: Reconstruction on a denser grid (over-
sampling) moves the replica sidelobes out, reducing
aliasing, and allowing less apodization.

and filling the rest of the matrix with zeros. After
the 2D FFT, the central M ×M is extracted from
the reconstruction matrix.

Returning to the 102 × 102 example, if we want
a 1.5 oversampling factor, and a zero filling fac-
tor of 128/102, we construct on a matrix that is
(128)(1.5) = 192. The data extends over the cen-
tral 153 × 153 matrix, and the rest is zero filled.
After the reconstruction the central 128× 128 ma-
trix is extracted. This has the acquisition FOV,
has reduced aliasing due to the 1.5X grid, and has
been interpolated up to a convenient size for stor-
age and display.

5.5.3 Impulse Response

The last major issue with gridding is the effect of
the sampling pattern S(kx, ky). The transform of
the sampling pattern S(kx, ky) is the impulse re-
sponse of the system s(x, y). Ideally this should
be an impulse, but is not in practice. The reason
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kx�

ky�
Region of Support

Figure 5.15: Region of support for a spiral trajec-
tory. Ideally, it we grid unity along the trajectory we
should have uniform amplitude over the region of sup-
port. This wil result in a jinc(·) impulse response, which
is the best we could hope for with this acquisition.

can be identified by considering the case where the
data is uniformly unity in amplitude. If we grid
unity, we should get a uniform amplitude in k-
space everywhere that data has been acquired. In
this case, the impulse response is just the trans-
form of the region of support, and this is the best
we could hope for given that particular acquisition.
The region of support for a spiral acquisition is il-
lustrated in Fig. 5.15. Since this a circular disc,
the impulse response would be a jinc(·) function.

The problem is that if we grid unity, we don’t end
up with a k-space weighting that is uniform. This
can be due to several factors. One is the rate at
which the k-space trajectory is traversed can be
non-uniform. This is true at the beginning of a
spiral acquisition. Another is that the sample pat-
tern itself can bunch up at particular locations.
The most important example is the origin in pro-
jection data sets. Another is the edges of k-space
in Lissajou acquisitions.

The solution is to correct for the sample density in
the gridding operation. There are two options for

how this can be done. Ideally the density compen-
sation should be done for each data point before
the gridding operation. This is precompensation,
which may be written

M̂(kx, ky) =
[(

M(kx, ky)
S(kx, ky)
ρ(kx, ky)

)
∗ C(kx, ky)

]

×III
(

kx

∆kx
,

ky

∆ky

)
. (5.28)

The other alternative is to do the density compen-
sation after the gridding operation. This is post-
compensation, and occurs on an grid point by grid
point basis.

M̂(kx, ky) =
1

ρ(kx, ky)
× [(M(kx, ky)S(kx, ky)) ∗ C(kx, ky)]

×III
(

kx

∆kx
,

ky

∆ky

)
. (5.29)

Postcompensation works well if the rate of change
of the density pattern is not too rapid. The grid-
ding kernel convolution blurs the effect of rapid
density changes. If these changes happen in dis-
tances that are comparable to or smaller than the
kernel, they can’t be resolved in the postcompen-
sation density correction. One place where this is
a problem is at the origin of projection data sets.

In practice, both precompenstation and postcom-
pensation can be employed. For example, prec-
ompensation can be performed based on the as-
sumption of an ideal acquisition. The postcom-
pensation can be estimated at reconstruction time
based on imperfections in the acquisition, such as
off-resonance effects, eddy currents, and gradient
system errors. As long as the major variations in
density have been precompensated, the postcom-
pensation should work well.

Estimating ρ(kx, ky) For precompensation the
density ρ(kx, ky) must be precomputed, since it
is required prior to the gridding operation. For
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postcompensation, the density can be estimated
as part of the gridding process. There are several
different methods that can be used to estimate the
density. For simple cases, like spirals, projection,
and Lissajou, the density can be computed using
simple geometry. For more complex cases, there
are several approaches. One uses gridding itself,
either in a single operation, or iteratively. Another
is a numerical approach based on assigning an area
in k-space for each sample.

Geometry For simple k-space trajectories, the
area associated with each sample can be computed
geometrically. One example is for projection data
sets, as is illustrated in Fig. 5.16. Samples are lo-
cated along radii at multiples of ∆kx = ∆ky =
∆kr.The weighting we will apply during the grid-
ding operation is the inverse of the sample density
w(kx, ky) = 1/ρ(kx, ky). If there are N projections,
then the central sample is acquired N times. For
these the weighting 1

N multiplied by the area of
the central disk that is closest to the origin.

w0 =
1
N

π
(∆kr

2

)2

. (5.30)

=
2π

N
(∆kr)2

1
8
. (5.31)

The weighting for the first samples is given by the
area in the next annular ring outside the central
disk divided by the number of samples,

w1 =
1
N

π

[(3∆kr

2

)2

−
(∆kr

2

)2
]

(5.32)

=
2π

N
(∆kr)2. (5.33)

For n greater than 1,

wn =
2π

N
(∆kr)2n. (5.34)

This is the well known rho filter from projection-
reconstruction. Note that the weighting is linear
as expected, but does not go to zero at the ori-
gin. This is important in order to get the DC

kx�

ky�

Dkx 2Dkx

Dky

2Dky

Figure 5.16: Calculation of the density for a projec-
tion data set.

value right for projection reconstruction. Similar
geometrical arguments can be used to derive the
weighting function for other trajectories, such as
spirals [5,3].

Gridding Density If the density cannot be eas-
ily computed based on geometry, or it is changing,
another alternative is to compute the density using
gridding itself. Essentially, this consists of grid-
ding a unity data vector. This can easily be per-
formed in parallel with gridding the actual data by
gridding ones into a density matrix along with the
gridding of the k-space data matrix. The estimate
of the density is then

ρ̂(kx, ky) = [S(kx, ky) ∗ C(kx, ky)] III
(

kx

∆kx
,

ky

∆ky

)
.

(5.35)
Note that this is on the grid points, so is directly
suitable for postcompenstation only. If the density
gridding is being performed in parallel with the
data gridding, the compenstation is performed by
dividing the two matrices, with some provision to
avoid dividing by zero outside the area where data
has been collected. This can be done by defining
a mask where the density is above some thresh-



52 CHAPTER 5. RECONSTRUCTION OF NON-CARTESIAN DATA

old and only compensating over that region, or by
adding a small constant to the density matrix.

If the sampling function S(kx, ky) is slowly vary-
ing, the estimate ρ̂(kx, ky) will be good, and post-
compensation will work well. However, if S(kx, ky)
varies rapidly, the gridded density estimate will
be inaccurate because it has been blurred by the
gridding kernel. One important place where this
is a problem is at the origin of projection data
sets. In the Jackson paper [2] the density is as-
sumed to be computed by gridding, and is written
as S(kx, ky) ∗ C(kx, ky).

Inverse Gridding Ideally, we would like to
know the density on the data points, so that we
can precompensate for the density. The problem
is how to go from a function that is defined on
the grid points, back to a function defined on the
data sample points. This is known as inverse grid-
ding [6]. This is useful for many applications be-
yond density estimation. Some uses are the simu-
lation of MRI data, iterative partial k-space algo-
rithms for non-Cartesian data, time-series recon-
structions, and non-Cartesian SENSE (undersam-
pled multicoil) acquisitions.

The basic idea in inverse gridding is to reverse the
steps in gridding. We assume we start with image
data, and we want to estimate the corresponding
data samples on a non-Cartesian sampling pattern.
The first step is pre-emphasis,

mp(x, y) =
m(x, y)
c(x, y)

. (5.36)

This compensates for the apodization from the
convolution with a gridding kernel in k-space that
will follow. In k-space, the pre-emphasis can be
written

Mp(kx, ky) = M(kx, ky) ∗ C−1(kx, ky) (5.37)

where C−1(kx, ky) = F
{

1
c(x,y)

}
. This is a de-

convolution in k-space by c(x, y). At this point

Mp(kx, ky) is on a Cartesian grid. To estimate the
values at the non-Cartesian sampling points, the
Cartesian data is convolved with the gridding ker-
nel, and sampled at the desired sample locations,

M̂(kx, ky) = [Mp(kx, ky) ∗ C(kx, ky)]S(kx, ky).
(5.38)

This is exactly the same operation as in grid-
ding, except that at each data point we accumulate
the contributions from all of the neighboring grid
points to estimate the value at that sample. This
differs from gridding where the value at that sam-
ple is distributed over the neighboring grid points.
One important point is that there is no need of
density compensation for inverse gridding, since
the density of the Cartesian grid is uniform. This
is an important distinction.

For density estimation we can take our gridded
density estimate on the grid points, and compute
what the density estimate is on the data samples.
The first step is to computed a pre-emphasized
estimate of the density. This is ρ̂(kx, ky) that
has been compensated once for the apodization of
the gridding operation, and a second time for the
apodization in the inverse gridding operation,

ρ̂p(kx, ky) = F
{
F−1{ρ̂(kx, ky)}

c2(x, y)

}
(5.39)

The pre-emphasized gridded density is then con-
volved with the gridding kernel and resampled to
give the density on the data samples

ρ̂d(kx,i, ky,i) = [ρ̂p(kx, ky) ∗ C(kx, ky)]S(kx, ky).
(5.40)

In practice this will still be an imperfect estimate,
and iteration may be required. There are several
different approaches to iteration that have been
proposed to improve numerical stability [7].

Numerical Computation Another alternative
is to numerically compute the area associated with
each data sample, and use that as the density es-
timate. The area is approximated by the spacing
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Figure 5.17: Voronoi diagram divides the plane into
regions that are closest to any individual data point.
On the top is the central portion of a nin-interleave
spiral k-space trajectory. On the bottom the Voronoi
plot shows k-space region associated with each sample.
The density is the inverse of the area of these regions.

of samples along the trajectory multiplied by the
spacing between adjacent trajectories. This is easy
to compute for simple trajectories, but is in general
a hard problem.

The paper by Rasche et al. [6] describes a numer-
ical algorithm for this problem called the Voronoi

diagram. This starts by a triangular tiling of the
plane by associating each sample with it’s closest
neighbors, which is called a Delaunay triangula-
tion. Bisecting the connections between nearest
neighbors divides the plane into regions that are
closest to each data point, which is the Voronoi
diagram. The remarkable thing about the Voronoi
diagram is that there are very efficient algorithms
for its computation, which make it very attractive
for density estimation.

In matlab6, the voronoin routine returns a list of
cells, with each cell defined by its vertices in the
Voronoi diagram. A density estimate would be the
area of each of the cells. A matlab routine that
returns the area associated with each sample is

function area = voronoidens(kx,ky);

% function area = voronoidens(kx,ky);
% input: kx, ky are k-space trajectories
% output: area of cells for each point

[row,column] = size(kx);
kxy = [kx(:),ky(:)];

% returns vertices and cells of
% voronoi diagram
[V,C] = voronoin(kxy);

% unpack cell array, compute
% area of each ploygon
area = [];
for j = 1:length(kxy)

x = V(C{j},1);
y = V(C{j},2);
lxy = length(x);
A = abs(sum(0.5*(x([2:lxy 1])-x(:)).* ...

(y([2:lxy 1])+y(:))));
area = [area A];

end

area = reshape(area,row,column);
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This routine is that it takes much longer to unpack
the cell array and compute the areas of the poly-
gons, than it does to compute the Voronoi diagram
in the first place! In general, though, it is pretty
fast, typically requiring a few 10’s of seconds.

Pre/Post Compenstation Although ideally
we would always like to perform only precompen-
sation, in practice this can be difficult. The calcu-
lation of the density can require significant com-
putation. Changes in acquistion parameters can
cause changes the k-space trajectory, and make it
desirable to recompute the density. Some factors
that can effect the density include off-resonance,
eddy currents, gradient delays, and gradient sys-
tem fidelity. One altenative is to use an esti-
mated ideal density correction for the precompen-
station, but also grid the density along with the
data gridding, and then perform postcompensa-
tion also. This has some significant benefits. The
precompensation should take care of the areas with
rapidly changing densities, where postcompensa-
tion can fail. As long as the precompensation
is reasonably close, the postcompenstation should
perform well.
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