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Abstract. Path expressions were originally pro-
posed by Campbell and Habermann [2] as a mech-
anism for process synchronization at the monitor
level in software. Not surprisingly, they also pro-
vide a useful notation for specifying the behavior
of asynchronous circuits. Motivated by these po-
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tential applications we investigate how to directly
translate path expressions into hardware. Our im-
plementation is complicated in the case of multiple
path expressions by the need for synchronization
on event names that are common to more than
one path. Moreover, since events are inherently
asynchronous in our model, all of our circuits must
be self-timed. Nevertheless, the circuits produced
by our construction have area proportional to N-
log(N) where N is the total length of the multiple
path expression under consideration. This bound
holds regardless of the number of individual paths
or the degree of synchronization between paths.
Furthermore, if the structure of the path expres-
sion allows partitioning, the circuit can be laid out
in a distributed fashion without additional area
overhead.

Key words: Silicon compilation — Path expressions —
Process synchronization

1 Introduction

As the boundary between software and hardware
grows less and less distinct, it becomes increasingly
important to investigate methods of directly imple-
menting various programming language features
in hardware. Since many of the problems in inter-
facing hardware devices involve some form of pro-
cess synchronization, language features for syn-
chronization deserve considerable attention in such
investigations. In this paper we consider the prob-
lem of directly implementing path expressions as
self-timed VLSI circuits. Path expressions were
originally proposed by Campbell and Habermann
[2] for restricting access by other processes to the
procedures of a monitor. For example, the simple
readers and writers problem with two reader pro-
cesses and a single writer process is solved by the
following multiple path expression:

path R, + Wend,
path R, + Wend.

The first path expression prohibits a read oper-
ation by the first process from occurring at the
same time as a write operation. The second path
expression enforces a similar restriction on the be-
havior of the second reader process. In a computa-
tion under control of the multiple path expression,
the two read operations may occur simultaneously,
but a read and write operation cannot occur at
the same time.

A simple path expression is a regular expression
with an outermost Kleene star. The only operators
permitted in the regular expression are (in order

of precedence) “*”, “;” , and “ + . The “*” op-
erator is the Kleene star, *“;” is the sequencing
operator, and “+ " represents exclusive choice.
Operands are event names from some set of events
X that we will assume to be fixed in this paper.
The outermost Kleene star is usually represented
by the delimiting keyword path...end. Thus (a)*
would be represented as path a end. Roughly the
sequence of events allowed by a simple path ex-
pression must correspond to the sequences in the
language of the regular expression. }

A multiple path expression is a set of simple
path expressions. As we will see shortly, each addi-
tional simple path expression further constrains the
order in which events can occur. However, we can-
not simply take as our semantics for multiple path
expressions the intersection of the languages corre-
sponding to the individual path expressions; two
events whose order is not explicitly restricted by
one of the simple path expressions may be concur-
rent. For example, in the multiple path expression
for the readers and writers problem discussed ear-
lier the two read events R, and R, may occur
simultaneously.

Path expressions are useful for process syn-
chronization for two reasons: First, the close rela-
tionship between path expressions and regular ex-
pressions simplifies the task of writing and reason-
ing about programs which use this synchronization
mechanism. Secondly, the synchronization in
many concurrent programs is finite state and thus,
can be adequately described by regular expres-
sions. For precisely the same reasons, path expres-
sions are useful for controlling the behavior of
complicated asynchronous circuits. The readers
and writers example above could equally well de-
scribe a simple bus arbitration scheme. In fact, the
finite-state assumption may be even more reason-
able at the hardware level than at the monitor level.

Which brings us to the topic of this paper:
What is the best way to translate path expressions
into circuits? Lauer and Campbell have shown
how to compile path expressions into Petri nets
[7], and Patil has shown how to implement Petri
nets as circuits by using a PLA-like device called
an asynchronous logic array [13]. Thus, an obvious
method for compiling path expressions into cir-
cuits would be to first translate the path expression
into a Petri net and then to implement the Petri
net as a circuit using an asynchronous logic array.
However, careful examination of Lauer and
Campbell’s scheme shows that a multiple path ex-
pression consisting of M paths each of length K
can result in a Petri net with KM places. Thus,
the naive approach will in general be infeasible
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if the number of individual paths in multiple path
expression is large.

For the case of a path expression with a single
path their scheme does result in Petri net which
is comparable in size to the path expression. How-
ever, direct implementation of such a net using
Patil’s ideas may still result in a circuit with an
unacceptably large area. An asynchronous logic
array for a Petri net with P places and T transitions
will have area proportional to P-T regardless of
the number of arcs in the net. Since the nets ob-
tained from path expressions tend to have sparse
edge sets, this quadratic behavior may waste signif-
icant chip area.

Perhaps, the work that is closest to ours is due
to Li and Lauer [10] who do indeed implement
path expressions in VLSI. However, their circuits
differ significantly from ours; in particular, their
circuits are synchronous, and synchronization with
the external world (which is, of course, inherently
asynchronous) is not considered. (This means that
the entire circuit, not just the synchronization,
must be described using path expressions.) Fur-
thermore, their circuits use PLA’s that result in
an area complexity of O(N?). Rem [15] has investi-
gated the use of a hierarchically structured path
expression-like language for specifying CMOS cir-
cuits. Although he does show how certain specifi-
cations can be translated into circuits, he does not
describe how to handle synchronization or give a
general layout algorithm that produces area effi-
cient circuits.

In contrast, the circuits produced by the con-
struction described in this paper have area propor-
tional to N-log(N) where N is the total length of
the multiple path expression under consideration.
Furthermore, this bound holds regardless of the
number of individual paths or the degree of syn-
chronization between paths. As in [4] and [5] the
basic idea is to generate circuits for which the un-
derlying graph structure has a constant separator
theorem [8]. For path expressions with a single
path the techniques used by [4] and [5] can be
adapted without great difficulty. For multiple
paths with common event names, however, the
construction is not straightforward, because of the
potential need for synchronization at many differ-
ent points on each individual path. Moreover, the
actual circuits that we use must be much more
complicated than the synchronous ones used in
([4], [5]). Since events are inherently asynchronous
in our model, all of our circuits must be self-timed
and the use of special circuit design techniques is
required to correctly capture the semantics of path
expressions.

The paper is organized as follows: A formal
semantics for path expressions in terms of partially
ordered multisets [14] is given in Sect. 2. In Sect. 3,
4, and 5 we give a hierarchical description of our
scheme for implementing path expressions as cir-
cuits. In Sect. 3 we first describe how the complete
circuit interfaces with the external world. We then
show how to build a synchronizer that coordinates
the behavior of the circuits for the individual path
expressions in a multiple path expression. In
Sect. 4 we describe a circuit for implementing sin-
gle path expressions which we call a sequencer. In
Sect. 5 we show how the arbiter circuit used in
Sect. 3 can be implemented. We also argue that
these circuits are correct and can be laid out effi-
ciently. The conclusion in Sect. 6 discusses the fea-
sibility of our implementation and the possibility
of extending it to other synchronization mecha-
nisms like those used in CCS and CSP.

2 The semantics of path expressions

In this section we give a simple but formal seman-
tics for path expressions in terms of partially or-
dered multisets (pomsets) of events [14]. An alter-
native semantics in terms of Petri Nets is given
by Lauer and Campbell in [7]. A a pomset may
be regarded as a generalization of a sequence in
which certain elements are permitted to be concur-
rent; this is why the concept is useful in modeling
systems where several events may occur simulta-
neously.

Definition 1. A partially ordered multiset (pomset)
over X is a triple (Q, <, F) where (Q, <) is a
partially ordered set and F is a function which
maps Q into ~. [

An example of a pomset is shown in Fig. 1.
We use subscripts to distinguish different elements
of Q that map to the same element of X. In this
case Q=(A,,A,,A;,B,,B,,B;,C,,C;,C;3)and X' =
(A,B,C). Note that we could have alternatively de-
fined a pomset as a directed acyclic graph in which
each node is labeled with some element of X

SN\
N \/ .

Fig. 1. An example pomset

3
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If the ordering relation of a pomset P over X
is a total order, then we can naturally associate
a sequence of elements of X with P; we will use
S(P) to denote this sequence.

Definition 2. If P=(Q, <, F) is a pomset over X~
and X', < X, then the restriction of P to X, is the
pomset Pl; =(Q,, <,, F,) where Q,=
{deQ|F(d)eX} and <, F, are restrictions of <,
F to Q,, respectively. [

If P is a totally ordered pomset over X and
2, =2, then S(P|;,) is just the subsequence of S(P)
obtained by deleting all of those elements of X
which are not in X2,. If R is an ordinary regular
expression over 2, then 2y < X will be the set of
symbols of X that actually appear in R and
L < 2% will be the regular language which corre-
sponds to R.

Definition 3. Let X be a finite set. A trace over
2 is a pomset T=(Q, <, F) over X such that
every infinite chain of the partially ordered set (Q,
<) is an w-sequence’. We say that i €Q is an in-
stance of an event eeXif F(i)=e. An instance i,
of event e, precedes an instance i, of event e, if i,
precedes i, in the partial order <. An instance i, of
event e, is concurrent with an instance i, of evente,,
if neither instance precedes the other. [

In the example above A, precedes A,, but B,
and C, are concurrent.

Definition 4. Let R be a simple path expression
with event set XZg. A trace T is consistent with
Riff T|;_ is totally ordered and every finite prefix
of S(T|s,) is a prefix of some sequence in Lg, the
language of regular expression R. If M is a multiple
path expression, then a trace T is consistent with
M iff it is consistent with each simple path expres-
sion R in M. Trg(M) is the set of all traces which
are consistent with M. [

Consider, for example, the multiple path ex-
pression M:

path A; B end,
path A ; C end.

with 2'={A, B, C}. It is easy to see that the trace
in Fig. 1 is consistent with each of the simple path
expressions in M and hence is in Try(M).

1 In absence of fairness, finite sequences are sufficient. In order
to talk about fairness however, we require infinite sequences.
An w-sequence is the shortest infinite sequence that captures
the semantics of fairness and has the advantage that all of
its prefixes are finite

REQ

Synchronizer

Fig. 2. A synchronizer

3 Synchronizers for multiple path
expressions

This section describes our implementation of
synchronizers for multiple path expressions. Fig-
ure 2 illustrates the interface between a synchron-
izer and the external world. Each event e is asso-
ciated with a request line REQ, and acknowledge.
line Ack,. The synchronizer cooperates with the
external world to ensure that these request and
acknowledge lines follow a 4-cycle protocol:

1. The external world raises REQ, to indicate that
it would like to proceed with event e.

2. The synchronizer raises ACK, to allow the exter-
nal world to proceed with event e.

3. The external world lowers REQ,, signifying com-
pletion of event e.

4. The synchronizer lowers ACK,, signifying the
end of the cycle and permission to begin a new
one.

In this implementation, an event will occur during
the period between cycles 2 and 3 in this protocol,
where both REQ and Ack are high. Thus, multiple
occurrences of any event e are non-overlapping in
time, since any two occurrences are separated by
the lowering of ACK and the raising of REQ.

In a distributed system each of the devices in
the system would be a client of the synchronizer;
only a subset of the REQ and AcK lines would go
to each device. Before performing an action, each
client would request permission from the synch-
ronizer and wait until permission was granted. In
this way, harmonious cooperation could be en-
sured with only a small amount of inter-device
communication. Because of the symmetric nature
of the protocol any client could act either as a
master or a slave relative to other clients. A slave
would always assert all REQ’s and wait for a re-
sponse through the ACK’s telling it what to do,
whereas a master would assert REQ’s only for those
events it wishes to proceed with and use the ACK’s
only to get its timing correct.
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Fig. 3. A synchronizer circuit

An overview of a synchronizer circuit is shown
in Fig. 3. The circuit shown is self timed but not
delay independent as it makes certain assumptions
about gate delays which will be described later.
Some of the building blocks in the circuit are de-
scribed below.

The C gate in Fig. 3 is a Muller C-element;
the output of a C-element remains low until all
inputs are high and thereafter remains high until
all inputs are low again. Its behavior then cycles.
For an implementation see [16].

The arbiter in Fig. 3 enforces pairwise mutual
exclusion over the outputs corresponding to pairs
of events which occur in the same path expression.
In addition to enforcing mutual exclusion the ar-
biter tries to raise any output whose input is high.
Many implementations of arbiters will have meta-
stable states during which fewer signals than possi-
ble may be high at the output. Despite the metasta-
ble states, however, once an output signal has been
raised, it must remain high as long as the corre-
sponding input remains high. The implementation
of such an arbiter is discussed in detail in Sect. 5.

Each sequencer block in Fig. 3 ensures that the
sequence of events satisfies one of the simple path
expressions that comprise the multiple path expres-
sion, and will be described in the next section. The

.
M A ~mo >
ese

synchronizer circuit contains one sequencer for
each simple path expression, so that each simple
path expression is satisfied by an execution event
trace. For each event e that appears in a simple
path, the corresponding sequencer has three con-
nections: a request TR,, an acknowledge TA,, and
a disable Di1s,. Events are sequenced by executing
a 4-cycle protocol over one pair of the TR/TA lines.
The DIS outputs of the sequencer are only valid
between these cycles (when all TR and TA are low),
and indicate which events would violate the simple
path. The synchronizer will not initiate a cycle for
any event whose DIS line is high.

We now describe how the components of the
circuit are interconnected. Refer to Fig. 3. Let
SEQ, denote the set of sequencers for simple paths
that contain event e. Every sequencer in SEQ, has
its DIS, signal connected to a NOR gate for e, its
TA, signal connected to a c gate for e, and its TR,
signal connected to ACK,. The output of the latch
at the end of the c gate for e, which is labeled
CLR,, is connected to each of the NOR gates in front
of the arbiter which corresponds to event e or to
some event mutually exclusive to e.

Notice that there is no intrinsic need for the
synchronizer to be centralized as long as the con-
straints themselves do not require it. Whenever the
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multiple path expression can be partioned into dis-
joint sets of paths so that paths in different sets
do not refer to the same event, then each set can
be implemented as a circuit independently of the
others.

The following is an informal description of how
the circuit works. The circuit behaves as shown
in the timing diagram in Fig. 4. When REQ, is
raised, event e is not allowed to proceed unless
each sequencer in SEQ, signals that at least one
e type transition is enabled by negating pis,. Once
this happens IN, is raised, provided no mutually
exclusive event is executing the second half of its
cycle (and hence has its CLR high). If the arbiter
decides in favor of some other pending event mutu-
ally exclusive to e, the above process repeats until
e again gets a chance at the arbiter. Otherwise ACK,
will be raised and latched by the NOR gate arrange-
ment in front of the arbiter. At this point the exter-
nal world may proceed with event e. Simultaneous-
ly each sequencer in SEQ, will find TR, high and
after some time raise TA,. When all sequencers in
SEQ, have raised TA, and the external world ac-
knowledges completion of event e by lowering
REQ,, CRL, will be raised. This causes ACK, to be
lowered. Each sequencer in SEQ, will find TR, low
and after some time lower TA,. When all such se-
quencers are done, CRLg is lowered, and the cycle
is completed.

To formally establish the correctness of our cir-
cuit, we must establish two things: First, we must
show that the circuit allows only semantically cor-
rect event traces; second, that the circuit will allow
any semantically correct event trace for some be-
havior of the external world. These properties of
the circuit are often called safeness and liveness
respectively. A third important property, fairness,
is dealt with in a separate section. Our proof will
make use of properties of the various circuit com-
ponents shown in Fig. 3. We list the most impor-
tant of these properties as propositions, namely

Fig. 4. Synchronizer timing

those relating to the sequencer, the arbiter, and
the external world. Properties of other circuit com-
ponents such as SR Flip-Flops, NOR gates, etc.,
are assumed to be well known and are used without
further discussion. The proof also makes certain
assumptions about the delays of the components:

1. The delay of the main NOR gate plus the 2-input
OR gate is less than that of the main Muller-C
element plus the SR Flip-Flop.

2. The maximum variation in delay for the NOR
gates in front of the arbiter is less than the mini-
mum delay of the arbiter.

We begin by introducing some notation that
will be needed in the proof. Let the sequencers
be denoted by SEQ,...SEQ, corresponding to the
path expressions R1...RpeM, and let Zg,...2%,
be the subsets of X that actually appearin R1...Rp
respectively. Let I be a set of time intervals, which
may include semi-infinite intervals extending from
some finite instant to inifinity. Each element in
I is labeled by an element in 2. Define T(I) to
be the trace which has an element for each element
in I and has the obvious partial order defined be-
tween elements whose time intervals are non-over-
lapping. Referring to Fig. 4, let
— Ext=set of time intervals labeled ‘external’,

— Int=set of time intervals labeled ‘internal’,

— Seq(j) =set of time intervals labeled ‘sequencer’

for sequencer SEQ;.

For every interval in Int with label e there are cor-
responding intervals with the same label in Ext
and in every Seq(j) such that ee Xy;, namely those
which start at the same time. We assume that the
starting points of intervals in Int lie within some
finite time period of interest, and the intervals in
Ext and Seq(j) are restricted to intervals corre-
sponding to those in Int.

With this notation in place we state some prop-
ositions, or axioms, that describe the properties
of the circuit of Fig. 3. These properties will be
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used to prove that the circuit is safe and live. The
propositions should be viewed as specifications for
the correct behavior of lower level circuit modules
and the external world, and will be justified in later
sections.

Proposition 5. (External world protocol): For all
events e,

1. REQ, is raised only if ACK, is low.

2. REQ, is lowered only if ACK, is high. [

Proposition 6. (Arbiter safety and liveness):

1. For any events el, e2 that are mutually exclusive,
ACK,; and ACK,, are never high simultaneously.

2. For any event e, ACK, is raised only if IN, is
raised.

3. For any event e, ACK, is lowered only if IN, is
low, and within a finite time of IN, being lowered.

4. Consider any set of events X' = X, such that no
two events in X' are in the same path expression.

Then if all IN,, ee X", are raised, within a finite time

all ACK,, e€X’, must be raised. [

Proposition 7. (Sequencer protocol): For any se-
quencer SEQ;,

1. TA, is raised only if TR, is high.

2. TA, is lowered only if TR, is low.

3. DIS, is stable while all TR’s and TA’s are low. [

Proposition 8. (Sequencer safety and liveness): For
any sequencer SEQ;, assume that at all times,

— no two TR’s are high simultaneously,

— TR, is raised only if DIS, and all TA’s are low,

— TR, is lowered only if TA, is high.

Then the following hold :

1. TA, is raised within a finite time of TR, being ra-
ised.

2. TA, is lowered within a finite time of TR, being
lowered.

3. For any sequencer SEQ;, whenever all TA's and
TR's are low, exactly those events e will have DIs,
low, for which S(T(Seq(j))) can be extended by
e to give a prefix of some sequence in Lg;. [

Proposition 9. (Initialization)

1. Sequencers are initialized with all TA’s low.

2. The synchronizer circuit SR flip-flops are initia-
lized to make all CLR’s high. [

The following theorem states that a synchronizer
satisfying Propositions 5 through 9 is provably
safe.

Theorem 10. (Synchronizer Safety):
T(Ext)e Trg(M).

Proof. See the appendix. [

As a converse to Theorem 10 we would like to
show that our circuit can produce any valid trace
Ext, such that T(Ext)eTry(M) for at least some
behavior of the external world. However for some
traces TeTry(M), there does not exist any Ext such
that T(Ext)=T, so there is no way any circuit can
produce the required trace Ext. This happens when
T does not sufficiently constrain the order in which
the elements may occur so that any actual set of
time intervals will have fewer concurrent elements
than T. Given such a T it is necessary to constrain
its partial order relation further, by adding addi-
tional (consistent) precedence relationships. It is
easy to show using Definition 4 that this will never
remove T from the set Trgy(M). We shall show that
whenever T is sufficiently constrained so that it
falls in a class of traces we call /layered, then for
some behavior of the external world T(Ext) for
our circuit will equal this modified T.

Definition 11. A trace P=(Q, <,L) is called
layered, if Q can be subdivided into a sequence
of subsets, such that for any i1, i2eQ, il precedes
i2 iff the subset in which i1 lies precedes the subset
in which i2 lies. O

The trace in Fig. 1 is layered, since its elements
can be subdivided into the sequence of subsets
{(A1),(By,C1),(A,),(B2,C,),(A3),(B3,C3)}  with
the above property. If the size of each subset were
one, then the trace would be totally ordered.

In general, any trace P will have a correspond-
ing layered trace T which preserves most of the
parallelism of P. It is easy to show that for any
trace P, there exists a layered trace T, which differs
from P only in that the partial order relation of
P is a restriction of that of T.

Theorem 12. (Synchronizer Liveness): Given any
layered trace PeTrg(M), our circuit will produce
an event trace Ext, such that T(Ext)=P for some
behavior of the external world. [

Proof. See the appendix. [

4 Implementing the sequencer for a simple
path expression

This section shows how to construct a sequencer
that enforces the semantics of a simple path expres-
sion. The sequencer circuit is constructed in a syn-
tax-directed fashion based upon the structure of
the simple path expression. We show that a com-
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pact layout for the sequencer exists, so that circuits

of this type can be implemented economically in

VLSI.

Since a simple path expression is a regular ex-
pression, the sequencer for a simple path expres-
sion is similar to a recognizer for the regular ex-
pression. Although schemes for recognition of reg-
ular languages have been proposed that avoid
broadcast [4], we will use a scheme that requires
broadcast of events throughout the sequencer [5,
12]. Because our scheme for interconnecting se-
quencers (see Sect.3) requires broadcast, the
broadcast within an individual sequencer carries
no additional penalty. A sequencer for a simple
path expression is built up from primitive cells,
each corresponding to one character in the path.
The syntax of the path determines the interconnec-
tion of the cells in the sequencer. In this section,
we first describe the behavior of a sequencer for
a simple path expression, then give a syntax-di-
rected construction method.

As noted in Sect. 3, a synchronizer communi-
cates with each of its sequencers using three lines
for each event:

— TR, : a signal to the sequencer that event e is
about to commence in the outside world;

— TA,: an acknowledgement from the sequencer
that the execution of event ¢ has been noted
by the sequencer.

— DIS, : a status line indicating that action e would
violate the path constraints so that TR, should
not be asserted by the outside world. It is valid
when TR and TA are both low.

These communication lines interact in a com-
plex way. For a single type of event, the signals
TR, and TA, follow the four-cycle signaling conven-
tion (for an example see Sect. 3). For different
types of events, the outside world must guarantee
the correct interaction of TR signals by ensuring
that only one TR signal for an event satisfying the
simple path expression is asserted at any time. The
outside world can use the DIS status lines to deter-
mine which requests to send to the sequencer.

The sequencer also has a part to play in ensur-
ing the correct interaction of TR, TA and DIS. Be-
sides generating a TA signal that follows the four
cycle convention with TR, it must ensure that the
signal DIS, is correct as long as no TR or TA signal
is asserted. This guarantee means that if neither
TA nor TR is asserted, and neither DIS,; nor DIS,,
is true, then the outside world may choose arbitrari-
ly between el and e2, letting either of them through
to the simple path sequencer. On receiving a TR,
signal, then, the sequencer must assert TA,, adjust
its internal state to reflect the occurrence of event

TRa TRp TAa TAb
Fig. 5. The controller for path P

e, assert the proper set of DIS lines while awaiting
the negation of TR, before negating TA,.

Now that the behavior of a sequencer has been
described, we show how to construct a sequencer
for any simple path expression. A sequencer has
two parts: a controller and a recognizer. The con-
troller is connected directly to the rest of the out-
side world and generates both the TA signals and
some control signals for the recognizer. The recog-
nizer keeps track of which events in the path have
been seen and generates the DIS signals.

Figure 5 shows the controller for a simple path
P. The controller accepts the signals TR, from the
synchronizer for each event e that appears in P.
It generates the signals TA, along with Start and
End. The meaning of TA, is that all actions caused
by TR, have been completed. In this realization,
TA is just a delayed version of TR, where the delay
is long enough to let the sequencer stabilize. An
upper bound on this delay can be computed from
the layout of the rest of the circuit. Thus the se-
quencer is self-timed but not delay insensitive. A
more complicated, delay insensitive circuit will be
described in a separate paper [1]. Start and End
are essentially two phase clock signals that control
the movement of data through the recognizer for
P. Roughly Start is true from the time one TR is
asserted until the corresponding TA is asserted,
while End is true from the time TR is deasserted
until TA is also deasserted. The element labeled
M.E. (Mutual Exclusion) is an interlock element
as shown in Fig. 12. It is required to guarantee
that the two clock phases are strictly non-overlap-
ping.

The recognizer for a path accepts the TR, sig-
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nals and generates the DIS signals. It is made up
of sub-circuits corresponding to subexpressions of
the path. To construct the recognizer for a path,
we parse the path using a context-free grammar.
Productions that are used in parsing the path de-
termine the interconnections of sub-circuits to
form the recognizer. Non-terminals that are intro-
duced in the parse correspond to primitive cells
used in the circuit.

Recognizers are constructed using the follow-
ing grammar for simple path expressions.

S— path R end
R— R;R|(R+R)|(R)*|<event).

The terminal symbols in the grammar correspond
to primitive cells; there is one type of cell for the
“ 4+ symbol, one for the “*” symbol, one for
the “;” symbol, and one for each event. The non-
terminals correspond to more complex circuits that
are formed by interconnecting the primitive cells.
Using the method described in [3], semantic rules
attached to the productions of the grammar specify
how the circuits on the right of each production
are interconnected to form the circuit on the left.

To keep track of which events in the path have
occurred and which are legal, the sub-circuits of
a recognizer communicate using the signals ENB
(enable) and REs (result). If ENB is asserted at the
input of a circuit for a subexpression at the begin-
ning of a cycle (when START is asserted), the sub-
circuit begins keeping track of events starting with
that cycle, and asserts RES after a cycle if the event
sequence so far is legal for the subexpression. The
ENB input may be asserted before any cycle, and
the subcircuit must generate a RES signal whenever
any of the previous ENB inputs by itself would have
required it. At the top level ENB is asserted only
once, before the first cycle. Between cycles each
subcircuit deasserts the DIs signal for an event, if
the occurance of that event during the next cycle
is legal (this is the case if the subcircuit would as-
sert RES for some subsequent sequence of events
even if ENB were not asserted any more). These
event signals from all subcircuits are combined to
generate the external DIs signals.

Figure 6 shows the cell for event e. Two latches,
clocked by Start and End, control the flow of ENB
and RES signals. The latches are transparent when
their enable is asserted and hold their previous
value otherwise. The latch pair forms a level trig-
gered master — slave D-Flip-Flop, clocked by the
non-overlapping clock signals Start and End.

The event cell in Fig. 6 propagates a 1 from
ENB to RES only if event e occurs. When this cell
is used in a recognizer for a path expression, the

From other
cellsfore

I—— DIS
ENB >_':D._J D latch
A

R
8 Start, Endp,
(Some TR (Some TA
and no TA) and no TR)

Fig. 6. Cell for event e in path P

ENB RES

Fig. 7. Cell for **;”

ENB RES

? I+I

Fig. 8. Cell for * + ”

ENB input will be true if and only if event e is
permitted by the expression. Thus, if ENB is true
it negates DIS, for the path, as shown in the figure.
When a request TR is made, the output of the AND
gate is loaded into the leftmost latch. If this request
is TR,, this output is 1; otherwise it is 0. In either
case the output of the AND gate is propagated to
RES through the latch when TR is lowered.

Figures 7 and 8 show the cells for the *“;”, (se-
quencing) and “ + "’ (union) operators. These are
strictly combinational circuits. The circuit for ©;”
feeds the REs signal from the circuit at its left into
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|
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End, ENB RES
Fig. 9. Cell for *“*”

the ENB signal for the circuit to its right. The circuit
for ““ + ” broadcasts its ENB signal to its operands
and combines the RES signals from its operands
in an OR gate.

Figure 9 shows the cell for the operator.
The cell enables its operand after receiving either
a 1 on either its own ENB or its operand’s RES.
Every time the operand is enabled the “*” cell
also puts out a 1 on its own REs. It therefore out-
puts 1 on REs after 0 or more repetitions of its
operand’s expression. The additional AND gate sets
the output to 0 momentarily after each event,
thereby preventing the formation of a latch when
two or more ““*” cells are used together. This cell
is responsible for making the minimum cycle dura-
tion depend on the path expression. During the
first phase of a cycle the sequencer has to perform
an e-closure of the simple path expression. This
delay is directly reflected in the gate delay between
the ENB input and RES output of the “*” cell. These
delays will add up for an expression like
((a*;b*);(c*;d*)).

When larger circuits are made from these cells,
the RES and ENB signals retain their meanings. Each
event cell or sub-circuit formed from several cells
accepts one input ENB and produces one output
RES. In general we define a pair of ENB and RES
to be correct if the following applies at the begin-
ning of each cycle (just before START is asserted):

k9

— enB is true if and only if the sequence of events
so far can be extended by any sequence of
events satisfying the regular expression of the
subcircuit controlled by the ENB/RES pair, to
give a prefix of some sequence in Lg;.

— gres is true if and only if some sequence of
events satisfying the subexpression has just
completed, and ENB was true just before the
beginning of that sequence.

In addition, a sequencer has a signal INIT, not
shown in the figures, which clears the RES outputs

-

+ c

a b
Fig. 10. A recognizer for patha;(a+b);cend

of all event (leaf) cells and generates the ENB input
for the root cell (which must a “*” cell, if there
is an outermost implied Kleene Star) during the
first cycle (an RS flip-flop set by the INIT signal
and reset by END can be used to generate this ENB
signal).

Figure 10 shows a recognizer for the path path -
a;(a+b);c end constructed using this syntax-
directed technique.

All recognizers constructed by the previously
described procedure perform the correct function,
as required by Propositions 7 and 8. The former
follows directly from the control circuit while the
latter is equivalent to the following: If a recognizer
is initialized and some sequence of events ‘clocked’
into the circuit, the recognizer will output 1 on DIS,
between cycles for precisely those events e that are
forbidden (as the next event) by the simple path
expression. To prove this we show that the ENB
input of an event cell in the recognizer is 1 if and
only if the event corresponding to this cell is per-
mitted by the path. As shown in Fig. 6, DIs, is
1 if and only if none of the cells for event e is
enabled. Therefore, proving that an event cell has
its ENB signal set if and only if the corresponding
event is permitted in the path will show that the
recognizer is functionally correct. In other words,
we wish to prove that all ENB signals for event
cells are correct, according to the definition of ENB
above.

We outline a proof of the stronger statement
that all ENB signals in the recognizer are correct.
This proof is based upon the structure of the recog-
nizer. An ENB signal in a recognizer is set by one
of four sources:

— The operand port of a “ +” or
— The left operand port of a ““;” cell;

— The right operand port of a ;" cell;

— The INIT signal.

In the first and second cases the signal is correct
if and only if ENB for the operator cell is correct.

ok

cell;
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In the third case the signal comes from the RES
port of a recognizer for an initial subexpression.
Therefore it is correct if and only if the RES signal
for the subexpression is correct. In the fourth case
the signal is asserted only at the start of the recog-
nition and is correct by definition. Thus, to prove
that the circuits are correct, we need only prove
that if the ENB signal for any recognizer is correct
then so is the RES signal.

Once again, the proof of correctness is based
upon the structure of a recognizer. In a correct
recognizer the RES signal is true at time ¢, if and
only if the ENB signal is true at some preceding
time ¢, and the events between ¢, and ¢, obey the
path. A recognizer that is a single event cell is
clearly correct. A recognizer for path a;b built by
composition of correct subrecognizers for a and
b is also correct, since if RES, is true at time ¢,
then there must be some time 7, when RES, was
true, with all intervening events satisfying path b.
But then there must have been a time f, when
ENB, was true and all events between ¢, and ¢,
must satisfy path a. By definition of composition,
then, the events between ¢, and ¢, satisfy a;b. A
recognizer for path (a)* is correct if its subrecog-
nizer is correct, since it outputs 1 and enables its
operand if and only if ENB or RES, is true. Finally,
a recognizer for path a+b is correct if both subre-
cognizers are correct, since if RES is true then one
of RES, or RES, must be true, and if one of ENB, or
ENB,, is true then ENB must be true. Since all meth-
ods of constructing recognizers have been shown
to lead to correct circuits, recognizers, constructed
using this procedure are functionally correct.

Finally, we give a compact floor plan for the
circuit. The floor plan for a sequencer, shown in
Fig. 11 has the cells that make up the recognizer
arranged in a line with the controller to one side.
The TR signals flow parallel to the line of recog-
nizer cells to enter the controller, and the Start
and End signals emerge from the controller to flow
parallel to the line of cells. The ENB and RES signals
that are used for intercell communication also flow
parallel to the line of cells.

The layout in Fig. 11 is fairly small. If the se-
quencer for a path of length » that has k types
of input events is laid out in this fashion, the area
of the layout is no more than O((n+ k) (log n+ k)).
This is due to the structure of the recognizer cir-
cuits. All recognizer circuits are trees, which can
be laid out with all nodes on a line and edges run-
ning parallel to the line using no more than
O(log n) wiring tracks [8]. Thus the height of the
circuit in Fig. 11 is O(log n+ k) while its width is
O(n+k).

— RES and

ENB

=inin I
L Cells

TR's

Controller
Start
End

Fig. 11. The floor plan for a sequencer

S Implementation of the arbiter

In this section we elaborate on the arbiter shown
in Fig. 3 to show that the conditions assumed for
it can be met. In older literature the term arbiter
refers to a device that selects a single event from
a mutually exclusive set of requests. In this paper
the term is used in a somewhat less restrictive
sense. All events need not be mutually exclusive
and the arbiter may select more than one event
concurrently, as long as the mutual exclusion con-
ditions are satisfied. We first show how such an
arbiter can be built. Later we discuss ways to en-
sure that the arbiter is fair when forced to chose
between events. This is much harder to achieve
than just the mutual exclusion requirement.

We shall make use of the following terms: An
event is pending from the time the external world
asserts the request until the time the circuit asserts
the acknowledge for the event. An event is enabled
if it is pending, and it is not currently disabled
by any path.

The following observation helps to simplify the
arbiter: a pair of events occurring in any single
path expression must be mutually exclusive. This
is due to the role that each event plays in enforcing
synchronization among a set of multiple path ex-
pressions, all containing the same named event.
The arbitration function can thus be represented
by a conflict graph, in which each event is denoted
by a vertex and the relation between a pair of mu-
tually exclusive events is denoted by an undirected
edge. From our observation, it follows that the
resulting conflict graph for a set of path expres-
sions consists of a set of overlapping cliques, where
a clique of k nodes, A,,A,, ..., Ay, corresponds
to a simple path expression R, with Xz=
{Ai,A,, ..., A;}. The conflict graph represents the
static structure of a multiple path expression. Fig-
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B C
path (A +B+D)end
A path (B;(C + D);E) end
— F path (E + F + G) end
D E

Fig. 12. The conflict graph of a path expression

ure 12 shows a multiple path expression and its
conflict graph.

The dynamic behavior of the arbiter depends
on the conflict graph together with the set of events
that are enabled at any instant. The dynamic struc-
ture of a multiple path expression is represented
by an active subgraph of the conflict graph induced
by the set of vertices corresponding to the events
enabled at that instant. The function of the arbiter
is to select an independent set of this subgraph,
thus ensuring that only one of any pair of mutually
exclusive events is enabled. In this paper we require
the arbiter to respond whenever it can and not
introduce deliberate wait states. More formally we
define a maximally parallel set of events to be an
independent set of the active subgraph, such that
it is not a subset of any other independent set of
the active subgraph. We require the arbiter to re-
spond with a maximally parallel set without intro-
ducing deliberate delays. In general there will be
more than one possible maximally parallel set, and
the arbiter need not choose the largest one.

Before proceeding further, let us consider the
path expression path A +B end, where the conflict
graph is G=(V, E)=({A, B}, {[A, B]}). Seitz [16]
has shown how to build an arbiter for such a struc-
ture using an interlock-element, as shown in
Fig. 13.

Circuit operation in Fig. 13 is most easily visu-
alized starting with neither client requesting, v, and
v, both near 0 volts, and both outputs high. If
any single input, say A, , is lowered then v, is
driven high, resulting in A_,, being lowered — B,,,
remains unaffected. Moreover, once A, is low-
ered, and as long as A, is kept low, the interlock
element remains in this stable state irrespective of
what happens to B, . If A; is now raised high,
then the element returns to its initial condition,
if B, is still high; or B,,, is lowered, if B;, is low-
ered in the meantime.

However, the interesting situation occurs when
both A,, and B, are both lowered concurrently,
i.e., within a very short interval of time. In this
case the cross-coupled NOR gates enter a metastable
state, which is resolved after indeterminate period
of time in favor of either A or B. Since this resolu-
tion depends on the thermal noise generated by

high threshold

buffers

Lo
I
L T
end I Ry I W R2
(b)

Fig. 14. a The Conflict Graph and b The Arbiter in NMOS

the gates, it is inherently probabilistic. In this case
the outputs of the NOR gates themselves cannot
be used as the outputs. High threshold inverters
between the NOR gates and the outputs prevent
false outputs during the metastable condition.
Seitz’s idea can be extended by generalizing it
to the conflict graph for an arbitrary set of path
expressions. Roughly speaking, we may transform
the conflict graph to a circuit by replacing each
vertex with a NOR gate and each edge with a
cross-coupling of NOR gates corresponding to the
pair of vertices on which the edge is incident. Con-
sider the circuit for the readers-writers path expres-
sion:
path R, + Wend
path R, +Wend
where the pair R; and W and the pair R, and
W are mutually exclusive. The conflict graph and

the circuit for this expression are shown in
Fig. 14.
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The above arbiter is quite satisfactory if we
do not require the arbiter to be fair. In certain
applications, however, it is required that the arbiter
should be fair when faced with a choice. So far
we have not defined what we mean by fairness.
The most commonly used definitions of fairness
that allow pending events to be disabled are due
to Lehman, Pneuli and Stavi [9]. The definitions
apply to total extensions of infinite exccution
traces. An arbiter is fair if every total extension
of any infinite execution trace, is fair. Only events
that are continuously requesting (‘continuously
pending’) are considered.

1. Impartiality. Each event is infinitely often ac-
knowledged. (Must be fair to all events).

2. Fairness. Each event is either infinitely often ac-
knowledged or almost everywhere disabled.
(Need be fair only to events that are infinitely
often enabled).

3. Justice. Each event is either infinitely often ac-
knowledged or infinitely often disabled. (Need
only be fair to events that are continuously en-
abled).

The order of these definitions is such that if an
arbiter is fair according to one definition it will
also be fair according to any succeeding definition,
but not the converse. Note that these definitions
do not require different events to be acknowledged
with equal promptness, all that is required is that
no event is starved. .

Let us digress for a moment, a see why the
arbiter described earlier fails to enforce any of
these forms of fairness. The arbiter implementation
based on the extension of Seitz’s interlock element
does make arbitrary choices at times, but such an
implementation in NMOS has some problems,
even if it is assumed that all equal sized transitors
are perfectly balanced. Consider the circuit for the
readers-writer problem illustrated in Fig. 14. Con-
sider the situation when the circuit is in the none-
requesting condition and all three requests, R,,
R, and W, arrive concurrently. An infinitesimally
short interval 4¢ after all three requests arrive, let
us assume that the voltages at the outputs (of the
NOR gates) have increased by an infinitesimally
small value 4v <v,,. The pull-down MOS transis-
tors may be assumed to be operating in their linear
region. If all pull-ups are assumed to provide equal
active resistance, the output of the NOR gate cor-
responding to W will grow less rapidly than those
corresponding to R, or R,. The cumulative effect
of this imbalance will result in a low output for
W’s NOR gate and high outputs for R,’s and R,’s.
Hence if R;, R, and W request continuously then

the request for W will never go through, resulting
in W’s starvation. It is easy to see that this violates
all three definitions of fairness.

Since we do not allow deliberate wait states
it is not possible for an arbiter for path expressions
to be fair according to the first definition. Consider
for instance the following path expression:

path (A + B);Cend,
pathD;(A+E)end

Suppose that each event takes the same amount
of time to execute externally and that new requests
for each event are forthcoming as soon as allowed
by the protocol. Then simultaneous execution of
D and B will alternate with simultaneous execution
of C and E without the arbiter ever having to block
any event. Yet, event A will never execute even
if it remains continually ready. If, however, the
first request for event B is delayed by the time
it takes to execute an event, then initial execution
of event D may be followed by alternate executions
of A and (D,C)! Note that neither the duration
of external events nor the occurrence of external
requests is under the control of the circuit.

The second (and therefore third) definition of
fairness can be enforced using a simple LRU type
deterministic arbitration algorithm. Assume there
are k events. We assign a priority number from
0 to k—1 to each event, where the priority corre-
sponds to the number of times the event is blocked,
Le., the number of times the event is enabled but
not selected by the arbiter. At any instant the ar-
biter selects from the set of enabled events in order
of priority. When an enabled event is selected its
priority number is reinitialized to the lowest value.
On the other hand, if the enabled event is not se-
lected its priority number is incremented by one.
Since each event must be enabled an infinite
number of times, since any particular event can
have at most k—1 neighbors in the conflict graph,
and since each time it is blocked at least one of
its neighbors is selected with a resulting increment
in its own priority, after the k'™ attempt it will
have a priority of k—1, the highest possible. It
is possible to show (using induction on k) that
no more than one event can ever get a priority
of k—1. Hence when the event gets enabled next
it will have the highest priority and get selected.
Since this will happen an infinite number of times,
this ensures fairness according to the second defini-
tion. The LRU algorithm has the added advantage
that the response time to different events is approx-
imately balanced.

The following simple circuit can be used to im-
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plement the LRU algorithm. It uses the arbiter
circuit described previously to enforce the mutual
exclusion. However each input is preceded by k
switchable delay lines (k? delay lines in all). Each
delay line can be switched off digitally, for instance
by selectively bypassing the delay line. The delays
are chosen large enough, and their variation made
small enough, so that if one input is delayed by
fewer delay lines than another, it will be selected
by the arbiter (because the arbiter didn’t notice
the other one in time). The delay lines for any
event are controlled by priority of the event: each
time an event is blocked, an additional delay line
is switched off for it, whereas if the event is ac-
knowledged all its delay lines are switched on
again, reducing its priority to the lowest level. A
complete arbiter circuit based on this idea requires
just O(k?) area.

The second definition is not the strongest possi-
ble form of fairness that can be enforced for path
expressions. Consider for instance the path expres-
sion path((A;C)+(B;A))end. As before assume
that all events are pending at all times. The execu-
tion sequence BABABA ... is fair according to this
definition even though event C is starved (event
C is never enabled). We could have done better,
however, since ACBAACBA ... is also a legal exe-
cution sequence.

Although we do not know the strongest form
of fairness enforcible for path expressions, it ob-
viously lies somewhere between Definitions 1 and
2. Intuitively, the fairest arbiter would only cause
starvation for the least number of events possible.
The problem can be greatly simplified by requiring
the arbiter to be oblivious of the sequencing con-
straints and therefore equate a disabled event with
an event not requesting. This restriction will also
tend to simplify the logic since the arbiter size need
not depend on the size of the path expressions,
but only on the alphabet size. It should be kept
in mind however that like our previous restriction
requiring prompt response, this restriction limits
the kind of arbiters possible. It may be noted that
the LRU arbiter described previously is oblivious.

We shall describe a probabilistic arbitration al-
gorithm for an oblivious arbiter whose infinite exe-
cution traces will be “fair” with probability 1
where “fair” is defined by either of Definitions 2
and 3. It also holds for stronger forms of fairness
and therefore realizes a type of fairness between
Definitions 1 and 2. The algorithm is as follows:
Whenever the set of currently executing events is
not a maximally parallel set, find all ways of ex-
tending this set with enabled events so that the

new sets are maximally parallel, choose one of
them at random, and then acknowledge the events
in the selected extension. Every time an event is
no longer disabled there is a non-zero probability
that it will be acknowledged, and if this is the case
infinitely often the event will be infinitely often
acknowledged. It follows that this algorithm en-
sures fairness in the sense of the second or third
definition above. It will also prevent starvation for
event C in the last example above. :

Although we do not know of any direct imple-
mentation we shall describe a way of implementing
this arbitration algorithm using an oracle for gen-
erating random bits. The oracle can be practically
realized in a separate isolated circuit that uses am-
plified thermal noise to generate a random bit pat-
tern. Again we use the extension of Seitz’s interlock
element, described previously, as the starting point
and add a delay element at each input. The delay
elements can be digitally switched on or off (by .
bypassing them), and are large enough so that if
two conflicting events are enabled at the same time,
and one is delayed by the delay element, the other
is sure to be passed by the arbiter. This means
that the delay should exceed the gate delay of the
arbiter (when no conflicts occur). The delay ele-
ments are each controlled by a 1 bit register, which
determines if the delay is on or off. A new value
is loaded into each register from a (separate) oracle
each time the corresponding event gets enabled.
This means whenever a new set of events gets en-
abled, their ‘priorities’ are randomly 1 or 0. It
is easy to show that any maximally parallel set
then has a nonzero probability of being selected
(when just its events have priority 1 and all others
have priority 0), which is just what the probabilistic
algorithm requires. To ensure that the random bits
clocked into the different registers are largely un-
correlated, the oracle is split into multiple oracles
by clocking it into a shift register at a high rate.
A tapped delay line could be used instead of the
shift register.

Finally, we show that no deterministic obli-
vious arbiter can do as well as our probabilistic
arbiter. We show that every deterministic oblivious
arbiter gives rise to starvation of an event which
is continually requesting for some path-expression
for which the probabilistic algorithm (described
above) does not cause such starvation.

The difficulty of building a fair deterministic
arbiter that matches the probabilistic arbiter can
be illustrated by an example. Consider the follow-
ing path expression:

path (A;C)+(B;(A+ B))end.
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Assume the LRU algorithm, described previously,
is being used, and that the external clients always
request permission to perform all three events A,
B and C. Let the priorities of all three be 0’s initial-
ly. As a result, initially A and B are enabled. As-
sume that B is selected, making B’s priority 0 and
A’s priority 1. In the next instant, A and B will
again be enabled. But now A has the higher prior-
ity and will be selected, so that A’s priority be-
comes 0 and B’s becomes 1. Continuing in this
fashion, it is easy to see that the sequence chosen
will be BABABA .... The trouble with this
scheme is that C will never be enabled even if its
request is pending. Increasing the number of levels
of priority will not help. This example can be ex-
tended to the following Lemma.

Lemma 13. Let M be a deterministic finite-state
transducer implementing an oblivious deterministic
arbiter. Then there exists a path expression over
2 ={A,B,C} such that one event, say C, will be
starved even though its request is continually pend-
ing. Moreover the probabilistic algorithm does not
cause such starvation for this path expression.

Proof. Let M be a deterministic finite-state trans-
ducer whose alphabet is Z={A,B,C}. Let the
states of M be S={s,,52, ... ,Sm}. Let the conflict
graph, G, for the path expression to be complete
graph on the vertices A, B and C. We construct
a path expression P with the conflict graph G such
that M causes the starvation of the event C. Notice
that because of the nature of the conflict graph
G, if at any instant A and B (but not C) are enabled
then at most one of A and B may be selected by
M.

Let 5, be an arbitrarily chosen state of M. We
conduct an experiment on M by continuously pro-
viding A and B as the enabled inputs, starting with
M in the state s,. If we present a string of inputs
{A,B}, {A,B}, ..., {A,B} of length m then we no-
tice that at the 1% input ({A,B}, the transducer
deterministically goes from the state s(1)=s, to
a state s(2) while outputting A or B. Let s(1),
sQ2), ..., s(m+1) be the sequence of states and
oe{A,B}™ be the output string produced as a re-
sult of the experiment. As a consequence of the
pigeon-hole principle, some two states in the se-
quence of states will be the same. Of all such pairs,
let s(i) and s(j) be two such states closest to s, .
Assume that i<j and k the smallest multiple of
(j—i) such that k>i. Without loss of generality
assume that M outputs B when in state s(i) with
the input {A, B}.

Let P be the path expression
path (A+B) " ';((A;C)+B);(A+B)* ‘end

It is easy to see that P has G as the conflict graph
and if the requests for A, B and C are continuously
pending then the sequence of outputs will be a
string in {A,B}* and C will never be enabled.

The probabilistic algorithm would have no
problem with the path-expression since from any
state (of the path expression) it could reach the
state enabling C with non-zero probability, and
hence enable C an infinite number of times in an
infinite trace. O

The result of the above lemma can also be stated
as follows: A deterministic oblivious arbiter needs
at least N/2 states to do as well as one using the
probabilistic algorithm, where N is the size of the
path-expression, whereas the probabilistic algo-
rithm requires a constant number of internal states.
The actual bound on the minimum number of
states required may be much larger.

However, for many path expressions the LRU
algorithm is just as fair as the probabilistic algo-
rithm and has the advantage that the response
times are approximately balanced, instead of being
a complex function of the conflict graph as in the
probabilistic algorithm. For such path expressions
the use of the LRU algorithm is preferable. The
problem of determining just which path expres-
sions satisfy this property, and well as more direct
ways of combining the advantages of the LRU
algorithm with those of the probabilistic algorithm
remain to be investigated.

6 Conclusion

Since our circuits have the constant separator
property, a more compact O(N) layout is possible
using the techniques of [5]. However, while it is
definitely possible to automatically generate the
O(N-log(N)) layout that we propose, it is much
more difficult in practice to generate the O(N)
layout of [5]. Furthermore, the O(N) layout will
occupy less area only for very large N. We suspect
that ease of generating the layout will win over
asymptotic compactness in this case. One of the
authors (M. Foster) is currently implementing a
silicon compiler for path expressions, based on the
ideas in this paper.

Finally, we plan to investigate extensions of our
construction to appropriate finite state subsets of
CSP [6] and CCS [11]. In the case of CSP the
subset will only permit boolean valued variables
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and messages which are signals. If the number of
message types is fixed, we conjecture that area
bounds comparable to those in Sect. 4 can be ob-
tained. Arrays of processes in which the connec-
tivity of the communication graph is low can be
treated specially for a more compact layout. Such
a finite-state subset of CSP may even be more use-
ful than the path expression language discussed
in the paper for high level description of various
asynchronous circuits.
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Appendix : Proof details

Refer to Sect. 3:

Lemma 14. If the same assumptions as in Proposition 8 are sat-
isfied, then T(Seq())) is consistent with R;.

Proof. From Proposition 8 it follows that Seq(j) consists of
non concurrent time intervals. The result is therefore easy to
prove by induction on the number intervals in Seq(j), using
the same proposition. [J

Lemma 15. For each element i in Int with label e, the correspond-
ing elements in Ext and Seq(j) are subintervals of i.

Proof. Follows from the properties of the circuit in Fig. 3 (see
also Fig.4). O

Lemma 16. For any RjeM, T(lnt)[,m is a totally ordered multi-
set.

Proof. It is easy to show that T(Int)|;, =T(Int|y_ ). But Int;
consists of ‘internal events’ of the path expression Rj, during
each of which the corresponding AcK is high. Hence by Proposi-
tion 6, no two such events overlap, and therefore T(lnt)lzRJ is
a totally ordered multiset. [J

Lemma 17. For any RjeM, T(Int)|s, =T(EXt)|,, .

Proof. For any element i of T(Int), that is also in T(lnt)lzm,
the corresponding element of T(Ext) will be in T(Ext)[;, | (Defi-
nition 2) since they must map to the same alphabet eely;.
Hence these traces have the same number of elements. Also
from Lemma 15 it follows that if i7 and i2 are two elements
of T(lnt)l;RJ satisfying one or none of i/ precedes i2”" and
*“i2 precedes i1, the corresponding elements of T(Ext)|;,  will
satisfy at least the same relationships. In other words the partial
order of T(Int) is a restriction of that of T(Ext). But by
Lemma 16 T(lnt)l;RJ is a totally ordered multiset. Hence from
the above T(Ext)|;_ will have the same partial order relation-
ship and, therefore, ‘be the same totally ordered multiset. [J

Lemma 18. For any RjeM, T(Sem(j))=T(Int)[;, .

Proof. Follows from Lemma 15 and 16 in the same way as
in the Proof of Lemma 17. The only difference is that

T(Seq(j))ls,, = T(Seq(@). [

Lemma 19. For any sequencer SEQ;, no two TR’s are high simulta-
neously.

Proof. The two TR’s would be two AcK’s of events in the same
path expression Rj, which cannot be high simultaneously by
Proposition 6. [

Lemma 20. For any sequencer SEQ;, TR, is raised only if DIs,
is low and all TA’s are low.

Proof. By induction on the number of rising transitions of TR’s:

1. (First transition): Let the corresponding event be e. By Prop-
osition 9 initially all TA’s are low, and all CLR’s are high,
hence all TR's are low initially. By Proposition 7 all TA’s will
remain low until the first rising transition of TR,. By the
same proposition DIs, will not change until the first rising
transition of TR,. If DIs, were not low, IN, would remain
low (see Fig. 3). Hence by proposition 6, TR, would remain
low, a contradiction.
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2. (For a succeeding transition): Let the corresponding event
by p and that of the previous transition g. While TR, is high
no TA or TR other than TA, or TR, can be high (Proposition
6 and Lemma 19). Until CLR, goes high, TR, must remain
high (see Fig. 3). Once CLR, goes high, all IN,, with aeZy;,
will be low after a short delay (see Fig. 3). Assuming the
variation in this delay for different a’s is less than the delay
of the arbiter in lowering TR, all TR, with a# ¢ will continue
to remain low until CLR, is lowered (see Fig. 3). All Ta,,
with a= ¢, also continue to remain low (Proposition 7). But
CLR, remains high at least until TA, is lowered (see Fig. 7).
Hence by the time TR, is raised all TA’s will be low. Also
TR, could not have been raised if N, were low (Proposi-
tion 6). But if DIs, was high when TA, was last lowered then
N, would now be low (see Fig. 3), assuming the main NOR
gate plus the 2-input NOR gate have a lesser delay than
the Muller-C element plus the SR Flip-Flop. Moreover, DIs,
cannot change before TR, is raised (Proposition 7). Hence
pIs, must be low when TR, is raised. [

Lemma 21. For any sequencer SEQ;, TR, is lowered only if TA,
is high.

Proof. The NOR gate arrangement in front of the arbiter in-
sures that once TR, is high it remains high until cLR, is raised,
and this can occur only if TA, is high (see Fig. 3). Moreover
once TA, is high it will remain high until TR, is lowered (Proposi-
tion7). O

Theorem 10.

Proof. Lemmas 19-21 satisfy the preconditions of Proposi-
tion 8. Hence T(Seq(j)) is consistent with Rj for any RjeM.
By Lemma 18 and Definition 4, T(Int) is consistent with Rj
for any Rje M. By Lemma 17 and Definition 4, T(Ext) is consis-
tent with Rj for any RjeM. Hence we Definition 4, T(Ext)
eTrs(M). O

Lemma 22. If TeTry(M) is layered, then each subset (cf. Defini-
tion 11) of T has the property that no two elements in it are
instances of events in Xy, for any RjeM.

Proof. Any two elements i, i2 (corresponding to events el,
¢2) in the same subset of T must be concurrent (Definitions 3,
11). Suppose el, e2 € Xy; with RjeM. Then T|y_  will include

i1, i2, which will be concurrent (Definition 2). Hence T| I,,, Can-
not be a total order and therefore TeTry(M) (Definition 4)
— leading to a contradiction. Hence the result. [

Theorem 12.

Proof. The behavior we require of the external world is that
it simultaneously raise REQ for all events in the first subset of
T, wait until all corresponding Ack are high, then simultaneous-
ly lower all REQ, wait until all Ack are low, then repeat this
cycle for the next subset of T, and so on. We need to show
that under these conditions the circuit responds within a finite
amount of time in each cycle. The result then follows directly.
As shown in the Proof of Lemma 20, all AcK’s are initially
low. Hence they are low at the beginning of each of the cycles
mentioned in the previous paragraph. At the beginning of each
such cycle, Ext,Int and every Seq(j) with RjeM, get redefined.
Let Tp denote T restricted to subsets before the current cycle.
It is easy to show by induction on the number of cycles and
definition 4 that at the beginning of each cycle T(Ext)=Tp
and TpeTrg(M). Hence for any RjeM,S(Tpl;w) is a prefix of
some element in Lg;. If the next subset contains an instance
il of event el, then for each RjeM such that e/ eZR,,S(Tplxm)
can be extended by il to give a prefix of some sequence in
Lg;; in fact this extension gives the next value of Tp|s  (see
Lemma 22). But by Lemmas 18, 17, for any Rje M, T(Seq(j)) =
T(Ext)|5, = Tpls,,- Hence for each RjeM, such that el
eZRj,T(geq(j)) can be extended by il to give a prefix of some
sequence in Lg;. Thus by Proposition 8, the corresponding se-
quencers SEQ;, with el €Xy;, will have pis; low. This applies
to any e/ in the next subset of T.

Therefore at the beginning of any cycle, when REQ,; for any
event el in the next subset of T is raised, all DIS,; inputs to
the NOR gate for even el (see Fig. 3), will be low. Also within
a finite amount of time all relevant TA,,’s must go low, by
Proposition 8, since the corresponding TR,;’s are already low.
Hence CLR,; will go low, and IN,; will go high for each ef
in the next subset of T. It follows from Proposition 6 and
Lemma 22 that all Ack’s corresponding to events in the next
subset of T will be raised within a finite amount of time.

The Proof for the second half of the cycle is more straightfor-
ward. By Lemma 8 once all REQ’s are lowered, within a finite
time all relevant TA’s will be raised, causing the corresponding
CLR’s to go high. As a result all relevant IN’s go low (see Fig. 3)
and hence by Proposition 6 all Ack’s go low within a finite
time, completing the cycle. [



