Detectability of Certain Dark-Genome-Matter
Candidates
SUTTA Algorithms for Assembling Genomes Correctly

Bud Mishra

Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA

Jointly with Giuseppe Narzisi (Graduate Student, Courant)

B Mishra Detectability of Certain Dark-Genome-Matter Candidates



Whole-Genome Shotgun Sequence Assembly
A Phylogeny of Assemblers
Assembly Paradigms

[WGSA — GWAS] ; (

The Lo,

o uSwGwn ®HDX ¥
T g o ot o WA et e 2 s N,
G s s o W e s 2 3 s o .

swidg

The Stadics and Results

e
e d o gy
D tr o sk et vt

e avmoes st gty

enome-Matter Cal



Outline
Metho
Results
Conclusions and Discussions

Whole-Genome Shotgun Sequence Assembly
A Phylogeny of Assemblers
Assembly Paradigms

Dude, Where is my genome??

Human Genome Anniversary

with Francis Collins, Eric Lander and Nicholas Wade
in Science & Health

on Monday, July 12, 2010
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Discoveries Waiting!

MEDICINE

Revolution Postponed

The Human Genome Project has failed so far to produce the medical
miracles that scientists promised. Biologists are now divided over
what, if anything, went wrong—and what needs to happen next

By Stephen S. Hall
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Genomic Dark Matter

Quiality of the human genome sequence remains unassessed!

@ Most of the reference sequences are genotypic (i.e.,
non-haplotypic ) and lack long range information (i.e., fail to
characterize rearrangements, duplications, inversions a nd
translocations ).

@ Resequencing reveals about 30% of the resquenced reads not
aligning to the reference sequences: Genomic Dark Matter .

@ Optical Mapping , a highthroughput, high-resolution
single-molecule system reveals many previously unknown
genome structural variants  not captured in the reference
sequences (Teague et al.)

@ Genome-Wide Association Studies  based on the currently
available genomic data have proven inadequate in explaining
common diseases.

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Characterization of missing human genome sequences
and copy-number polymorphic insertions
Jeffrey M Kidd', Nick Sampas?, Francesca Antonacci', Tina Graves?, Robert Fulton®, Hillary S Hayden', Can Alkan',

Maika Malig!, Mario Ventura®, Giuliana Giannuzzi*, Joelle Kallicki®, Paige Anderson?, Anya Tsalenko?, N Alice Yamada?,
Peter Tsang?, Rajinder Kaul', Richard K Wilson’, Laurakay Bruhn? & Evan E Eichler'S

The extent of human genomic structural variation suggests that
there must be portions of the genome yet to be discovered,

genome for array probe design, a small fraction of the human

annotated and characterized L We present
a resource and analysis of 2,363 new insertion sequences
corresponding to 720 genomic loci. We found that a substantial
fraction of these sequences are either missing, fragmented
o misassigned when compared to recent de novo sequence.
assemblies from short-read next-generation sequence data.
We determined that 18-37% of these new insertions are
copy-number polymorphic, including loci that show extensive
population stratification among Europeans, Asians and Africans.
56 of
‘exons and conserved noncoding sequences not yet represented
in the reference genome. We developed a method to accurately
genotype these new insertions by mapping next-generation
sequencing datasets to the breakpoint, thereby providing a

genome effectively cannot be assaye
y

‘pair mapping approach®!1. We fragmented genomic DNA from
ine humans and subcloned 40-kb segments. Using standard
capillary sequencing, we generated reads from both ends of each

reference genome. Structural differences (inversions, deletions,
insertions and translocations) between the reference genome
assembly and the library source were identified on the basis of
the mapped location of the end-sequence pairs. As the individual
fosmid

discovery and complete sequence characterization of a subset
of structural variant loci including new insertion sequences
common to most individuals but not represented in the human

means to characterize copy-r regions previously
inaccessible to single-nucleotide polymorphism microarrays.

B Mishra

number analysis of these segments missing from the human
reference genome
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Hooplas, Hypes, Haplotypes

123456 78 91011121314151617181920 2122 X

Table 1. Optical map collection and assembly statistics
CHM _ GM15510 GM10850 _GM18994
input optical maps 416284 865759 1231212 1,280,081

Input optical map 6591 13905 21418 22082
coverage (fold)
Assembled opical 110344 237012 275198 301,584
maps
Assembled optical 1895 4185 5324 5768
2 map coverage
= (fold)
B Consensus maps 671 2915 3352 7,931
Average consensus 4094 3,139 3134 2574
= o | Niseing Cut I — map size (kb)
1M mE—— | Civ? 32 b S E— Sequence scaffold 9629 97.36 %862 %29
coverage (%)

@ Whole-Genome Human Optical Map (above) constructed by our
Gentig algorithm (Anantharaman, Mishra, Schwartz, 1999).
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A Mind is a Terrible Thing to Blow!

Eric S. Lander of Broad
Institute at M.LT. calls recent
progress “mind-blowing.”

B Mishra tectability of Certai Genome-Matter Candidates
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Shotgun Sequencing

@ The DNA sequence of an organism is sheared into a large
number of small fragments (8-10x coverage), the ends of
the fragments are sequenced (=~ 500 bp), then the
resulting sequences are joined together using a computer
program called assembler.

A7
\/

/// \\
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Shotgun Sequencing

@ Assume : If two sequence reads (strings of letters
produced by the sequencing machine) share the same
string of letters, then they must have originated from the
same genomic location.

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Greed is Good

Subprime Sequencing

@ Given a set of sequence fragments the object is to find
the shortest common supersequence.

Algorithm 1 : GREEDY - pseudo code
Input: Set of reads
Output : Set of contigs

Calculate pairwise alignments of all fragments;
Choose two fragments with the largest overlap;
Merge chosen fragments;
repeat

| step2.and3.
until only one fragment is left ;
return Set of contigs;

N~ o o bR w N e

@ This is a suboptimal approach, but it's our best idea!

@ Two other good ideas: OLC (Overlap-Layout-Consensus) and
SBH (Sequencing-By-Hybridization).

B Mishra Detectability of Certain Dark-Genome-Matter Candidates



Outline

Whole-Genome Shotgun Sequence Assembly
A Phylogeny of Assemblers

Assembly Paradigms

Name Algorithm Author Year
Arachne WGA OLC Batzoglou, S. et al. 2002 /2003
Celera WGA Assembler / CABOG OLC Myers, G. et al.; Miller G. et al. 2004 / 2008
Minimus (AMOS) oLC Sommer, D.D. et al. 2007
Newbler oLC 454/Roche 2009
OLC Hernandez D., et al. 2008
SUTTA B&B NYU/Abraxis (unpublished) 2009/2010
TIGR Greedy TIGR 1995/ 2003
Phusion Greedy Mullikin JC, et.al. 2003
Phrap Greedy Green, P. 2002 /2003 / 2008
CAP3, PCAP Greedy Huang, X. et al. 1999/ 2005
Euler SBH Pevzner, P. et al. 2001/ 2006
SBH Chaisson, MJ. et al. 2008
SBH Zerbino, D. et al. 2007 / 2009
ALLPATHS SBH Butler, J. et al. 2008
SBH Simpson, J. et al. 2008 /2009
SBH Ruigiang Li, et al. 2009
Prefix-Tree Dohm et al. 2007
Prefix-Tree Warren, R. et al. 2007
VCAKE Prefix-Tree Jeck, W. et al. 2007
QSRA Prefix-Tree Douglas W. et al. 2009
Sequencher - Gene Codes Corporation 2007
SegMan NGen - DNASTAR 2008
Staden gap4 package - Staden et al. 1991 /2008
MIRA, miraEST = Chevreux, B. 1998/ 2008
NextGENe - Softgenetics 2008
CLC Genomics Workbench = CLC bio 2008/ 2009

CodonCode Aligner - CodonCode Corporation 2003 /2009
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Toxic Assembly Recovery Program

Shortest Common Superstring Problem

Definition (Shortest Superstring Problem)

Given a set of strings {si, Sy, ..., Sn} find the shortest string T such
that Vi, s;j is a substring of T.

@ Firstissue : N'P-completenss! [Gallant et al. 1980]

@ Second issue : Incorrectly formulates the assembly problem!!

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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@ Unless P = NP, this incorrect formulation (SCSP) results
in an intractable problem...

@ “The shortest superstring problem, an elegant but
flawed abstraction: [since it defines assembly problem
as finding] a shortest string containing a set of given
strings as substrings.”

The Role of Algorithmic Research in Computational Genomics, Richard M. Karp

|IEEE Computer Society Bioinformatics Conference, August 14, 2003

B Mishra Detectability of Certain Genome-Matter Candidates
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Intractability

(NP-Completeness)

A class of problems having two properties:

@ Any given solution to the problem can be verified quickly (in
polynomial time); the set of problems with this property is called
NP (nondeterministic polynomial time).

@ Any NP problem can be converted into this one by a
transformation of the inputs in polynomial time.

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Conclusions and Discussions

Intractability

(NP-Completeness)

A class of problems having two properties:

@ Any given solution to the problem can be verified quickly (in
polynomial time); the set of problems with this property is called
NP (nondeterministic polynomial time).

@ Any NP problem can be converted into this one by a
transformation of the inputs in polynomial time.

@ There are thousands of important computational problems that
represent essentially one problem in many disguises!

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Intractability

(NP-Completeness)

For instance, think about sequence reads as “towns” and overlaps as
“roads:” Then Shortest Common Superstring problem is same as
visiting all the towns (never more than once) using the roads in a
minimum-distance tour.

SCSK= ShortestCommonSuperstringPjob
— HAM(TSP= TravlingSalesmanProblem
SAT(= Satisfiability)
LatinSquare
Sudoku

111

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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@ It is easy to verify if a solution of a Sudoku problem is
correct.

@ If you exhaustively try all possible configurations, you can
find the correct solution, surely. This takes very long
(exponential) time.

@ Nobody has (yet) a rigorous argument to convince us that
there might not be a better/efficient way to solve Sudoku.

@ Not all instances are hard: they range from easy, medium
and hard to devilishly hard.

@ But if you try to create a Sudoku puzzle at random, with
high probability, it will be easy to solve. Pathologically hard
instances can be hard to construct.

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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How to Cope with NP-Completeness

@ Tell the biologist to think about easier problems.

@ Come up with a simpler problem that vaguely looks like the
original problem. Solve the easy problem, even if it gives
the wrong solution. Tell the biologist to learn to live with
incomplete or incorrect solutions.

@ Work with the biologist to cheat. Design experiments and
technologies so that they only generate easy instances of
a hard problem. Solve them correctly.

@ Solve the problem by exhaustive search, but learn to
constrain the search space intelligently.

@ Try all of the above (+ kitchen sink)!

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Traveling Salesman Problem

A traveling salesman wishes to visit a given number of cities,
returning to the starting point in a tour. Each pair of cities incurs a
cost proportional to the distance between these cities. The Traveling
Salesman Problem (TSP) is to find a tour with minimum costs.

1994  Applegate, Bixby, Chvatal, Cook 7,397
1998 Applegate, Bixby, Chvatal, Cook 13,509 (USA tour)
2001 Applegate, Bixby, Chvatal, Cook 15,112 (D tour)

2004  App., Bixby, Chvatal, Cook, Helsgaun 24,978 (Swe tour)
2006  App., Bixby, Chvatal, Cook, Helsgaun 85,900

Table: TSP Competition.

@ These five largest instances were solved by Concorde which is
based on branch-and-cut .

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Traveling Salesman Problem: World Tour

B Mishra ili -Genome-Matter Candidates
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SAT Solver

@ Given a Boolean formula (in CNF), determine if, under
some truth-assignment, the formula will evaluate to true.
This is a classical NP-complete problem.

@ A DPLL SAT solver employs a systematic backtracking
search procedure to explore the (exponentially-sized)
space of variable assignments looking for satisfying
assignments. The basic search procedure is based on the
Davis-Putnam-Logemann-Loveland algorithm (DPLL). It
has a theoretically exponential lower bound.

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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SAT Solver

@ Modern SAT solvers come in two flavors: “conflict-driven”
and “look-ahead.”

@ Conflict-driven solvers augment the DPLL search algorithm
with efficient conflict analysis, clause learning,
non-chronological backtracking, “two-watched-literals” unit
propagation, adaptive branching, and random restarts.

@ Look-ahead solvers have especially strengthened
reductions (going beyond unit-clause propagation).

@ SAT Competitions: The conflict-driven MiniSAT (the 2005
SAT competition) only has about 600 lines of code. The

look-ahead solver mar ch_dl won a prize at the 2007 SAT
competition.

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Figure 4 Backbone fractions as a function of « for 2-SAT and 3-SAT. The datawere
extracted from 3,000-15,000 samples for the 2-SAT cases (on the left) with N
values of 20 (red), 30 (blue), 45 (green), 100 (black), 200 (light blue), and 500
(orange). The results for N <45 were obtained by exhaustive enumeration,
examining all assignments, while those for V= 100 used a modified Davis-
Putnam search procedure. The 3-SAT cases were studied by exhaustive enu-
merationin 7,500-30,000 samples for N values of 16 (red), 20 (blue), 24 (green), and
28 (black). The vertical lines mark the observed SAT/UNSAT thresholds in the limit
N — =.For2-SAT, data obtained from larger sizes showthat the backbone fraction
atthe threshold tends towards zero.
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Fragments and Overlaps

Fragments :
@ A set of fragments/reads F = {ry,rp,...,ry} St ri € {A,C,G, T }*.

@ Each read is represented as pairs of integers (si, €;),i € [1,|F|] where
1 < sj,e; < |R|, and R is the reconstructed string (the order of s; and e;
encodes the orientation of the read).

Overlaps :
@ Use Smith-Waterman algorithm to compute the best alignment between a pair of
strings.
A A Innie
TS e TS
M. .-
Ahang iy Ahang niinnm
\\\\\Q\&\§§\ B hang \\\\\\\\§§\§\ B hang
g g n§ ng
Normal B B

B Mishra tectability of Certai Matter Candidates
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Layout Representation

@ Let us define the layout L associated to a set of reads F = {ry,rp,...,ry} as
follows:
T T T TN—1
L:rlérz:zr3:3--~ = Iy 2)

where there are no containments (contained reads can be initially removed and
then added later after the layout has been created)

Definition (Consistency Property)

A layout L is consistent if the following property holds fori =2,... ,N — 1:

Ti—1 T

= = iff suffix,_,(r) # suffix; (r;) )

@ The estimated start positions for each fragment are given by:

sp1 =1, spj=spi_1+m_1.hang; , ifi>1 3)

B Mishra Detectability of Certai Genome-Matter Candidates
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Layout Representation
(Example)

Layout for a set of fragments F = {A,B,C,D,E,F,G} with a
sequence of overlaps 7y gy, Mg s Mc 0y T(D.E) T(E.F): T(F.G)

A

NNy
SOOANNNNNNNNNNN

S
g
NN D
AN

E\\ NN \§ E

>
NN Ny

B Mishra Detectability of Certain k-Genome-Matter Candidates
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Definition (Sequence Assembly Problem)

Given a collection of fragment/reads F = {rj}[\, and a
tolerance level (error rate) ¢, find a reconstruction R whose
layout L is e-valid , consistent and such that the following set of
properties (oracles) are satisfied :

@ Overlap-Constraint (O) : The cumulative overlap score of
the layout is optimized.

NP-completeness of this formulation becomes a serious Issue.

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Problems Related to Genome Structure

Repeats

@ If we look for a reconstruction of minimum length, the
reconstructed string can have many errors due to repeats.

A R, B R, c

Correct Assembly

Mis—assembly

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Greedy Strategy

(TIGR 1995, Phrap 1996, CAP3 1999)

@ Pick the highest scoring overlap.
@ Merge the two fragments (add this new sequence to the pool of sequences).
@ Heuristically correct regions of the overlay in some plausible manner (whenever
possible).
@ Regions that do not yield to these error-correction heuristics are abandoned as
irrecoverable and shown as gaps.
@ Repeat until no more merges can be done.
A A
B B
B
35 c
T S i
D
C
D 3
B 35
c 75

B Mishra ili i d -Matter Candidates
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Overlap-Layout-Consensus
(CELERA 2000, Minimus 2007)

@ |dea: Construct a graph in which nodes represent reads and edges indicate
overlaps.

@ Goal: Need to solve for a Hamiltonian path !

@ Strategy :
@ Remove contained and transitivity edges.
@ Collapse "unique connector" overlaps (chordal subgraph with no
conflicting edges).
@ Use mate-pairs to connect and order the contigs.

B Mishra
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Sequencing by Hybridization

(EULER 2001, Velvet 2008)

@ |dea: Break the reads into overlapping n-mers (an n-mer is a
substring of length n). Build a DeBruijn graph in which each
edge is an n-mer and the source and destination nodes are
respectively the n — 1 prefix and n — 1 sulffix of the
corresponding n-mer.

@ Goal: find a path that uses all the edges (an Eulerian path) —
linear time algorithm (however actual performance similar to the
overlap-layout-consensus approach).

@ Problem : Errors in the data can introduce many erroneous
edges !

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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DeBruijn graph for the list
L = {AAA,AAC,ACA,CAC,CAA,CGC,GCG}. The Euler path is:
AC - CA—-AC - CG —-GC —-CA—-AA - AC

B Mishra Detectability of Certain k-Genome-Matter Candidates



Outline Whole-Genome Shotgun Sequence Assembly

A Phylogeny of Assemblers
Assembly Paradigms

Variety of Sequencing Technologies

Parameters under control : Read Length, Resolution, Accuracy,
Throughput, and Latency

@ Dideoxy chain termination to measure lengths (base positions):
Accuracy in length requires large number of clonal copies.
Problems: Distribution of PCR clones, measurements by
electrophoresis, volume, Joule heating and throughput...
(SANGER)

@ Small number of clones, Synchronized chemical reactions
(pyrosequencing, pH measurments, etc.).
Problems: Homopolymers, Phasing (fading, leading and
lagging), etc. (lllumina, lon Torrent, 454,...)

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Variety of Sequencing Technologies

@ Single Molecule...

@ Immobile Molecules:
Problems: surface chemistry, sample preparation, sensor
size and speed... (Optical Sequencing, SMASH, Helicos,
Life Technology, PacificBio)

@ Mobile Molecules:
Problems: nanopore detection, processivity, sample
preparation, molecule size and speed... (Oxford Nanopore)

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Next Generation

@ Greedy algorithm is competitive (within a factor of four).

@ Let G be a weighted directed graph induced by the nodes
representing the reads and edges representing the overlaps
(with their weights determined by overhangs).

CYC(G) < MWHC(G) < Opt(S),

An optimal Cycle Cover has a smaller weight than that of a
minimal weight Hamiltonian Cycle of the graph.

@ Furthermore, if T is the solution of the greedy algorithm then
Opt(S) < |T| < 3CYC(G) + Opt(S) < 40pt(S).

Note: if the genome is completely random, then
[T]=(1+0(1))Opt(S).

@ Try to create better Cycle Cover. . . As few contigs as one can.

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Higher Coverage ... Shorter Reads

Massively parallel sequencing platforms such as:
@ lllumina, Inc. Genome Analyzer,
@ Applied Biosystems SOLID System, and
@ 454 Life Sciences (Roche) GS FLX
@ lonTorrent Sequencer
Features:
@ Typical read size 35-500 bps. Poorer quality base-calls
@ Very high coverage (up to 200X).
@ Need to assemble millions of reads!

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Raw Coverage vs. Effective Coverage

_ LN
@ Raw coverage depth ¢ = %5 where

G = Genome length (in bp).

L = Average length of a fragment.

N = Number of fragments.

K = # base pairs two fragments must have in common to
ensure their overlap (overlap parameter).

© ¢ ¢ ¢

@ Effective coverage

B N(L — K)
Ce="7G
S. aureus

@ Raw coverage ¢ = Y = 48X

o Effective coverage ce = M) = 14x

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Higher Effective Coverage

@ As the read-length increases, the needed overlap ratio
parameter gets smaller.

@ Even better: shorter repeats and haplotype ambiguities
become less of a problem.

@ However, in order to get better quality in base calling, it
becomes necessary to develop single-molecule methods
that can detect chemistry at single base resolution.

@ Cost of sample preparation and high resolution sensing!
@ How about low-cost low resolution approaches:

@ Optical Mapping (Restn. or Nicking enz. or probes)
@ Mate-pairs (with multiple-length clones)

@ Strobed sequencing

@ Dilution

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Optical Maps

@ Whole-Genome Optical Map: Ordered Restriction Map;
Markers are restriction sites; usually represented by an ordered
sequence of restriction fragment length.

@ Statistical algorithms (e.g., Gentig [AMS-1999] and
Haptig [AM-2005]) construct accurate consensus map, even if
the raw input suffers from many corrupting error processes (e.g.,
sizing, partial digestion, desorption, false-cuts, etc.)

@ Gentig and Haptig integrate nicely with SUTTA assembler in a
technologically agnostic manner.

B Mishra Detectability of Certain Dark-Genome-Matter Candidates
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Optical Maps

Step 3: Fluorescent intensity is
Step 1: E. coli microbial cells measured to determine fragment
sizes while fragment order is

maintained.

: Genomic DNA,

captured as single DNA molecules
praduced by random breakage of
intact chromosomes.

Overlapping single molecular maps
are assembled to produce a highly
(right): Digestion reveals accurate whole genome restriction

cleavage sites as "gaps.” map.

Genome-Matter Ca
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Optical Maps

© Model Parameters

k = #Cuts
m = # Symmetric Cuts
L = Lengthof the Clone in bps
& = Length of the Discretized Subintervals in bps
pe = Partial Digestion Rate
A = Spurlous Cut, Poisson Parameter
pe = Cutting Rate of the Enzyme

© Theorem

Assume that the sizing error o = 0.

Let ¢ be a positive constant and ¢ > 1 be so chosen that
1-e 27" = ¢ Then for

e o
c+?\nk]
pe 1

18 ctinm 1 ( E )
n3> = I m; LT (e —
_P:maxlc+2n(k+ ) el oy
(c+In(L/24 - k=m)),
(k> c+ink, m > 1, L> 24 and )y < pL/SA), with
probability at least 1 ¢, the comect ordered restriction map
can be computed in O(nk?) time.
When

In(L/a)

Ik vi) : ax [in i, In 2], IELB).
* In(L/38)

M| o pe) A k-1

(k>1.m>1, L>A and 0 < p, < 0.69), no algorithm can
compute the correct ordered restriction map with probability
better than half.
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Transcriptomics

@ MMC (Molecular Morse Codes): Single Molecule Single Cell AFM-Based
Transriptome profiling

Topographic Profiles Matched to Sequences

Raw Data

Clustered Data

Sequences (1-15) Sequences (1-15)

m2
Height profie of g oAt AN A
single
molecules 14 A

Molecules (1500)
Molecules (1500)

ms o MA A

mRNA Sequence |_|.H‘*—|
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Wicked Problem

@ The Sequence Assembly problem is an A"P-hard combinatorial
optimization problem.

@ The Sequence Assembly problem is claimed to have been successfully
(but approximately) solved using greedy and heuristic methods; the
greedy approaches exhibit many limitations and low flexibility.

@ “Fast” Brute-Force global optimization of the sequence assembly
problem is possible!

@ SUTTA outperforms many assembly algorithms on bacterial genomes.

@ SUTTA has the potential to assemble haplotypic whole-genome
sequences.

@ SUTTA is technology-agnostic: if the sequencing technology changes,
just change the score function.
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Outline Whole-Genome Shotgun Sequence Assembly

A Phylogeny of Assemblers
Assembly Paradigms

Regroup, Reformulate and Attack

Definition (Sequence Assembly Problem)

Given a collection of fragment/reads F = {r; }i’\‘:1 and a tolerance level (error rate) e,
find a reconstruction R whose layout L is e-valid , consistent and such that the
following set of properties (oracles) are satisfied :
@ Overlap-Constraint (O) : The cumulative overlap score of the layout is optimized.
@ Local-Read-Distribution-Constraint (R) : The observed distribution of fragment
reads start point, Dyps, has the minimum deviation from the source distribution
DSTC

@ Mate-Pair-Constraint (M) : The distance between mate-pairs is consistent.

@ Optical-Map-Constraint (OM) : The observed distribution of restriction enzyme
sites, Cqps IS consistent with the distribution of experimental optical map data
CS[C-

Constrained Optimization : We suggest an approach that can combine and use all
the oracles while searching the optimal layout.
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Outline

9 Methods
@ SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
@ Algorithmic Improvements
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Methods SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
Algorithmic Improvements

NP-Easy

De Novo Genome Assembly

@ SUTTA’s approch

© Could potentially lead to an exhaustive search over all
possible overlays;

© Tames the computational complexity through a constrained
search (Branch-and-Bound) by identifying implausible
overlays quickly;

© Uses a score-function (oracle) combining different structural
properties (e.g., transitivity, coverage, physical maps, etc).
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Methods SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
Algorithmic Improvements

SUTTA

Illustration

@
2 Start node
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@ First generate LEFT and RIGHT trees for the start read.
@ Next, the best LEFT path is concatenated with the root and the best RIGHT path
to create a globally optimal contig.
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Methods SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
Algorithmic Improvements

SUTTA

Pseudocode

Algorithm 2 : SUTTA - pseudo code
Input : Set of N reads
Output : Set of contigs

1 F:=0Q; /* Forest of D-trees */
2C=0; I+ Set of contigs */
3 B:=UN{n}; /= Al the available reads =/

4 while (B # @) do

5 r := B.getNextRead();
6 if (—isUsed(r) && —isContained(r) ) then
7 DT = create_double_tree(r);
8 F:=Fu{DT};
9 Contig CT G := create_contig(D7);
10 C:=CuU{CTG};
11 CT G.layout(); /+ Conpute contig |ayout */
B:=B\{CTGreads}; /* Renpve used reads */
12 else
| /* junp to next available read */
13 end
14 end

15 return C;




Methods SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
Algorithmic Improvements

Node expansion
(High-level Description)

© Start with a random read (It will be the root of a tree; Use only
the read that has not been "used" in a contig yet, or that is not
"contained").

@ Create RIGHT Tree: Start with an unexplored leaf node (a read)
with the best score-value; Choose all its non-contained
"right"-overlapping reads and expand the node by making them
its children; Compute their scores. (Add the "contained" nodes
along the way, while including them in the computed scores;
Check that no read occurs repeatedly along any path of the
tree). STOP when the tree cannot be expanded any further.

© Create LEFT Tree: Symmetric to previous step.
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Algorithmic Improvements

Node expansion
(Branch-and-Bound)

Algorithm 3 : Node expansion

Input : Start read rp, max queue size K, percentage T of top
ranking solutions

Output : Best scoring leaf

17 :=0; /* Set of |eaves */
2 L£:={(r0,9(r0))}; /* Live nodes (priority queue) */
3 while (£ # @) do
4 L = Prune(L,K,T); /* Prune the queue */
5 | ri:=L.getNext();/* Get the best scoring node */
6 L:=L\{n};
7 if (no reads align with r;) then
8 | T:=Tu{n}k I+ riis aleaf */
9 else
10 Add contained reads to r;;

/+ Branch on r generating r,f,...r, */
1 for (j=1to M) do
12 | £:=Lu{(n,9(r)}
13 end
14 end
15 end

16 return max,er {g(r)}




Methods SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
Algorithmic Improvements

Overlap Score
(Weighted transitivity)

@ Idea: if read A overlaps read B, and read B overlaps read C, we will
score those overlaps strongly if in addition A and C also overlap. This
implicitly assumes that the coverage is higher than 3.

it (map ATE.c)t hen{SW(A,B.c) = SW(A.B) + SW(B,C) + (W(Avc)?SW(A,C) ‘ 0(21})

B hang

& : e c
@ A simple generalization for higher coverage is obvious.

@ This score cannot resolve repeats or haplotypic variations. Solution:
augment the score with information for mate-pairs distances or optical
map alignment to put an appropriate reward/penalty term.
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Methods SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
Algorithmic Improvements

Strategy for selecting next sub-problem

Problem : trade-off between keeping the number of explored nodes in
the search tree low and staying within the memory capacity.

@ Best First Search (BeFS): always select among the live subproblems the one
with best score.

0 Memory problems can arise since this strategy behaves similarly to a
Breadth First Search (BFS).

9 Checking repeated nodes in a branch is computationally expensive (linear
time).
Theoretically superior: whenever a node is chosen for expansion, a
best-score path to that node has been found.

@ Depth First Search (DFS): always select among the live subproblems the one

with largest level in the search tree.

Memory requirements are bounded by depth x branching.
Use depth-first search interval schemes to check if a read occurs
repeatedly along a path (constant time).

Solution : combined strategy. DFS + BeFS.
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Methods SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
Algorithmic Improvements

Transitivity pruning

@ Observation : do not waste time expanding nodes that
create suffix-paths of a previously created path.

@ |dea: delay expansion of the "last" node/read involved in a
transitivity relation.

By

The expansion of nodes By, Bs, . . ., Bn can be delayed because their overlap with read

Ais enforced by read B; (hy < hy <--- < hp).
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Methods SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
Algorithmic Improvements

Lookahead

Using Long Range Information

@ Scenario : A potential repeat boundary between reads A, B and C. Read A
overlaps both reads B and C, but B and C do not overlap each other.

@ Observation : No decision can be made at this point on which read to
keep/prune.

@ |dea: Chose between reads A and B based on how well the mate-pairs in their
subtree satisfy the length constraints.

Start node
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Methods SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
Algorithmic Improvements

Staphylococcus Epidermidis - 2,616,530 bp

(SUTTA DotPlot)
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@ (left plot) no lookahead; (right plot) with lookahead.

Num. of reads: 60, 761; Avg read length: 900.2; Coverage: 19.9X
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Algorithmic Improvements

Hard instances
(SUTTA DotPlot)

@ Chromosome 22 - 5Mbp (simulated reads)
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Num. of reads: 62, 542; Avg read length: 799.5; Coverage: 10X




Methods SUTTA: Scoring-and-Unfolding Trimmed Tree Assembler
Algorithmic Improvements

Wicked Problem

@ The Sequence Assembly problem is an A"P-hard combinatorial
optimization problem.

@ The Sequence Assembly problem is claimed to have been successfully
(but approximately) solved using greedy and heuristic methods; the
greedy approaches exhibit many limitations and low flexibility.

@ “Fast” Brute-Force global optimization of the sequence assembly
problem is possible!

@ SUTTA outperforms many assembly algorithms on bacterial genomes.

@ SUTTA has the potential to assemble haplotypic whole-genome
sequences.

@ SUTTA is technology-agnostic: if the sequencing technology changes,
just change the score function.
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Outline

Q Results

@ Assembly comparison
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Benchmark data

Genome Length (bp) #reads avg.read Coverage
length (bp)

Brucella S. 3,315,173 36,276 895.8 9.8

Wolbachia Sp. 1,267,782 26,817 981.9 20.7

Staphylococcus E. 2,616,530 60,761 900.2 19.9

Table: Bacteria benchmark data.

These bacteria have been sequenced and fully finished at TIGR, and all the
sequencing reads generated for these projects are publicly available at both
the NCBI Trace Archive, and from the CBCB website®.

Lwww.cbch.umd.edu/research/benchmark.shtml
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Assembly comparison

Genome Assembler # contigs # big contigs Max contig Mean big contig N502 Big contig
(>10 kbp) size (kbp) size (kbp) (kbp) coverage (%)
Brucella Minimus 203 101 89 30 32 93.1
Suis TIGR 108 67 182 48 57 98.8
CAP3 1321 85] 18 12 4 12.7
Euler 238 108 82 25 25 82.2
Phrap 54 23 434 126 199 103.2
SUTTA® 73 53 268 62 79 99.2
SUTTA? 73 45 396 72 98 98.4
Wolbachia Sp. Minimus 1545 37 16 13 2 40.7
TIGR 1080 46 46 20 5 73.6
CAP3 1661 1 10 10 2 0.7
Euler 615 0 6 0 1 0
Phrap 2253 55 64 22 1.8 98.5
SUTTA® 1089 39 87 26 6 80.8
SUTTA? 1068 27 181 39 6 83.5
Staphylococcus Minimus 425 86 119 10 19 80.7
Epidermidis TIGR 94 38 230 68 100 99.8
CAP3 1219 39 21 13 5 20.2
Euler 116 54 149 44 55 915
Phrap 86 22 357 123 183 103.9
SUTTA® 65 33 268 78 98 98.7
SUTTA? 64 24 756 108 148 99.1
2

N50 = length L¢ of the largest contig such that the sum of contigs of equal length or longer is at least 50% of

the total length of all contigs.

etectabili




Assembly comparison

Results

Brucella Suis - 2 chromosomes of 2,107,792 and 1,207,381 bp
(Minimus DotPlot)

Minimus’s conservative strategy fails to create long contigs.

sevezn

seoazor

Num. of reads: 36, 276; Avg read length: 895.8; Coverage: 9.8X
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Results

Brucella Suis - 2 chromosomes of 2,107,792 and 1,207,381 bp
(Phrap DotPlot)

Phrap’s aggressive strategy creates many mis-assemblies.

brucel 12, seq. Cont 953

B gl | : 389: 81§42
“brucel 1. seq. Conti g42

e 1 3.389. Gl 948

8RB gk

B bl S

brucel | a. seq. Cont i g51 /

seovezes
seorease

Num. of reads: 36, 276; Avg read length: 895.8; Coverage: 9.8X
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Brucella Suis - 2 chromosomes of 2,107,792 and 1,207,381 bp
(SUTTA DotPlot)

seovease
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Num. of reads: 36, 276; Avg read length: 895.8; Coverage: 9.8X
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Results

Staphylococcus Epidermidis - 2,616,530 bp

(TIGR DotPlot)

TIGR’s greedy strategy fails to join some of the contigs and produces few mis-assemblies.

S A R

Num. of reads: 60, 761; Avg read length: 900.2; Coverage: 19.9X
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Staphylococcus Epidermidis - 2,616,530 bp

(Phrap DotPlot)

Phrap’s greedy strategy fails to join some of the contigs and produces many mis-assemblies.
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Staphylococcus Epidermidis - 2,616,530 bp

(SUTTA DotPlot)
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Num. of reads: 60, 761; Avg read length: 900.2; Coverage: 19.9X
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Feature-Response curve

(motivation)

@ Too often assemblies have been judged only by contig size, with larger contigs
preferred without regard to quality. A new and more reliable metric needs to be
devised.

@ |Inspired by the standard receiver operating characteristic (ROC) curve, the
Feature-Response curve characterizes the sensitivity (coverage) of the
sequence assembler as a function of its discrimination threshold (number of
features/errors).

@ Features include:

@ (M) mate-pair orientations and separations,
K) repeat content by k-mer analysis,
) depth-of-coverage,
P) correlated polymorphism in the read alignments, and
B) read alignment breakpoints to identify structurally suspicious regions
of the assembly.

°
° (C
°
° (
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Results

Feature-Response Curve

(computation)

Coverage (%)

@ For a fixed feature threshold ¢, the contigs are sorted by size and, starting from
the longest, only those contigs are tallied, if their sum of features is < ¢.

@ For this set of contigs, the corresponding genome coverage is computed, leading
to a single point of the Feature-Response curve.

Feature-Response curve comparison on Brucella Suis (not mate-pairs) Feature-| ponse curve on the
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Wicked Problem

@ The Sequence Assembly problem is an N/P-hard combinatorial
optimization problem.

@ The Sequence Assembly problem is claimed to have been successfully
solved using greedy and heuristic methods; the greedy approaches
exhibit many limitations and low flexibility.

@ “Fast” Brute-Force global optimization of the sequence assembly
problem is possible!

@ SUTTA outperforms many assembly algorithms on bacterial genomes.

@ SUTTA has the potential to assemble haplotypic whole-genome
sequences.

@ SUTTA is technology-agnostic: if the sequencing technology changes,
just change the score function.
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Short-Read Overlapper

Idea: use exact matching

@ allowing approximate matching (using dynamic
programming) would significantly increase the number of
nonspecific spurious overlaps (sequencing errors)

@ drastically faster than approximate matching
Implementation : Trie data structure (prefix-tree)

@ index the non-redundant read data set by a prefix-tree
(both forward and reverse complement).

@ find overlaps by simple in-order traversal of the tree.
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Short-Read Overlapper

illustration

Prefix-Tree

B Mishra

Set of overlapping reads
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Comparison of assemblies

short read data

o Only contigs > 100 bp.
@ correct contig (S. aureus): aligned along its whole length with at least 98% base similarity.
@ correct contig (E. coli): fewer than 5 consecutive base mismatches at the termini and at least 95% base

similarity.
Genome Assembler # correct # misassembled N50 Mean Max Coverage
(mean) (kbp)  (kbp)  (kbp) (%)
S. aureus SUTTA 998 11 6.0 2.6 22.8 97
Edena (strict) 1122 0 6.0 2.6 25.7 98
Edena (nonstrict) 733 14 9.4 3.7 51.8 97
Velvet 1093 2 5.4 285 22.9 98
SSAKE 2334 99 2.0 1.2 12.6 97
SHARCGS 3632 3 1.2 0.76 8.6 97
E. coli SUTTA 423 7 (18.8) 22.7 10.2 84.5 98
(K12 MG1655) ABySS 220 13 (33.2) 45.3 20.2 173.8 99
Edena (strict) 674 6 (13.2) 16.4 6.6 67.1 99
Velvet 277 9 (52.3) 54.3 15.9 164.2 98
SSAKE 893 38 (5.8) 11.4 4.9 50.6 99
EULER-SR 190 26 (37.8) 57.4 21.1 174.0 99
SOAPdenovo 182 5(n.a.) 89.0 25.0 n.a. n.a.

N50 = the largest number L such that the combined length of all contigs of length > L is at least 50% of the total

length of all contigs.
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Results

N50 vs. min overlap size k

@ The min overlap length k is a determinant parameter and its
optimal setting strongly depends on the data (coverage).

@ Trade-off between number of spurious overlaps and lack of
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Wicked Problem

@ The Sequence Assembly problem is an N/P-hard combinatorial
optimization problem.

@ The Sequence Assembly problem is claimed to have been successfully
solved using greedy and heuristic methods; the greedy approaches
exhibit many limitations and low flexibility.

@ “Fast” Brute-Force global optimization of the sequence assembly
problem is possible!

@ SUTTA outperforms many assembly algorithms on bacterial genomes.

@ SUTTA has the potential to assemble haplotypic whole-genome
sequences.

@ SUTTA is technology-agnostic: if the sequencing technology changes,
just change the score function.
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Genomics Redux

@ Whole-Genome Haplotypic Sequence Assembly:
@ Cost: High-Throughput Short Reads and Low-Resolution
Single Molecule Maps
@ Methylation-Sensitive Restriction Maps
@ Epigenetics, Rare variants, de novo mutations, structural
variants, and much more... (with haplotype phasing)
@ 4,000 — 10,000 Haplotypic References from a
Well-sampled Population
@ Distribution of de novo mutations
@ Out-of-Africa (North-West Africa, Arabian Peninsula,
Southern and South-East Asia, Australasia)
@ Indian Subcontinent

© Characterization of Genomic and de novo Variants,
Selective Sweeps and Population Dynamics
© Phenotyping!! [Causality Analysis...]
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[End of Talk]

@ Puzzle: A shotgun assembly of few words.

” ” o

@ WordList: “assembled,” “completely,” “correct,
“human,” “in-," “is,” “only,” “sequence,” and “the.”

genome,”
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[End of Talk]

@ Puzzle: A shotgun assembly of few words.

@ WordList: “assembled,” “completely,” “correct,
“human,” “in-," “is,” “only,” “sequence,” and “the.”

genome,”

@ WordAssembly: “the human genome sequence is correct,
only incompletely assembled;”
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[End of Talk]

@ Puzzle: A shotgun assembly of few words.

@ WordList: “assembled,” “completely,” “correct,” “genome,”
“human,” “in-," “is,” “only,” “sequence,” and “the.”

@ WordAssembly: “the human genome sequence is correct,
only incompletely assembled;”

@ Other Solutions: “the only assembled human genome
sequence is completely incorrect;”
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[End of Talk]

Puzzle: A shotgun assembly of few words.

WordList: “assembled,” “completely,” “correct,” “genome,”
“human,” “in-," “is,” “only,” “sequence,” and “the.”

WordAssembly: “the human genome sequence is correct,
only incompletely assembled;”

Other Solutions: “the only assembled human genome
sequence is completely incorrect;”

Other Solutions: “only, correct the assembled sequence;
genome is completely inhuman.”
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