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Can it then be that there is... something of use for unraveling the universe to be
learned from the philosophy of computer design?
— J.A. Wheeler, Int. J. Theor. Phys., 21 557 (1982).

1 Introduction

As new approaches continue to be developed for the purpose of using biological ma-
terial to solve difficult computational problems, several fundamental questions are
beginning to be asked: Are these techniques practical? What are the key applica-
tions? Do these techniques scale to larger problems? Ultimately, is this a productive
endeavor? Do they provide us more than few elegant theoretical insights into the
nature of computation?

Before answering these questions, it may be fruitful to examine the following
quote from Richard Feynmann, as it reflects on similar questions in the context of
quantum-mechanical computers:

“The discovery of computers and the thinking about computers has turned
out to be extremely useful in many branches of human reasoning. For
instance, we never really understood how lousy our understanding of
language was, the theory of grammar and all that stuff, until we tried to
make a computer which would be able to understand language. We tried
to learn a great deal about psychology by trying to understand how com-
puters work. There are interesting philosophical questions about reason-
ing, and relationship, observation, and measurement and so on, which
computers have stimulated us to think about anew, with new types of
thinking. And all I was doing was hoping that computer-type of thinking
would give us some new ideas, if any are really needed.”

— R. Feynmann, “Simulating Physics with Computers,”
Int. J. Theor. Phys., 21 pp 486, (1982).
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In a similar vein, we will put forth our arguments that, while the approaches of
biocomputing is based on several classical biotechnological tools such as restriction
activities, hybridization, ligation, PCR and cloning — just to name a few —, ulti-
mately the reasoning and design style emerging in the field of biocomputing will
lead to more sophisticated, robust and high through-put biotechnology. Or at least,
that is one aspect of the approach that should not be overlooked.

In order to develop these ideas, we will look at just one application, involving
comparison of two related genomes. This problem has many applications in can-
cer research and was originally developed in collaboration with my colleague Mike
Wigler and his laboratory at Cold Spring Harbor. But the description here will
simply focus on the computational aspect of the problem and uses some ideas from
a recent paper by Casey, Mishra and Wigler [4].

2 Comparing Genomes

The motivation for the problem, we describe below, comes from our efforts to un-
derstand the genetic basis of cancer. Roughly, in order to deduce what makes a
cell go into uncontrolled growth, we need to focus on the genes involved in a cell
making important decisions about growth, growth arrest and apoptosis (cell death).
The genes involved in these processes fall into two categories: about one hundred
oncogenes and about a thousand tumor suppressor genes.

The way a healthy cell deviates from its normal function to initiate tumor forma-
tion is caused by various changes to the genome: amplifications, deletions, translo-
cations and point mutations. Both amplification and deletion result in fluctuations
of the copy-number of the genes: either increase in case of amplification or decrease
in case of deletion. Thus detection of regions of amplification can lead us to the
locations of oncogenes and regions of deletion, to tumor suppressor genes. Thus the
differences between the genomes from healthy tissue versus cancer tissue tell us a
lot about where the oncogenes and tumor suppressor genes may be located.

However, comparing two genomes rapidly appears to be an elusive goal. Re-
cently, Hanahan and Weinberg stated pessimistically:

“At present, description of a recently diagnosed tumor in terms of its
underlying genetic lesions remains a distant prospect. Nomnetheless, we
look ahead 10 or 20 years to the time when the diagnosis of all somatically
acquired lesions present in a tumor cell genome will become a routine
procedure.”

— D. Hanahan and R. Weinberg, Cell, 100: 57-70, (2000).

Clearly, we cannot simply sequence the genomes completely and compare, as
such an approach will not be cost-effective for the foreseeable future. Instead, we
focus on a randomized approach, quite common in the field of computer algorithms.
We can sample the genome uniformly to create a large number of probes (150,000)
located every 20 Kb (expected distance) and each probe, almost surely unique.
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These probes are short subsequences of length 200 to 1200 base pairs and come
from the regions of genomes that do not share “homologous” sequences somewhere
else in the genome. Our approach then reduces to determining the relative locations
of these probes in the two genomes: in terms of their relative ordering, in terms of
their presence (possibly multiple times) or absence, or just, in terms of the changes
to their relative distances within a small chromosomal region.

Thus, if we can create an inexpensive biotechnological method to measure the
distances between any two probes, then the focus of our research moves to the al-
gorithmic problem of finding the locations of these probes along the two genomes,
or even the simpler problem of determining when the relative locations of a small
group of closely clustered probes are perturbed from one genome to another. Of
course, the bio-chemical method we will develop will also be exposed to the corrupt-
ing effects of many independent error sources and modeling these errors will be a
key challenge for us.

The fundamental idea of our algorithm, which localizes the probes along the
genome, is based on the simple observation that if one can determine the pair-
wise distances among all the probes, then one can place these probes along the
genome correctly. If the distances are known accurately, then for any three probes
a triangle-equality is satisfied and with the known locations of any two of the three
probes, the location of the third probe is uniquely determined. When the pair-wise
distance data are inaccurate, then the triangle-equality (and other similarly higher-
order constraints) will be violated and the distance data is inconsistent. Thus, the
algorithmic question becomes: “How can the distance-data be minimally perturbed
so that they become consistent?” and such a question can be formulated as an
optimization problem for a weighted sum-of-square cost function. Although, in the
most pathological context, such problems can be computationally infeasible, we have
developed a simple almost-linear-time probabilistic algorithm that works well for a
carefully designed experiment (e.g., choosing the expected number of probes per
clones and number of hybridization experiments, etc.) [4]

Thus the focus of our research moves to the following key questions: How do we
model the errors in the distance function and how do we design the parameters of
the experiments?

Roughly, a single biochemical hybridization experiment (conducted with a mi-
croarray) assigns a discrete value (a “color”: B = Blank, R = Red, G = Green and
Y = Yellow) to each probe. A sequence of such experiments will assign a “color
vector” to each probe and the number of places in which these color vectors dif-
fer for any two probes will give us a clue about the distance between these two
probes. Thus the distance metric between two probes is derived from a Hamming
distance between every pair of color vectors assigned to the probes. As we conduct
a succession of these hybridization experiments, the Hamming distance between two
probes is incremented by one every time the probes disagree on the outcomes of any
hybridization experiment. Thus the probabilistic modeling of the errors in distance
simply involves deriving a conditional probability that the two probes will disagree
in an experiment given that they are some given distance apart.

September 2001 Comparing Genomes-Mishra o 3



3 Tools of the Trade

We start with some biological background, leading to three key biotechnological
tools: The tools of our trade. The usual configuration of DNA is in terms of a
double heliz consisting of two chains or strands coiling around each other with two
alternating grooves of slightly different spacing. The “backbone” in each strand is
made of alternating big sugar molecules (Deoxyribose residues) and small phosphate
molecules.

One of the four bases (the letters in an alphabet ¥ = {A, T, C, G}), each one
an almost planar nitrogenic organic compound, is connected to the sugar molecule.
The bases are: adenine (A), thymine (T), cytosine (C) and guanine (G). So, if one
reads the sequence of bases then that defines the information encoded by the DNA.
Complementary base pairs (A-T', and C-G) in the two strands are connected by hy-
drogen bonds and the base-pair forms an essentially coplanar “rung” connecting the
two strands. This Watson-Crick complementarity is what makes a DNA chemically
inert and mechanically stable, and hence, an ideal molecule for various mechanical
and computational devices.

However, these DNA molecules can be manipulated with various biochemical
tools: Scissors, Glues and Copiers.

e Scissors, Restriction Activity: Type II sequence specific restriction endonu-
cleases are enzymes that can “cut” a double-stranded DNA by breaking the
phosphodiester bonds on the two DNA strands at specific target sites on the
DNA. These target sites or “restriction sites” are determined completely by
their base-pair composition—usually, a very short sequence of base-pairs with
their lengths varying from 4 to 8. For instance, the restriction enzyme Hpa
IT will cut the DNA anywhere there is an occurrence of the tetranucleotide
CCGa.

The type I restriction endonucleases evolved in nature as the bacterial immune
system against the viral DNA; bacteria use these enzymes by cleaving (or
“restricting” the activity of) invading foreign DNA.

The enzymes have been extremely useful in biotechnology as biochemical “scis-
sors” and biochemical “markers” as they always cut DNA at the same short
specific patterns (of length 4, 6 and 8). In our application, we will use restric-
tion enzymes to cut a genome into small pieces and then only select a subset
of these fragments for further use as probes. As a result, the probes generated
this way are reproducible, reliable and consistent. Furthermore, parallel rep-
resentations (probe sets selected from two genomes) preserve gene ratios and
hence provide a crucial tool for our application.

e Glues, Ligation and Hybridization: In contrast, DNA ligase is a cellular en-
zyme that can join two strands of DNA molecules by repairing a phosphodi-
ester bonds. We will not make explicit use of DNA ligases in our application
here, but it enjoys wide-spread usage as a key biotechnological tool.
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Our focus will be on the process of hybridization, which uses hydrogen bond-
ing between two complementary single stranded DNA fragments (or an RNA
fragment and a complementary single stranded DNA fragment) to create a
double-stranded DNA (or a DNA-RNA complex). In the current application,
the primary use of hybridization is in detecting if a short string (e.g., probe)
appears as a substring in a longer string (e.g., a clone or subgenomic DNA).
In order to achieve this, we can create a DNA fragment encoding the com-
plementary sequence for the probe and conduct an experiment to see if the
complementary-probe-sequence hybridizes to a DNA fragment encoding the
longer sequence.

The method can be parallelized by spotting on a surface several probe se-
quences as a matrix of a very large number of spots (several thousand) and
hybridizing all the probes with one or more clone-sequences in parallel. If more
than one clone-sequences are involved then this approach allows us to verify
if a particular probe-sequence belongs to any one of the clone sequences. This
technology embodied as microarrays enjoys wide-spread applications in mea-
suring gene-expressions, classifying genes, mapping markers on the genome
and in detecting polymorphisms.

e Copiers, Cloning and PCR: For our purposes, a clone is a rather large frag-
ment of a DNA that has been pre-selected and kept in a library, and one can
make faithful copies of this DNA fragment many many times. The size of
a clone can be 1-2 Mb (YAC, Yeast Artificial Chromosomes), 100-200 Kb
(BAC, Bacterial Artificial Chromosomes), 20-45 Kb (Cosmids) or 2-20 Kb
(lambdas).

The molecular cloning is an in vivo approach involving a living host organism
(usually the E. coli bacteria or yeast) which replicates a suitably modified
foreign DNA, as if the foreign DNA is one of its own DNA. The modification
involves combining a cloning “vector” with the foreign DNA to be amplified,
the “insert,” to create a circular recombinant DN A molecule, the “replicon;”—
the cell will not replicate any foreign DNA in the absence of a suitable vector.

In our application, BACs will be used more or less as a measuring device. If
two probes cohybridize to the same BAC then we know that those two probes
are within a distance smaller than the length of the BAC. But, just hybridizing
with one BAC at a time will be inefficient; with further analysis, we will see
that hybridizing with a several thousands randomly selected BACs can give us
distance information for many pairs of probes, simultaneously. The fact that
we can make vast amount of copies of the same BAC reliably and rapidly, is
the key to the overall robustness of our approach.

PCR or polymerase chain reaction is an in vitro technique used to replicate
a fragment of DNA so as to produce many copies of a short specific DNA se-
quence. The biochemical process involved in PCR operates iteratively: in one
step, two strands of the DNA are denatured (separated) by heating, and in the
subsequent step, short sequences of a single DNA strand (primers) are added,
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together with a supply of free nucleotides and DNA polymerase, to create two
double stranded copies each originating from the two complementary single
strands obtained in the earlier step. The original DNA sequence doubles in
each repetition of the heating and cooling cycle and results in rapid amplifica-
tion. PCR is commonly used as an alternative to in vivo cloning as a means
for amplifying DNA material. PCR is used in many medical and biological ap-
plications (measuring gene expressions, DNA sequencing etc.), but has found
its most prominent applications in forensic science as a tool for amplifying
minuscule traces of genetic material needed for DNA fingerprinting.

4 Probes and their Distances

We will rely on the available microarray technology to assist us in measuring the
pair-wise distances among a large number of probes. As will be explained shortly,
the basic technology uses unordered probes that are microarrayed and hybridized to
an organized sampling of arrayed but unordered members of libraries of large insert
genomic clones (e.g. BAC, Bacterial Artificial Chromosomes). The basic ideas of
this process can be further generalized with other types of clones, chromosomal
fragments or random PCR products derived from genomic DNA.

In order to completely appreciate the challenges and the full potential of this
technology, a detailed discussion must include our knowledge of genome organiza-
tion, DNA hybridization, repetitive DNA, gene duplication, and the varieties of
microarrays. But, for the sake of simplicity, we omit these details.

Imagine a set of P points on a line segment of length G (e.g. probes on a
chromosome or a genome, which denotes the collection of all the chromosomes) and a
set of random intervals of length L from the line segment (e.g. a BAC or YAC library,
or the chromosomal fragments contained in a panel of radiation hybrid cell lines).
For our purposes, these line segments will be BACs and the length L = 160K?b.
We perform the following “array hybridization.” We pick two random subsets of K
intervals each and denote one set as the red set and the other as the green set. We
assign each point a color: “B=blank” (—Red A =Green), “R=red (Red A —=Green),
“G=green (mRedAGreen), or “Y=yellow” (RedAGreen), based on whether the point
belongs to neither the union of intervals in the red set nor the union of intervals in
the green set (blank), the former (red), the later (green) or the both(yellow). These
logical steps are easily achieved by an “array hybridization” step with microarray.
The P probes are Watson-Crick complements of short “unique” subsequences of
the genomes and can be produced reliably and in large quantity with the use of
restriction enzymes, or be synthesized as oligoes. Each probe is spotted at a fixed
physical location on a microarray. Now, if a collection of several BACs are hybridized
to this microarray, those BACs that contain a subsequence, complementary to the
probe-sequence, hybridize to the probe. Since these BACs possess a color (physically
achieved by attaching a colored fluorescent dye), the probe acquires the colors of the
BACs that it hybridizes to. For instance, if the complement of the probe-sequence
is contained in a BAC sequence, dyed red, but not in any BAC sequence, dyed
green, then that probe will be seen red. Analogously, the relation between points
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and intervals in our discussion earlier, can be seen to be biochemically determined
for the probes and BACs through hybridization. Thus array hybridization allows
us to observe a color outcome for each of the 150,000 probes in a short constant
amount of time.

Notice that the probability that two probes have different color outcomes in a
single array hybridization, depends on how far apart they are and monotonically
increases with the distance. Thus, if we can estimate this probability by several
(M) array hybridization experiments then we can estimate the distance between two
probes. The probability is easily estimated by counting the number of experiments
in which the probes have different color outcomes and expressing it as a fraction
of the total number of experiments. In other words, we can present the outcomes
of M different experiments as “color-vectors” of length M, one associated to each
probe, and estimate the distance between two probes from the Hamming distance
between their associated color vectors. Note that the Hamming distance between
two discrete-valued vectors is defined as the the number of positions where the
entries of the two vectors differ.

In order to explore the relation between the “true” distance between probes and
the Hamming distance between their color vectors, we proceed as follows: Represent
the probes as points {p1,...,pp}. Assume that the probes are i.i.d. with uniform
random distribution over the interval [0,G]. Let S be a collection of intervals of
the genome, each of length L. Suppose the left-hand points of the intervals of S
are i.i.d. uniform random variables over the interval [0, G]. Take a small subset (of
size 2K) of intervals S’ C S, chosen randomly from S. Divide S’ randomly into two
equal-sized disjoint subsets S’ = S% U S{;, where R indicates a red color set and
G indicates a green color set. Now specify any point p; in [0, G] and consider the
possible associations between p;, and the intervals in S":

e Point p; is not covered by any interval in S’. Probe p; hybridizes to zero BACs.
We say the outcome is ‘B’ (blank).

e Point p; is covered by at least one interval of S% but no intervals of S,. Probe
pi hybridizes to at least one red BAC and zero green BACs. We say the
outcome is ‘R’ (red).

e Point p; is covered by at least one interval of Sy, but no intervals of S%. Probe
p; hybridizes to at least one green BAC and zero red BACs. We say the
outcome is ‘G’ (green).

e Point p; is covered by at least one interval of S}, and at least one interval of
S¢:. Probe p; hybridizes to at least one green BAC and at least one red BAC.
We say the outcome is ‘Y’ (yellow).

We call these events ip, iR, iq, and iy respectively. If we perform a sequence of
M such experiments then for each p; we get a sequence of M outcomes represented
as a color vector of length M. The parameter domain for the full experiment is
(P,L,K, M), where P is the number of probes, L is the average length of the
genomic material used (for BACs, L = 160kb), K is the sampling size, and M is the
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number of samples. The output is a color sequence for each probe. The sequence
corresponding to probe p; is s; = (sj k), with s;; € {B,R,G,Y}.

With the resulting color sequences s; we can compute the pairwise Hamming
distance. Let

H;; = 4+ places where s; and s; differ,
Ci,j = # places where s; and s; are the same but s; # B,
T;; = # places where s; and s; are B.

Note that the Hamming distance H; ; defines a distance metric on the set of probes.
The roles of the functions Cj ; and T; ; will become clear, as we go on.

Since the M array hybridization experiments are independent, we need to look
at any single experiment, i.e., M = 1 case. Let us define events T = (ip A jB) ,
C = ((ir Njr) V (ig Njg) V (iy A Jy)), and H = (=T A =C). We will compute
the conditional probabilities of these events when we know the distance between the
corresponding probes, i.e., z = |p; — pjl.

Given a set of 2K BACs on a genome [0, G] the probability that none start in an
interval of length [ is (1 — a)l ~ e~ where o = % Similarly, the probability that
no red (respectively, green) BACs start in an interval of length [ is (1 — « R)l ~ e @Rl
(respectively, e~?G!) where ar = ag = g = a/2. Let ¢ denote aL = 2K L/G, the
coverage by the BAC sublibrary S’ C S.

Shown below is a diagram that is helpful in computing the probabilities for
events C, H and T when x < L. The heavy dark bar labeled a represents a set of
BACGCs which covers probe p; but not p;; the bar labeled b represents a set of BACs
that covers probe p; and p;; finally, the bar labeled c¢ represents a set of BACs that
covers p; but not p;.

z L—z pi z Dj

Hence we can compute various conditional probabilities:

P(Tlzx <L) = e—(artag)(L+z)
P(ir A jrlz < L) 6_aG(L+$){1 —9e @rL | e_aR(L-HE)}
Plig ANjglz <L) = e—aR(L—HC){l _9e—acL 4 e‘O‘G(L”)}
P(iy Ajylz <L) = (1—2e orL 4 ¢mar(l+a))

(1 o Qe_aGL + e—ac(L—l—z))
P(Clz <L) = P(irAjrlz <L)
+ Plig A jglz < L)
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+ P(iy A jy|z < L)
P(H[z <L) = 1—[P(T|x <L)+ P(Cls <L)

Similarly, when z > L the probabilities are:

P(Tlz>1) = e (antac)Cl)
P(ig A jr|z > L) eacCL) (] _ g—arly2y
Plig Ajglz > L) = e ®rCL{(] — ¢~2cl)2}
P(iy A jy|z > L) (1 — e @rl)2(1 — g—2cT)2
P(Cle>1L) = P(irAjrle> L)
+ P(ic A jelz > L)
+ P(iy Ajyl|z > L)
P(H|z>L) = 1-[P(T|z> L)+ P(Cla > L)

Recall that agrL = agL = § = &£, Let ¢ = ¢(z) = P(H) and p = p(z) = P(C).
In general ¢(z) and p(z) are complicated functions of z, shown below:
2cexp(FE)z
e = Py = PG o
pla)=P(C) = 1-e“+g

Slet - 2¢7 )z 4 O(z?)

With independent sampling, we now have the following Binomial probability distri-
bution functions:

P(H;j) ~ Binomial(M, ¢(z))
P(C;;) ~ Binomial(M, p(z))

Solving the equations above, we have

iz( q eC/Q)L.
q+2p

We can use the following estimator of z;; to measure the distance between two
probes:

Hi,j H; ;42C; ;
" — A'Y V'
Hij+2Ci;

Note that this estimator takes into account the variation of sample coverage over
the genome. Using a simplifying normal approximation, we have, for x < L, the

measured distance I:
ec/4 \/T
T~T+ | — —+/xN(0,1).
( ﬂ_) L /NG,
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When z > L, similarly we have:

B ec/4 1
i~ L (E) L\/%N(O, 1).

Here N(0, 1) represents a standard normal distribution of mean 0 and variance 1.

In summary, our biochemical process provides a way of measuring the distance
between any two probes. Furthermore, we have a good model of the errors in the
measurements and we can accurately control the amount of error by appropriately
choosing various experimental parameters such as K = the number of BACs (this
affects the parameter c), L = the clone length and M = number of array hybridiza-
tion experiments. Also, we should note that if two probes are further than the
BAC length (i.e., L = 160Kb), the distance measured does not provide any useful
information

5 Applications

Finally, we need to see how to use the probe-distance technology to compare two
genomes.

In the simplest possible applications, the probe-distance data can be used to
find the relative locations of the probes along the genome. The information created
this way provides us a low-resolution reference map of the probes. Now, a specific
genome (e.g., from tumor tissues) can be compared with this map to see which of
these probes are present multiple times and which probes are deleted. The simplest
analysis could involve hybridization with whole genomic DNA to microarrays of
probes. If a region surrounding a probe is missing from the selected genome, then
the genomic DNA lacks material that could hybridize to the probe. Conversely, if a
certain region surrounding a probe has been amplified in the selected genome, then
the genomic DNA has material that could hybridize to the probe in abundance.
Thus, such an analysis employed with cancer genomes can tell us the regions of
amplification and deletion, but not translocations. This analysis, nonetheless, would
be sufficient to find the oncogenes and tumor suppressor genes.

But, while the ideas described in the preceding paragraph are, in principle,
sound, they are impractical, since the complexity of the genome is high and the
signal to noise ratio is inadequate to detect all but the grossest amplifications. There
have been many interesting modifications to the basic technology, in the form of
“representations resulting in complexity reduction,” that have improved the signal
to noise ratio and detected the copy-number changes accurately. (Amplifications
and deletions are specific examples). (See [4, 6, 7, 8])

Further improvements to the basic technology are achieved when the probe-
distances are measured with genomic chromosomal fragments, instead of the clones.
When clones from a library are used, the distances measured are distances with
respect to a reference genome and depends on how the clone library was created. If
the clones are avoided and genomic materials from a selected genome are used to
measure the distances between probe pairs, then the measured distances reflect the
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locations of the probes along the selected genome and hence, much more informative.
As before, the signal to noise ratio in the hybridization creates problems and can
be solved by various modifications to the basic technology.

In general, comparative genomics has many applications of utmost biological
significance and the technology developed here can be adapted to many different
applications in those contexts. But most importantly, the ideas developed here
indicate how the design principles, developed for computer algorithms, information
theory and systems sciences, etc., are likely to find applications in biotechnology.
The biggest impact of biocomputing will be in biotechnology.

6 Bibliographic Notes

The basic ideas of the algorithm described here and their extension to create genome-
wide maps of probes can be found in the paper by Casey, Mishra and Wigler [4].
The experimental work as well as the underlying foundations for detecting gene copy
number fluctuations are to be found in Lucito et al. [7]. The other related ideas (e.g.,
low complexity representation of genomes, cloning genomic differences, application
to genetic analysis, etc.) are described in [6, 8, 7]. The algorithms and algorithmic
complexity of constructing probe maps, RH maps and similar physical maps are
discussed in [1, 2, 5, 9, 10]. A good reference for the biotechnology revolution
spurred by the human genome project is the recent book of Cantor and Smith [3].
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