
Floating Point Numbers in Java1

by Michael L. Overton

Virtually all modern computers follow the IEEE2 oating point standard

in their representation of oating point numbers. The Java programming

language types oat and double use the IEEE single format and the IEEE

double format respectively.

Floating Point Representation

Floating point representation is based on exponential (or scienti�c) no-

tation). In exponential notation, a nonzero real number x is expressed in

decimal as

x = �S � 10E ; where 1 � S < 10;

and E is an integer. The numbers S and E are called the signi�cand and

the exponent respectively. For example, the exponential representation of

365:25 is 3:6525 � 102, and the exponential representation of 0:00036525
is as 3:6525 � 10�4. It is always possible to satisfy the requirement that

1 � S < 10, as S can be obtained from x by repeatedly multiplying or

dividing by 10, decrementing or incrementing the exponent E accordingly.

We can imagine that the decimal point oats to the position immediately

after the �rst nonzero digit in the decimal expansion of the number: hence

the name oating point. For representation on the computer, we prefer base

2 to base 10, so we write a nonzero number x in the form

x = �S � 2E ; where 1 � S < 2: (1)

Consequently, the binary expansion of the signi�cand is

S = (b0:b1b2b3 : : :)2; with b0 = 1: (2)

For example, the number 11=2 is expressed as

11

2
= (1:011)2 � 22:

Now it is the binary point that oats to the position after the �rst nonzero

bit in the binary expansion of x, changing the exponent E accordingly. Of

course, this is not possible if the number x is zero, but at present we are

considering only the nonzero case. Since b0 is 1, we may write

S = (1:b1b2b3 : : :)2:
1Extracted from Numerical Computing with IEEE Floating Point Arithmetic, published

by the Society for Industrial and Applied Mathematics (SIAM), March 2001. Copyright
cSIAM 2001.

2Institute for Electrical and Electronics Engineers. IEEE is pronounced \I triple E".
The standard was published in 1985.

1

Table 1: IEEE Single Format

� a1a2a3 : : : a8 b1b2b3 : : : b23

If exponent bitstring a1 : : : a8 is Then numerical value represented is

(00000000)2 = (0)10 �(0:b1b2b3 : : : b23)2 � 2�126

(00000001)2 = (1)10 �(1:b1b2b3 : : : b23)2 � 2�126

(00000010)2 = (2)10 �(1:b1b2b3 : : : b23)2 � 2�125

(00000011)2 = (3)10 �(1:b1b2b3 : : : b23)2 � 2�124

#

(01111111)2 = (127)10 �(1:b1b2b3 : : : b23)2 � 20

(10000000)2 = (128)10 �(1:b1b2b3 : : : b23)2 � 21

#

(11111100)2 = (252)10 �(1:b1b2b3 : : : b23)2 � 2125

(11111101)2 = (253)10 �(1:b1b2b3 : : : b23)2 � 2126

(11111110)2 = (254)10 �(1:b1b2b3 : : : b23)2 � 2127

(11111111)2 = (255)10 �1 if b1 = : : : = b23 = 0, NaN otherwise

The bits following the binary point are called the fractional part of the

signi�cand.
A more complicated example is the number 1=10, which has the nonter-

minating binary expansion

1

10
= (0:0001100110011 : : :)2 =

1

16
+

1

32
+

0

64
+

0

128
+

1

256
+

1

512
+

0

1024
+� � � :

(3)

We can write this as

1

10
= (1:100110011 : : :)2 � 2�4:

Again, the binary point oats to the position after the �rst nonzero bit,

adjusting the exponent accordingly. A binary number that has its binary

point in the position after the �rst nonzero bit is called normalized.

Floating point representation works by dividing the computer word into

three �elds, to represent the sign, the exponent and the signi�cand (actually,

the fractional part of the signi�cand) separately.

The Single Format

IEEE single format oating point numbers use a 32-bit word and their

representations are summarized in Table 1. The �rst bit in the word is the
sign bit, the next 8 bits are the exponent �eld, and the last 23 bits are the

fraction �eld (for the fractional part of the signi�cand).

2

Let us discuss Table 1 in some detail. The � refers to the sign of the

number, a zero bit being used to represent a positive sign. The �rst line

shows that the representation for zero requires a special zero bitstring for

the exponent �eld as well as a zero bitstring for the fraction �eld, i.e.,

� 00000000 00000000000000000000000 :

No other line in the table can be used to represent the number zero, for all

lines except the �rst and the last represent normalized numbers, with an

initial bit equal to one; this bit is said to be hidden, since it is not stored

explicitly. In the case of the �rst line of the table, the hidden bit is zero, not

one. The 2�126 in the �rst line is confusing at �rst sight, but let us ignore

that for the moment since (0:000 : : : 0)2�2�126 is certainly one way to write

the number zero. In the case when the exponent �eld has a zero bitstring
but the fraction �eld has a nonzero bitstring, the number represented is said

to be subnormal. Let us postpone the discussion of subnormal numbers for

the moment and go on to the other lines of the table.

All the lines of Table 1 except the �rst and the last refer to the normalized

numbers, i.e., all the oating point numbers that are not special in some way.

Note especially the relationship between the exponent bitstring a1a2a3 : : : a8
and the actual exponent E. This is biased representation: the bitstring that

is stored is the binary representation of E +127. The number 127, which is

added to the desired exponent E, is called the exponent bias. For example,

the number 1 = (1:000 : : : 0)2 � 20 is stored as

0 01111111 00000000000000000000000 :

Here the exponent bitstring is the binary representation for 0+127 and the

fraction bitstring is the binary representation for 0 (the fractional part of

1:0). The number 11=2 = (1:011)2 � 22 is stored as

0 10000001 01100000000000000000000 :

The number 1=10 = (1:100110011 : : :)2 � 2�4 has a nonterminating binary

expansion. If we truncated this to �t the fraction �eld size, we would �nd

that 1=10 is stored as

0 01111011 10011001100110011001100 :

However, it is better to round3 the result, so that 1=10 is represented as

0 01111011 10011001100110011001101 :

3The IEEE standard o�ers several rounding options, but the Java language permits
only one: rounding to nearest.

3

The range of exponent �eld bitstrings for normalized numbers is 00000001

to 11111110 (the decimal numbers 1 through 254), representing actual expo-

nents from Emin = �126 to Emax = 127. The smallest positive normalized

number that can be stored is represented by

0 00000001 00000000000000000000000

and we denote this by

Nmin = (1:000 : : : 0)2 � 2�126 = 2�126 � 1:2� 10�38: (4)

The largest normalized number (equivalently, the largest �nite number) is
represented by

0 11111110 11111111111111111111111

and we denote this by

Nmax = (1:111 : : : 1)2 � 2127 = (2� 2�23)� 2127 � 2128 � 3:4 � 1038: (5)

The last line of Table 1 shows that an exponent bitstring consisting of

all ones is a special pattern used to represent �1 or NaN, depending on

the fraction bitstring. We will discuss these later.

Subnormals

Finally, let us return to the �rst line of the table. The idea here is as

follows: although 2�126 is the smallest normalized number that can be rep-

resented, we can use the combination of the special zero exponent bitstring

and a nonzero fraction bitstring to represent smaller numbers called subnor-

mal numbers. For example, 2�127, which is the same as (0:1)2 � 2�126, is
represented as

0 00000000 10000000000000000000000 ;

while 2�149 = (0:0000 : : : 01)2 � 2�126 (with 22 zero bits after the binary

point) is stored as

0 00000000 00000000000000000000001 :

This is the smallest positive number that can be stored. Now we see the

reason for the 2�126 in the �rst line. It allows us to represent numbers

in the range immediately below the smallest positive normalized number.

Subnormal numbers cannot be normalized, since normalization would result

in an exponent that does not �t in the �eld. Subnormal numbers are less

accurate, i.e., they have less room for nonzero bits in the fraction �eld,

than normalized numbers. Indeed, the accuracy drops as the size of the

4

Table 2: IEEE Double Format

� a1a2a3 : : : a11 b1b2b3 : : : b52

If exponent bitstring is a1 : : : a11 Then numerical value represented is

(00000000000)2 = (0)10 �(0:b1b2b3 : : : b52)2 � 2�1022

(00000000001)2 = (1)10 �(1:b1b2b3 : : : b52)2 � 2�1022

(00000000010)2 = (2)10 �(1:b1b2b3 : : : b52)2 � 2�1021

(00000000011)2 = (3)10 �(1:b1b2b3 : : : b52)2 � 2�1020

#

(01111111111)2 = (1023)10 �(1:b1b2b3 : : : b52)2 � 20

(10000000000)2 = (1024)10 �(1:b1b2b3 : : : b52)2 � 21

#

(11111111100)2 = (2044)10 �(1:b1b2b3 : : : b52)2 � 21021

(11111111101)2 = (2045)10 �(1:b1b2b3 : : : b52)2 � 21022

(11111111110)2 = (2046)10 �(1:b1b2b3 : : : b52)2 � 21023

(11111111111)2 = (2047)10 �1 if b1 = : : : = b52 = 0, NaN otherwise

subnormal number decreases. Thus (1=10) � 2�123 = (0:11001100 : : :)2 �
2�126 is truncated to

0 00000000 11001100110011001100110 ;

while (1=10) � 2�135 = (0:11001100 : : :)2 � 2�138 is truncated to

0 00000000 00000000000011001100110 :

Exercise 1 Determine the IEEE single format oating point representation

for the following numbers: 2, 1000, 23=4, (23=4) � 2100, (23=4) � 2�100,

(23=4) � 2�135, (1=10) � 210, (1=10) � 2�140. (Make use of (3) to avoid

decimal to binary conversions).

Exercise 2 What is the gap between 2 and the �rst IEEE single number

larger than 2? What is the gap between 1024 and the �rst IEEE single

number larger than 1024?

The Double Format

The single format is not adequate for many applications, either because

more accurate signi�cands are required, or (less often) because a greater ex-

ponent range is needed. The IEEE standard speci�es a second basic format,

double, which uses a 64-bit double word. Details are shown in Table 2. The

ideas are the same as before; only the �eld widths and exponent bias are

5

Table 3: Range of IEEE Floating Point Formats

Format Emin Emax Nmin Nmax

Single �126 127 2�126 � 1:2� 10�38 � 2128 � 3:4� 1038

Double �1022 1023 2�1022 � 2:2 � 10�308 � 21024 � 1:8� 10308

di�erent. Now the exponents range from Emin = �1022 to Emax = 1023,
and the number of bits in the fraction �eld is 52. Numbers with no �nite bi-

nary expansion, such as 1=10 or �, are represented more accurately with the

double format than they are with the single format. The smallest positive

normalized double number is

Nmin = 2�1022 � 2:2� 10�308 (6)

and the largest is

Nmax = (2� 2�52)� 21023 � 1:8� 10308: (7)

We summarize the bounds on the exponents, and the values of the small-

est and largest normalized numbers given in (4), (5), (6), (7), in Table 3.

Signi�cant Digits

Let us de�ne p, the precision of the oating point format, to be the

number of bits allowed in the signi�cand, including the hidden bit. Thus

p = 24 for the single format and p = 53 for the double format. The p = 24

bits in the signi�cand for the single format correspond to approximately 7

signi�cant decimal digits, since

2�24 � 10�7:

Here � means approximately equals4. Equivalently,

log10

�
224

�
� 7: (8)

The number of bits in the signi�cand of the double format, p = 53, corre-

sponds to approximately 16 signi�cant decimal digits. We deliberately use

the word approximately here, because de�ning signi�cant digits is problem-

atic. The IEEE single representation for

� = 3:141592653 : : : ;

is, when converted to decimal,

3:141592741 : : : :
4In this case, they di�er by about a factor of 2, since 2�23 is even closer to 10�7:

6

To how many digits does this approximate �? We might say 7, since the �rst

7 digits of both numbers are the same, or we might say 8, since if we round

both numbers to 8 digits, rounding � up and the approximation down, we

get the same number 3:1415927.

Representation Summary

The IEEE single and double format numbers are those that can be rep-

resented as

�(b0:b1b2 : : : bp�1)2 � 2E ;

with, for normalized numbers, b0 = 1 and Emin � E � Emax, and, for

subnormal numbers and zero, b0 = 0 and E = Emin. We denoted the largest

normalized number by Nmax, and the smallest positive normalized number

by Nmin. There are also two in�nite oating point numbers, �1.

Correctly Rounded Floating Point Operations

A key feature of the IEEE standard is that it requires correctly rounded

arithmetic operations. Very often, the result of an arithmetic operation on

two oating point numbers is not a oating point number. This is most

obviously the case for multiplication and division; for example, 1 and 10

are both oating point numbers but we have already seen that 1=10 is not,

regardless of where the single or double format is in use. It is also true of

addition and subtraction: for example, 1 and 2�24 are IEEE single format

numbers, but 1 + 2�24 is not.

Let x and y be oating point numbers, let +,�,�,= denote the four

standard arithmetic operations, and let �,	,
,� denote the corresponding

operations as they are actually implemented on the computer. Thus, x+ y
may not be a oating point number, but x� y is the oating point number

which is the computed approximation of x+y. When the result of a oating

point operation is not a oating point number, the IEEE standard requires

that the computed result is the rounded value of the exact result. It is

worth stating this requirement carefully. The rule is as follows: if x and y
are oating point numbers, then

x� y = round(x+ y);

x	 y = round(x� y);

x
 y = round(x� y);

and

x� y = round(x=y);

where round is the operation of rounding to the nearest oating point num-

ber in the single or double format, whichever is in use. This means that the

result of an operation with single format oating point numbers is accurate

7

to 24 bits (about 7 decimal digits), while the result of an operation with

double format numbers is accurate to 53 bits (about 16 decimal digits).

The Intel Pentium chip received a lot of bad publicity in 1994 when the

fact that it had a oating point hardware bug was exposed. For example,
on the original Pentium, the oating point division operation

4195835

3145727

gave a result with only about 4 correct decimal digits. The error occurred

only in a few special cases, and could easily have remained undiscovered

much longer than it did; it was found by a mathematician doing experi-

ments in number theory. Nonetheless, it created a sensation, mainly be-

cause it turned out that Intel knew about the bug but had not released the

information. The public outcry against incorrect oating point arithmetic
depressed Intel's stock value signi�cantly until the company �nally agreed

to replace everyone's defective processors, not just those belonging to in-

stitutions that Intel thought really needed correct arithmetic! It is hard to

imagine a more e�ective way to persuade the public that oating point ac-

curacy is important than to inform it that only specialists can have it. The

event was particularly ironic since no company had done more than Intel to

make accurate oating point available to the masses.

Exceptions

One of the most diÆcult things about programming is the need to antic-

ipate exceptional situations. Ideally, a program should handle exceptional
data in a manner as consistent as possible with the handling of unexcep-

tional data. For example, a program that reads integers from an input �le

and echoes them to an output �le until the end of the input �le is reached

should not fail just because the input �le is empty. On the other hand, if

it is further required to compute the average value of the input data, no

reasonable solution is available if the input �le is empty. So it is with oat-

ing point arithmetic. When a reasonable response to exceptional data is

possible, it should be used.

In�nity from Division by Zero

The simplest example of an exception is division by zero. Before the
IEEE standard was devised, there were two standard responses to division

of a positive number by zero. One often used in the 1950's was to generate

the largest oating point number as the result. The rationale o�ered by the

manufacturers was that the user would notice the large number in the out-

put and draw the conclusion that something had gone wrong. However, this

often led to confusion: for example, the expression 1=0� 1=0 would give the

result 0, which is meaningless; furthermore, as 0 is not large, the user might

not notice that any error had taken place. Consequently, it was emphasized

8

in the 1960's that division by zero should lead to the interruption or termi-

nation of the program, perhaps giving the user an informative message such

as \fatal error | division by zero". To avoid this, the burden was on the

programmer to make sure that division by zero would never occur.
Suppose, for example, it is desired to compute the total resistance of an

electrical circuit with two resistors connected in parallel. The formula for

the total resistance of the circuit is

T =
1

1

R1
+ 1

R2

: (9)

This formula makes intuitive sense: if both resistances R1 and R2 are the

same value R, then the resistance of the whole circuit is T = R=2, since the
current divides equally, with equal amounts owing through each resistor.

On the other hand, if R1 is very much smaller than R2, the resistance of

the whole circuit is somewhat less than R1, since most of the current ows

through the �rst resistor and avoids the second one. What if R1 is zero?

The answer is intuitively clear: since the �rst resistor o�ers no resistance

to the current, all the current ows through that resistor and avoids the

second one; therefore, the total resistance in the circuit is zero. The formula

for T also makes sense mathematically, if we introduce the convention that

1=0 =1 and 1=1 = 0. We get

T =
1

1

0
+ 1

R2

=
1

1+ 1

R2

=
1

1
= 0:

Why, then, should a programmer writing code for the evaluation of parallel

resistance formulas have to worry about treating division by zero as an

exceptional situation? In IEEE arithmetic, the programmer is relieved of
that burden. The standard response to division by zero is to produce an

in�nite result, and continue with program execution. In the case of the

parallel resistance formula, this leads to the correct �nal result 1=1 = 0.

NaN from Invalid Operation

It is true that a�0 has the value 0 for any �nite value of a. Similarly, we

adopt the convention that a=0 =1 for any positive value of a. Multiplica-

tion with1 also makes sense: a�1 has the value1 for any positive value

of a. But the expressions 0�1 and 0=0 make no mathematical sense. An

attempt to compute either of these quantities is called an invalid operation,
and the IEEE standard response to such an operation is to set the result

to NaN (Not a Number). Any subsequent arithmetic computation with an

expression that involves a NaN also results in a NaN. When a NaN is dis-

covered in the output of a program, the programmer knows something has

gone wrong and can invoke debugging tools to determine what the problem

is.

9

Addition with 1 makes mathematical sense. In the parallel resistance

example, we see that 1+ 1

R2
=1. This is true even if R2 also happens to

be zero, because 1 +1 = 1. We also have a �1 = �1 for any �nite

value of a. But there is no way to make sense of the expression 1 �1,
which therefore yields the result NaN.

Exercise 3 What are the values of the expressions 1=0, 0=1 and 1=1?

Justify your answer.

Exercise 4 For what nonnegative values of a is it true that a=1 equals 0?

Exercise 5 Using the 1950's convention for treatment of division by zero

mentioned above, the expression (1=0)=10000000 results in a number very

much smaller than the largest oating point number. What is the result in

IEEE arithmetic?

Signed Zeros and Signed In�nities

A question arises: why should 1=0 have the value 1 rather than �1?

This is one motivation for the existence of the oating point number �0, so

that the conventions a=0 = 1 and a=(�0) = �1 may be followed, where

a is a positive number. The reverse holds if a is negative. The predicate

(0 = �0) is true, but the predicate (1 = �1) is false. We are led to the

conclusion that it is possible that the predicates (a = b) and (1=a = 1=b)
have opposite values (the �rst true, the second false, if a = 0, b = �0). This
phenomenon is a direct consequence of the convention for handling in�nity.

Exercise 6 Are there any other cases in which the predicates (a = b) and

(1=a = 1=b) have opposite values, besides a and b being zeros of opposite

sign?

More about NaN's

The square root operation provides a good example of the use of NaN's.

Before the IEEE standard, an attempt to take the square root of a negative

number might result only in the printing of an error message and a positive

result being returned. The user might not notice that anything had gone

wrong. Under the rules of the IEEE standard, the square root operation is

invalid if its argument is negative, and the standard response is to return a

NaN.

More generally, NaN's provide a very convenient way for a programmer
to handle the possibility of invalid data or other errors in many contexts.

Suppose we wish to write a program to compute a function which is not

de�ned for some input values. By setting the output of the function to NaN

if the input is invalid or some other error takes place during the computation

10

of the function, the need to return special error messages or codes is avoided.

Another good use of NaN's is for initializing variables that are not otherwise

assigned initial values when they are declared.

When a and b are real numbers, one of three relational conditions holds:
a = b, a < b or a > b. The same is true if a and b are oating point numbers
in the conventional sense, even if the values �1 are permitted. However,

if either a or b is a NaN none of the three conditions a = b, a < b, a > b
can be said to hold (even if both a and b are NaN's). Instead, a and b are
said to be unordered. Consequently, although the predicates (a � b) and
(not(a > b)) usually have the same value, they have di�erent values (the

�rst false, the second true) if either a or b is a NaN.

The appearance of a NaN in the output of a program is a sure sign that

something has gone wrong. The appearance of1 in the output may or may

not indicate a programming error, depending on the context. When writing

programs where division by zero is a possibility, the programmer should be

cautious. Operations with 1 should not be used unless a careful analysis
has ensured that they are appropriate.

Casting in Java

In Java, a cast is required to convert an expression of one type to a

variable of another type if substantial information loss is possible. Thus, for

example, a cast is required to assign a oat expression to an int variable

or a double expression to an int or oat variable. The question of whether

a cast is required to convert an int expression to a oat variable is more

complicated. Not all int 's can be represented as oat 's; for example, the

integer 12345678 or the integer 22222222, which both can be represented

exactly with the 32-bit integer format, have too many decimal digits to be
represented exactly with the 23-bit signi�cand used by oat. Nonetheless,

Java allows the assignment to be made without a cast, as the information

loss is not considered suÆciently great to insist on a cast.

Java on a PC

Java was developed by Sun, whose machines all use 64-bit oating point

registers. However, all PC's (Pentium's and earlier models) have 80-bit

oating point registers. The IEEE oating point standard includes require-

ments for how to convert between the double 64-bit format and the extended

80-bit format, and the C language allows the use of long double variables

which can exploit the accuracy of the 80-bit registers. However, the Java
language does not allow use of the 80-bit format, because of its requirement

that the same result be obtained on all machines. Consequently, it requires

the use of a special oating point option on PC's that causes the results of

all operations in the 80-bit oating point registers to be computed only to

the accuracy used by the 64-bit double format, i.e., as if the signi�cand were

only 52 bits.

11

