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Abstract—We propose several serial and highly parallelized
approaches to modeling causality between hospitalization and
healthcare observations, using data from the Heritage Health
Prize competition. As any set of predictors culled from the raw
dataset will be very prone to overfitting, we propose some feature
selection methods to shrink to a subset of predictors that best
represent the data available. We then compare the effectiveness
of all our approaches, first against a self-designated test subset
of the data, and then against the contest data used for evaluation
of ranking and prizes. Our best implementation approach with a
RMSLE (root mean squared log error) score of 0.462678 represents
a linear blend of 20 random decision tree models with feature
selection. This RMSLE score is 0.00552 away from the current
leading team.

I. INTRODUCTION

The Heritage Health Prize is a data-mining competition
sponsored by the Heritage Provider Network, a physician
network in Southern California, and administered by Kaggle,
a company specializing in administering data-mining compe-
titions. The goal of the prize is to develop a mathematical
model that accurately predicts the number of days a patient
will be hospitalized, given three years’ worth of anonymized
patient data. Once known, the hopeful goal is that health
care providers can develop new care plans and strategies to
reach patients before emergencies occur, thereby reducing the
number of unnecessary hospitalizations and reducing overall
administrative costs.

The United States has been slow to adopt Electronic Health
Records until 2009, when it saw a surge in EHR usage
among healthcare providers in the US as a result of the
Health Information Technology for Economic and Clinical
Health (HITECH) Act, incentivizing EHR adoption as part
of the economic stimulus package passed by US congress.
Ultimately, these longitudinal records from these datasets will
allow insight into the health of large populations across their
lifespan, thus allowing one to intuit not only observations on
patterns of activity, but likely causes of these patterns.

In this paper, we introduce the Heritage Health Prize as
a data-mining competition and outline various regression ap-
proaches. We describe the datasets given in detail and the
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problem formulation in Section II. In Section III, we outline
three different approaches to the problem: an ordinary least
squares linear regression with three simple predictors, a deci-
sion tree model created through recursive partitioning, and a
random ensemble classifier (random forests). The latter model
can be run in a highly parallelized environment using GPUs
for modeling, and this is briefly described in Section III-C1.
Section IV describes Bayesian feature selection as a method
to increase model accuracy and reduce overfitting. All of these
model approaches are evaluated in Section V, and future work
is outlined in Section VI.

II. DATA

The data provided by the Heritage Provider Network in-
cludes the following for all three years:
• A list of 120k members in the database, sorted by a

unique, anonymized MemberID, gender, and age,
• A claims table containing 1.4 million medical claims

made by the members which includes data on the primary
diagnosis, physician specialty, Charlson Co-morbidity In-
dex, and anonymized IDs for their primary care physician,
vendor (company issuing the bill), and service provider,

• A labs table containing the number of lab tests performed,
• A drug prescription table containing the number of pre-

scriptions filled by members, and
• A table of hospitalization days for members in year 1, 2,

and 3, with the goal of being able to predict year 4’s
hospitalization days. This table is right censored at 15,
meaning the only values in this table are in [0, 15].

Using an approach to preprocessing the data in consensus
with the community of contestants on Kaggle, we formatted
the data in a matrix XA consisting of 78, 049 patient rows
with claims in year 1 and observed values for hospitalization in
year 2. The columns were individual counts for each specialist
and general practitioner visits, primary condition groups, co-
morbidity index scores, and various composite predictors
created from covariate analyses of the count predictors. The
outcome vector yA contained the number of hospitalization
days in year 2 for each patient in XA. The count predictors
were normalized by a rank-preserving Box-Cox transformation
to alleviate heteroscedasticity:
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Fig. 1. Q-Q plot for the Primary Care Physician 87960 count predictor. The
top right plot shows the Q-Q distribution before Box-Cox transformations
have been applied, while the bottom right plot depicts the Q-Q distribution
after.

Figure 1 shows the normality difference before and after
such a transformation is applied. After normalization, we
made model regressions on this dataset and cross-validated the
model with a completely different predictor dataset XB con-
sisting of patients with claims in year 2 and observed values
for hospitalization in year 3 (yB). Internal model evaluation
was dependent on RMSLE and Gini analysis. Submissions to
the Heritage Health Prize were finally made by running the
model on a last dataset XC consisting of patients with claims
in year 3, with the intent of predicting hospitalization days for
year 4.

III. APPROACHES

We describe here a couple of approaches to the Heritage
Health Prize, all with various degrees of success, complexity,
and runtime.

A. Linear regression

We can run a simple ordinary least squares regression to
create a weighted linear model, predicting hospitalization days
for each patient j using a count predictor matrix X and
regressed coefficients β:

yj = Xjβ + ε, (1)

where ε is the error between observed and predicted hos-
pitalization values. An OLS regression simply attempts to

minimize ε by finding the local minimum sum of squared
euclidean distances between observed and predicted responses
in the data. That is, for some estimated coefficient β̂i we have

β̂i = (X ′X)−1X ′y = (
1

n

∑
xix
′
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−1(

1

n

∑
xiyi). (2)

B. K-nn classifier

Alternatively, we can move our linearization further down-
stream if we can first classify people who are ‘hospitalized’ or
‘non-hospitalized’. In our classifier, our outcome vector ŷ is
a binary variable specifying whether a patient has spent time
in the hospital. Our classifier is a simple k-nearest neighbor
algorithm that classifies by a majority vote of the class most
common amongst its k nearest neighbors. Here, by nearest we
mean the closest Hamming distance between predictors, as our
count variables are discrete.

Those who have been classified as ‘non-hospitalized’ auto-
matically get a prediction of zero days, while patients classi-
fied as ‘hospitalized’ will be run under the linear regression
model described above to predict the number of hospitalization
days.

The choice of an optimal k is a difficult one. In general,
larger values of k will result in a more accurate classifier, but
what remains critically important is minimizing the amount
of noise in our predictors. For our approach, we tried various
odd values for k to eliminate the occurrence of tie votes.

C. Random decision trees

Regression analysis through full recursive partitioning at-
tempts to create a decision tree that classifies members of
a population based on our feature set of predictors. While
usually more accurate than linear regressions, one pitfall of
full recursive partitioning is that it is prone to overfitting. To
mitigate this, we create multiple random decision trees and
combine the average score of all trees created to generate a
prediction.

The algorithm is as follows:

1) We sample m items our feature set Xn.
2) The training set is bootstrap sampled n times for our

decision tree. The rest of the the training set is used to
calculate residual error.

3) A decision tree is generated from just these m variables
and n training cases. This tree is fully grown and is not
pruned or optimized.

4) Steps (1-3) is t times to create our desired number of
trees.

5) To make a prediction, each patient is pushed down all
t trees and the median vote of all trees is the final
prediction..

Figure 2 is a simplified example of a decision tree with four
predictors: Gender, and booleans for whether the patient had
prostate cancer (male), or delivered a baby in hospital as an
in-patient (female, pregnant).



Is sex M?

Prostate cancer?

2.41870.2142

Pregnant?

Delivered in hospital?

2.00411.8321

0.1032

Fig. 2. Sample decision tree with four predictors. Here, a right traversal
means ‘yes’ answers to the questions.

1) Parallel implementation: Because we are generating
on the order of hundreds of thousands of trees on a large
training set, this model is very computationally expensive to
run on typical desktop computers with 1-4 processing cores.
For example, on a PC with four cores on two 64-bit x86-
64 processors (Intel i7) and 2GB RAM, a 250k RDT model
took on the order of days to run. We have since moved all
model computations to a 32-core, eight processor (Intel Xeon
E5507) computer with 234GB RAM. With the extra computing
cores, we can parallelize our random decision tree model by
having each core calculate 7.8k trees, and combining all these
constituent jobs at the end to create a 250k RDT model.

We are currently working on writing an implementation us-
ing Nvidia’s Compute Unified Device Architecture, or CUDA.
This is a C library that allows for algorithms to execute on an
Nvidia Graphics Processing Unit (GPU). Parallel computation
on a GPU would provide orders of magnitude difference in
performance gains and runtime, as its throughput architecture
emphasizes many concurrent threads at a time slowly rather
than one serial thread quickly. Relevant to our implementation,
this would result in much larger random decision tree models
with better accuracy.

IV. OVERFITTING

One problem in regression analysis with having a large
number of predictors is the tendency for models to describe
random error moreso than any inferential rules. This ‘curse
of dimensionality’ phenomenon is known as overfitting. We
attempt to minimize the effects of overfitting by running
our models with a subset of all predictors, selecting only
predictors that best explain the data. Statistical methods such
as bootstrapping and repeated cross-validation are also used
to the same effect.

A. Feature Selection

Given n predictors, one could get an accurate assessment
of which subset of predictors best describes the data by
taking 2n models of every possible subset. This becomes
computationally impossible for large values of n or number of
patients in our training dataset. Instead, we can perform some
feature selection according to the following algorithm:

1) Train the model on the training set using all predictors.

2) Calculate model performance against the test set, using
RMSLE as our performance metric:

log(
∑
i

Yi − a− b1X1i − · · · − bpXpi)
2/n) (3)

3) Calculate the individual variable importance and rank
them.

4) For each subset size Si, i ∈ {1, . . . , S},
a) Keep the Si most important variables.
b) Retrain the model with only Si predictors.
c) Recalculate individual variable importance and

rerank.
5) Determine which Si yielded the most optimal RMSLE–

call this Sf .
6) Fit model to Sf predictors and rank individual variables.

Cross−validation scores with feature selection
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Fig. 3. RMSLE of 250k random decision tree models with varying subset
sizes of predictors. The ideal number of predictors (190) was determined by
Gibbs sampling and backward feature elimination.

Figure 3 depicts a sample implementation of this backwards
elimination process, performing 250k random decision tree
models at each subset value. Here, the ideal number of features
was optimized at 190, with a best RMSLE of 0.44521.

B. Repeated cross-validation

To reduce the effects of full dataset overfitting, we perform
k-fold cross-validation, repeated 25 times. In a k-fold cross-
validation, we take the dataset and randomly partition them
into k sub-datasets. The kth sub-dataset is used as the valida-
tion set, and k−1 models are trained and then cross-validated
against k. This method ensures that every sample in our dataset
is used exactly once.

However, one pitfall with k-fold cross-validation is that for
any k you force a particular proportion of the dataset into



training/testing pigeonholes. To mitigate this, we repeat k-
fold cross-validation an arbitrary number of times for various
values of k, and then take a linear average of the results.
For our purposes, we are performing k-fold cross-validation
repeated 25 times, for k ∈ {2, . . . 15}.

V. EVALUATION

We ran several models with the various approaches de-
scribed in Section III and evaluate their effectiveness. Table V
contains a full comparison of all model approaches, with
differing model parameters. The RMSLE score is the actual
competition RMSLE given by Kaggle.

We note that a simple linear regression (LM3P) with only
three predictors (age, gender, maximum Charlson co-morbidity
score) achieved a 0.478246 RMSLE, which is better than
half of the competitors currently in the contest. Adding every
predictor in Section II gave us a ‘kitchen sink’ linear model
(LMKITCHEN), and resulted in improvements. Lastly, we ran
backwards feature elimination on the ‘kitchen sink’ model and
was able to shrink the linear predictors to 182, or half of the
feature set. This linear model (LMGIBBS) was the best linear
model.
K-nearest neighbor classification and linear regression did

not prove to be a fruitful approach: all three K-nearest
neighbor models for varying values of k = {3, 5, 9} (KNNK3,
KNNK5, KNNK9) performed worse than the simple three
predictor linear regression. The real performance gains came
from running random decision trees on all predictors with in-
creasing number of trees created (RDTKITCHEN50k, RDTK-
ITCHEN250k, RDTKITCHEN500k). Further work in this
area is needed–as our CUDA architecture is implemented for
highly-parallel GPU processing, we can increase the number
of trees to 1m, 2m, etc.

Applying backwards feature elimination on random deci-
sion tree regression netted further performance gains (RDT-
GIBBS50k, RDTGIBBS250k, RDTGIBBS500k), but the sur-
prising aspect was blending the variable importance scores
from the random decision tree models as linear weights for
an OLS regression. Adding all features (LMRDTKITCHEN-
BLEND) was better than either pure linear or pure RDT with
all predictors, but the absolute best performance was achieved
when backward feature elimination was applied to both RDT
and linear models, and then blended. Figure 4 shows the
variable importance generated from one RDT model at 500k
trees.

VI. FUTURE STRATEGIES

Further work is required to optimize our competition RM-
SLE to both remain competitive and surpass the prediction er-
ror threshold of 0.400000. Blending and averaging approaches
have yielded the best results so far–it remains to be seen
whether further blending of random decision trees, linear, and
k-nearest neighbor models would result in a net improvement.
Other classifiers have yet to be tested on the training dataset.
A hybrid model in which we are able to accurately bin
patients into ‘hospitalized’ and ‘non-hospitalized’ and then
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Fig. 4. Variable importance plot from

Model Best Competition Rank
Approach RMSLE

LM3P 0.478246 11th
LMKITCHEN 0.468168 10th

LMGIBBS 0.465785 6th
KNNK3 0.484351 14th
KNNK5 0.479140 13th
KNNK9 0.478542 12th

RDTKITCHEN50k 0.467934 9th
RDTKITCHEN250k 0.466820 8th
RDTKITCHEN500k 0.465833 7th

RDTGIBBS50k 0.463438 4th
RDTGIBBS250k 0.463356 3rd
RDTGIBBS500k 0.462929 2nd

LMRDTKITCBLEND 0.464547 5th
LMRDTGIBBSBLEND 0.462678 1st

Fig. 5. Comparison of model approaches and its competition RMSLE.
Our current best implementation is a linear blend of LMGIBBS and RDT-
GIBBS500k regressions.

run a regression on the ‘hospitalized’ patients is one that we
believe is worth finding.
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