
A Truss Problem

A typical task in structural engineering is to design a bridge to be strong
enough to withstand a certain load. Consider the following plane truss, which
is a set of metal bars connected by frictionless pin joints. (“Plane” refers to
the fact that the truss is two-dimensional, not three-dimensional as it would
be in reality.) The symbol at the left end of the truss indicates that it is
fixed at that end, while the symbol at the right end indicates that the truss
is free to move horizontally, but not vertically. The three arrows pointing
down represent loads on the truss. These loads are 10 tons, 15 tons, and 10
tons respectively.
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The problem is to solve a certain linear system of equations for the inter-
nal forces in the bars. A positive internal force indicates that the bar is being
extended (pulled apart a little), by the load, while a negative internal force
indicates that the bar is being compressed. It is assumed that, as long as
the internal forces are not too big, bars will not be stretched or compressed
more than a tiny amount: thus the structure does not collapse, but remains
in equilibrium. By computing the internal forces, an engineer has more in-
formation as to whether the truss is indeed strong enough to withstand the
load.

There are two linear equations for each internal joint in the truss, repre-
senting forces in the horizontal and vertical direction which must balance at
the joints. Let us denote the internal forces by x1, x2, . . . , x13, corresponding
to the numbers on the bars in the illustration. The balancing of forces at
joint C in the horizontal direction gives the equation

x4 = x8
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while the balancing of forces at joint C in the vertical direction gives simply

x7 = 0.

The balancing of forces at joint B in the horizontal direction gives

x2 = x6

while the vertical direction at joint B gives

x3 = 10.

The “10” comes from the 10 ton vertical load at joint B. The balancing
of forces at joint A is a little more complicated, since it involves two bars
oriented at an angle of 45 degrees as well as a horizontal and a vertical bar.
Let α = cos(π/4) = sin(π/4) =

√
2/2. Then the balancing of horizontal

forces at joint A gives the equation

αx1 = x4 + αx5

and the balancing of vertical forces at joint A gives

αx1 + x3 + αx5 = 0.

There are also horizontal and vertical force equations at joints D, E and F
which can be derived using the same ideas. These amount to 12 equations
altogether. The 13th equation comes from the right end point G: since this
end point is free to move horizontally, but not vertically, there is just one
force equation, balancing the forces horizontally:

x13 + αx12 = 0.

Thus, we have a total of 13 linear equations defining the 13 internal force
variables.

There are several parts to the assignment, all important:

1. Derive the 13 linear equations in 13 variables. Write the equations
using matrix notation, as Ax = b, and enter the matrix A and right-
hand side vector b in a Matlab function. (This is better than working at
the keyboard so you don’t have to keep retyping if you make a mistake.)
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2. Solve the system of linear equations, using the Matlab backslash op-
erator: x = A\b. You can put this in the function too, and return x,
the vector of internal forces, as an output parameter of the function.
Print the solution vector x (you should compare it with what other
classmates get to make sure you set up the system correctly).

3. Graphically display the solution, using plot. After plotting the
first line of the plot you need to execute hold on before continuing
with plotting. The figure shown should look something like the one
above, but instead of labeling the bars with numbers, plot the bars

with variable thickness, corresponding to the magnitude of the internal
force in the bar. Type help plot to see how to get lines of variable
thickness (toward the end of the help info). Use one color for positive
forces (bars being extended by the load), and another color for negative
forces (bars being compressed by the load). Thick bars correspond to
bars under great stress from the load, while thin bars correspond to
bars under little stress. For a zero or very nearly zero force, you could
use a dotted line. There is no need to label the joints. Look at which
bars are under extension and which are under compression: does it
make sense, bearing in mind where the load is?

4. Experiment with different choices for the load. This changes only the
vector b, not the matrix A. You can pass the load vector (length 3) to
your first function as a parameter. Try loads of 10,20,30 tons instead
of 10,15,10, and try some other loads too. Choose a couple of loads
that give interesting pictures and include them in your submission. Do
negative loads make sense (try them)?

5. Generalize by writing a new function that sets up and solves the equa-
tions for a variable-sized truss, with k sections exactly like the section

ABCDEF instead of one, where k is an input parameter to the function.
You do not need to plot the resulting trusses. What you need to do is
write code to automatically set up the matrix A and vector b defining
the system of equations for a variable-sized truss. This will require
some careful thought. Start by sketching the larger truss on paper and
carefully writing down the relevant equations systematically; working
together with a classmate for this part is particularly recommended,
but don’t forget to acknowledge his/her help in your comments. Make
sure you number the variables in the appropriate order, so that you

3



recover your original answer when k = 1. The load is a vector whose
length depends on k (what is it?) and should be provided to the func-
tion as a second input parameter. Make sure you include plenty of
comments explaining the code. Test your function for the case k = 1,
k = 2 and k = 3 and carefully look at the output to see if it makes
sense before going on to the next part.

6. Solve the new system using a load vector that increases regularly like
this from left to right: 10, 20, 30, . . .. Print the computed internal force
vector x for k = 10 (as numbers, you don’t need to plot these values).

7. Sparsity: Use spy to display the nonzero entries in the matrix A for
k = 10. Is there a pattern? Does it make sense? Do the same for
A−1 (the inverse of A, computed by inv(A)) and the L and U factors
obtained from [L,U] = lu(A). By looking at L, seeing how close it is
to being lower triangular as opposed to permuted lower triangular, you
can see whether pivoting occurs in the LU factorization; does it? How
sparse are A−1, L and U , compared with the sparsity of A? Answer
this in some detail, comparing the four different spy plots.

8. Timing Comparsion: Experiment with how long it takes to solve the
system of equations for k that is large enough that timing comparisons

are meaningful (use timeit, not cputime). Compare the following:

• x=A\b

• getting x by first computing A−1 and multiplying it onto b

• getting x by first computing the L and U factors with lu and then
solving two triangular systems using \. (This is what is actually
going on when you type x=A\b as explained in class, so the timing
should be about the same.)

• the same 3 again, but with A set up as a sparse matrix; type help
sparse for information as to how this works; we will also discuss
this in class. This means editing your function that sets up A
accordingly; add an input parameter that determines whether A
is to be set up as a dense or sparse matrix.

How do the execution times compare? Does this relate to the sparsity
displayed in the spy plots?
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9. Timing When k is Increased: Compare the timings for the k which
you reported in the previous paragraph and the timings for larger values
of k. Do this just for solving with x=A\b, but for the two cases: A is
dense, and A is sparse. Plot the running times as a function of k, using
whatever format you think is informative. You can plot both running
times on one plot using legend.

Submit: listings of the Matlab functions, several plots of the original truss
under various loads, the plots generated by spy for k = 10, the derivation
of the equations, especially for the generalized truss, the output x for the
original truss and the generalized truss with k = 10, the plot of running times
as a function of k and answers to all the questions above. Carefully document
everything, showing which pictures go with which loads, etc. Staple the pages
together. Print color plots if possible; however, black and white printing is
OK as long as the bars under compression and under extension are clearly
distinguished.
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