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Abstract 
We show the existence of two and three finger grasps in the 
presence of arbitrarily small friction for two and three dimen- 
sional smooth objects using a simple new technique. No con- 
vexity of the objects is assumed. We also prove the existence 
of finger gaits for rotating a planar object using three and 
four fingers. Additional results for smooth convex objects are 
presented which describe two different finger gaits using four 
fingers. 

1 Introduction 
We show here the existence of some fine motions characteristic 
of dextrous hands. By dextrous hands we mean robot hands 
with three or more articulated fingers capable of exerting forces 
through the fingertips. We focus on a small subclass of fine 
motion problems referred to as gaiting problems. 

One typical fine motion is the continuous rotation (or change 
of orientation in R3) of an object by repositioning the grasping 
fingers while maintaining a grasp at  all times. To understand 
the motion better, one could think of a human hand. Assume 
we are holding a disk with our fingers. We may rotate the disk 
by simply rotating the wrist. But a t  some point we will reach 
the limit of rotation of the wrist. However, we may continue 
to rotate the object in the same direction by first “walking” 
the fingers around the edge in the opposite direction until the 
wrist is again within its operating range. That is, we can relo- 
cate some fingers on the edge while we maintain a grasp with 
the remaining ones. (Of course one could completely release 
the object and relocate all the fingers, but the whole point of 
fine manipulation is to manipulate objects while maintaining 
a grasp at all times.) We define a finger gait to be any periodic 
sequence of such finger relocations. 

When the object to be manipulated is planar the whole 
motion may be carried out in the plane. Furthermore, the 
finger motions may be restricted 80 that they do not “cross 
over” one another. In other words, the ordering of the fingers 
around the edge of the object should not change throughout 
the manipulation. 

We will study the possibility of executing such motions for 
certain classes of objects. In order for such motions to exist, 
we will at least need: 

(a) the existence of a grasp 

(b) the possibility of exerting arbitrary forces and torques 
on the object so that any position and orientation of the 

object can be attained. 

In the last section we suggest further research directions. 

2 Related works 
Mishra, Schwartz, and Sharir [SI obtained bounds on the num- 
ber of fingers needed to achieve positive and force closure 
grasps on piecewise smooth objects. In particular they showed 
the existence of three-finger positive grasps for smooth planar 
objects. They assumed no friction but some of the results ex- 
tend to arbitrarily small friction. Linear time algorithms for 
the synthesis of such grasps were also given in the case of poly- 
hedral objects. Markenscoff and Papadimitriou [6] present a 
way to select optimal form closure grasps for planar polygons. 
Nguyen in [9] studied force closure grasps and their synthesis 
for polyhedral objects. 

In this paper we restrict the class of objects to those with 
smooth boundaries, but we are able to show existence of grasps 
for arbitrarily small friction. The ideas used also suggest some 
extensions to the case of piecewise smooth boundaries. 

In the above works, the fingers were not repositioned once 
they achieved their grasping configuration. In [5] Li consid- 
ers nonholonomic grasping constraints and studies the motion 
planning problem for the contact point between finger and ob- 
ject. 

Okada [IO] implemented finger gaits for turning a sphere 
with a three finger robot hand by teaching the sequence of 
motions required. Hor [3] implemented similar gaits to turn 
a disk with a four finger planar manipulator but used force 
feedback to maintain the grasp. Fearing [2] implemented an 
object twirling sequence using the Salisbury Hand. 

Here we use several “distance” functions in the proofs which 
provide intuitive arguments for and concise proofs of the exis- 
tence of most of the grasps. They also suggest further results. 

Additional references can be found in the papers listed 
above. 

3 Formulation of the problem 
We will start with the simpler planar case. We make the fol- 
lowing assumptions (so that the problem is well defined). For 
the concepts of differential geometry we refer the reader to [I]. 

(Al)  The object A is smooth (as opposed to piecewise smooth), 
i.e. no corners are allowed. More precisely, we require 
that the boundary be diffeomorphic to a circle. 
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The "fingers" are modeled as isolated points. This corre- 
sponds t o  the idealization of hard point contacts as in [7]. 
These point fingers are assumed to  be capable of exerting 
forces in any direction but individually cannot exert any 
torque. 

There is a nonzero coefficient of friction between the ob- 
ject and the fingers. (We assume a Coulomb friction 
model.) This implies that  the only forces the fingers can 
transmit to the object are those which lie inside the cone 
of friction at the corresponding contact point. 

Let { B }  be a fixed coordinate frame. For any pair of 
fingers Pi,Pj, there exist angles 06, efj such that the 
angle 6' between the vector Pi - Pj and the z-axis of { B }  
satisfies e!, 5 8 < 85. (Here we are allowing e;-efj > 2% 
with the interpretation that in this case Pi-P, can rotate 
by more than one revolution.) 

Once the initial ordering of the fingers along the bound- 
ary is chosen (by selecting one of them as the first and 
numbering the others, say, clockwise) then it will remain 
the same for the duration of the manipulation. 

Remark 3.1 Condition (A4) is clearly needed, otherwise the 
manipulation problem is trivial. Once a grip is obtained, we 
could simply maintain i t  and rotate the fingers for as long as 
it is needed. No relocation of the fingers would be required. 
Condition (A4) captures the mechanical limitation that forces 
a change of grip in order to  rotate the object an arbitrarily 
large amount. Condition (A5) is not really necessary. It is 
included here because i t  models an additional limitation of 
human hands and of many robot hands, and because the finger 
gaits we will present actually satisfy it. 

4 Finger gaits with 3 fingers on 
the plane 

The following result is not new but, to  the best of our knowl- 
edge, the approach used in the proof was not used before. 
Furthermore, it illustrates the use of the distance function f .  

Definition 4.1 A grasp on an object is force-closure if it can 
exert an arbitrary force and torque on the object through the 
set of contacts. 

Proposi t ion 4.1 Under Assumptions (Al)-(A9), there et- 
ists a two finger force closure grasp of object A. 

Remark 4.1 The previous proposition does not assume that 
the object is convex. Moreover, the result is independent of 
the coefficient of friction at any point on the boundary of A 
as long as i t  is nonzero. 

PROOF. To show force closure i t  is enough to find two points 
Pi, P2 such that 

( P I  -Pa)Tt ,  = 0 

(4 - Pl)Tt2 = 0 (1) 
n1 +n2 = 0 

where t i  is the unit tangent to the boundary of A, aA, at P, 
and ni is the inward normal a t  Pi. The first two equations of 

system (1) say that the normal line to aA at  PI (P2) passes 

Let 7 : S' + aA be a diffeomorphism. Consider the func- 
through P2 (Pi). 

tion f : S' x S' -+ R defined by, 

Then, f is continuously differentiable and attains its maximum 
in S' xS' . Let (TI, h) be a maximum off .  Then, Vf(&, 32) = 
0. In local coordinates we have 

-(s1,s2) af 
asl 

= 2(Y(Sl) - Y(S2))T4(sl) = 0 

Since y is a diffeomorphism, then +(TI) # 0 and 4(&) # 0. 
Therefore, 4 = y(&) and P2 = y ( 4 )  satisfy the first two 
equations in (1). Also nl and n2 are collinear. The maximality 
of (TI,&) implies, via a simple geometric argument, that nl 
(na) points toward Pa (PI). I 

The following proposition is now easy to  prove (see Fig- 
ure 1). 

Proposition 4.2 Assume (A1)-(AS) hold. Let &j = 0; - 
Of,. Then, if min8,j is large enough, there etist three-finger 
gaita for rotating the object A an arbitmrily large amount while 
maintaining nonzero grusping forces (i.e. forces which result 
in zero force and torque on the object). 

Moreover, a more precise estimate of how large minaij must 
be can be obtained as follows (aee ezample in Figure 1). As- 
sume that the fingers PI, P2 can be located at the positions 
found in Proposition 4.1. Assume further that P3 can be posi- 
tioned arbitmrily close to Pa so that the arc PI p2P3 is oriented 
clockwise. If, from those starting positions, each of the uectors 
Pi - Pj can rotate counterclockwise by at least T ,  then A can 
be rotated clockwise an arbitrary amount. 

Remark  4.2 The only reason for the generality of the first 
part of the proposition is to  guarantee that we can put the 
fingers in a convenient initial position. As the second part 
shows, once that is achieved, the vectors Pi - PJ need only be 
able to rotate by r in order for the desired finger gait to exist. 

5 Finger gaits with 4 fingers on 
the plane 

We show here that by using 4 fingers we may mani_pulate the 
object under more constrained situations (smaller Oij). Once 
we consider using four fingers we could have two essentially 
different gaits: using two pairs separately, or using a three 
finger grasp and replacing each gripping finger cyclically one 
at  a time using the fourth finger. We show below that both 
options are always possible. 

Remark 5.1 Clearly, under our assumption of point fingers, 
we can do finger gaits using any number of fingers by simply 
accumulating them near one of the gripping points Pi, P2 as in 
the previous proposition and then sliding them one at a time 
around the edge. The following proposition shows different 
gaits also exist. 
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Figure 1: Finger gai ts  with 3 fingers on  the plane. 

The following definition will help simplify the notation. 

Deflnitlon 5.1 Two points on the boundary of A are called 
antipodal if the positive ray through each point in the direction 
of the inward normal contains the other point. 

These antipodal points correspond to the double normals 
discussed in [4] in the case of smooth convex objects. 

5.1 A mountain pass theorem 
The following theorem will allow us to show the existence of 
more than one pair of antipodal points. I t  will be presented 
in some generality so that we may then apply i t  to several 
different situations. 

The proof uses arguments similar to the traditional moun- 
tain pass theorem 1111 on the existence of critical points and 
will be omitted due to space limitations. 

Theorem 5.1 Let X be a compact diflerentiable manifold 
without boundary and g : X + 91 be a continuously differen- 
tiable function. Let M, m E 31 be the maximum and minimum 
values of g respectively. Define Y = g-'(M) and assume: 

(a) X \ Y is connected, 

( b )  g-'(m) contains at least two points z0,zI. 

Then, there eziat (I critical p i n t  z of g such that z Y U 
t Z 0 , Z l ) .  

Remark 5.2 Notice that every point in Y L J { z ~ , z ~ }  is a crit- 
ical point of g. The theorem guarantees the existence of at 
least one other critical point. 

Theorem 5.2 Let A be a smooth object and 7 : S' -* aA be 
a difleomorphism. Let f : T' = SI x S' + 42 be defined by 

f (31 , sz )  = IIY(s1) - 7(sz)l12. 

Then f has at least four critical points ( ~ 1 , s ~ )  with 31 # 3 2 .  

Remark 5.3 We are interested only on critical points out- 
side the diagonal A = {(SI, s ~ )  : 91 E s'} since the diagonal 
corresponds to choosing PI = Pz, and would not result in a 
grasp. 

As we already pointed out, since TI is a compact set f 
attains its maximum at  some point (XI,&). Such a point is 
then a critical point of f. Moreover, f is symmetric (i.e., 
f ( 8 1 , s z )  = f(s1,sz) for all s1,sa). Hence (X2,Sl) is also a 
critical point. What the theorem is actually saying then is that 
there is a t  least one other critical point (and its symmetric) 
not on the diagonal. (Since f(s1,a1) = 0 and f ( s 1 , a z )  2 0 
for all 91, sa, every point on the diagonal is a minimum and 
hence a critical point.) Notice that symmetric pairs actually 
give rise to  the same pair of gripping points on the object. 

In order to apply Theorem 5.1 we need the following lemma. 

Lemma 5.1 T' \ A is connected. 

To see this simply look at the torus T' as the unit square 
with the opposite sides properly identified. 

We now return to the proof of Theorem 5.2. In view of 
the previous lemma we can apply Theorpm 5.1 to the function 
g = -f the compact space X = T' and the set Y = A where 
A is the diagonal of T'. Since the critical points of g are the 
same as those of f we conclude the proof. 

Remark 5.4 Theorem 5.2 did not make any assumption 
about the convexity of the object A. 

1 

In order to show that the newly found critical point of f 
gives rise to a new pair of antipodal points we will assume 
that the object A is convex. 

Propos i t ion  5.1 Assume the object A is convez. Let 
{ P I ,  Pz)  be the pair ofantipodalpints found i n  Propositiond.1 
and let ( ~ 3 ~ 3 4 )  be the critical point o f f  found i n  Theorem 5.2. 
Let P3 = 7 ( 3 3 ) ,  P4 = ~ ( 3 4 ) .  Then {P3,P4} i s  a pair of an- 
tipodalpoints and P I ,  Pz, P3, Ph are all distinct. 

Remark 5.6 This proposition says that in order to find an- 
tipodal points for convex objects all we have to do is find the 
critical points of the function f. The proof is not constructive. 
However, we could use standard numerical routines to search 
for the critical points. 

PROOF. Since ( 9 3 ,  S I )  is a critical point of f, Equation (1) 
holds. By the convexity assumption, the segment joining P3 
and P4 is contained in A .  So the vector P3 - P4 (P4 - P3) is a 
positive multiple of the inward normal a t  P4 (P3). This shows 
that P3, P4 are antipodal. 

We already know that PI # P2 and P3 # P4. Assume, say, 
P3 = PI. Then the point Pr must lie in the segment between 
PI and Pz. On convex objects a tangent line at  a point on the 
boundary is a supporting line. That is, i t  leaves the convex 
set completely on one side. The tangent line to A at P4 is 
perpendicular to the segment joining P3 and A .  But then the 
line must leave the whole segment on one side. This implies 
that P4 = Pz.  But this is a contradiction by the choice of 
critical point ( 3 3 , 3 4 1 .  I 
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. R e m a r k  5.0 The previous proposition suggest a finger gait 
on a smooth object using fingem. First grasp the 
object at one pair of .-tipodd pointa (PI, pa). Then rotate 
the obiect as much as possible. Now grasp the object a t  the 

boundary of A such that the positive my8 at each of them in 
the dimtion of the inword pointing nonnafr intemect at a point 
8tn'ctb inside the triangle determined by Pi, P2, P3. I n  portic- 

no two Of them 're 
a -  ~~- ~ 

other pair of antipodal points (P3,P;) using the other two 
fingers. Replace the last two fingers with the first two fingers at 
the points (p3, p4}. This actually requires three steps (much 
like the three finger gait). See Figure 2. 

Remark This theorem provides a new way Of doing finger 
gaits with The Procedure is very similar to  the 3 
finger gait. First acquire the grasp suggested in the theorem. 
Then rotate the obiect as much as possible. To unwind the 

Figure 2: Four finger gait  by pairs. 

The procedure may now be repeated. 

Remark 5.7 To show that {P3,P4) are antipodal we only 
need that both ends of the segment lie inside A. More 
precisely, there should exist XO > 0 such that XP3 + (1 - X)P4 
and X P 4  + (1 - X)P3 lie inside A for 0 < X < XO. To show that 
all four points are distinct i t  is only necessary for the segment 

to  lie completely inside A. 

One advantage in using this gait is that the total rotation 
required of the segments joining pairs of fingertips is smaller 
than with the three finger gait (this is rather intuitive). The 
amount required depends on the geometry of the object, but 
is at most a/2. This is so even if the lines joining the antipo- 
dal points are parallel (which might happen if the object has 
parallel sides). 

Dropping Assumption (AS) and assuming no other con- 
straints are imposed on the fingers a different gait could be 
used. Grasp the object with Pi, P2 and keep €3, P4 away from 
the object. Rotate Pi - Pz an angle of x.  Bring q,P4 to 
their grasping positions and transfer the grip to them. Ro- 
tate PI - PZ back an angle of x while away from the object. 
Transfer grip back to PI,  5. This can be achieved with hu- 
man hands using the thumb and forefinger of the right and left 
hands. While this gait again requires a large rotation of the 
vectors Pi - P' i t  has fewer steps than the previous one. 
As these examples show, for planar objects, the existence of 

these fine manipulations (finger gaits) is an easy consequence 
of the existence of a variety of =good" grasping points. The 
motion planning problem of relocation of the fingers is essen- 
tially one dimensional. Therefore more effort will be devoted 
in the sequel to showing the existence of suitable grasps than 
will be devoted to  the details of the finger gaits. For 3 di- 
mensional objects the motion planning for the relocation of 
the grasping fingers is not trivial and is the topic of current 
research. 

Theorem 5.3 Let A be a planar object satisfying (Ai)-(AS). 
Then there mist three non collinear points PI, P2, P3 on the 

fingers now do the following. Replace the third finger with 
the fourth, the second with the third, the first with the second 
and the forth with the first. (Each replacement in fact requires 
three steps just as with the three finger gait.) The rotation 
can now proceed by repeating the sequence described. 

PROOF. As in the proof of Proposition 4.1 we will find 
the desired points by looking at the critical points of some 
function. We want to  guarantee that the resulting points Pi 
are all distinct. 

Let $ : Wt + 92+ be a continuous function such that 

(a) $ : (0, w) + ( 0 , ~ )  is continuously differentiable. 

(b) $(z + 0 )  I 442) + dJ(ar)* 
(c) If z < I, then $(z) < $(I). 

Examples of such functions tJ are Sa(.) = za with 0 < 
(I 5 1. Notice that $(z) = z2 does not satisfy (b) (this is the 
reason we cannot define the function f as in Proposition 4.1). 
We now define the function f : S' x Si x S' -* 92 by 

f (S1 ,  *2,33)  = sb(kf(Si) - ds2) l l )  + $(lh(si) - ds3)ll) 

+ $ ( I I Y ( ~ ~ )  - ~(sdll)  
Let (TI,&,&) be a maximum o f f .  Then we claim that P; = 
y(B;), for i = 1,2,3, are the desired points. The function f is 
not differentiable at points (si, si, 83) which result in Pi = Pj 
for some i # j. So, we first show that the maximum off  occurs 
at points where all three Pi's are distinct. We show more; 
namely, that the maximum occurs a t  noncollinear points. (It 
is for this step that we need assumptions (b) and (c).) For 
short we write 

f (S lr sZ ,S3)=  c$(I(pi-pill) 
i<j 

where i t  is assumed that Pi = 7(si). If at least two of the 
Pj's ate distinct then f > 0. If, say, P2 = P3 then f = 
2$(1(P1 - Pzll). Let the Pi's be noncollinear. Then, 

11Pl - Pzll < llP1 - P311 + llP3 - P2ll. 

By assumptions (c) and (b) on $ we get 

$(IIpi - SI() < $(IIP1 - 411) + - SII). 
Therefore, 

W(llP1 -Pzll) < lWlP1 - ~ z I l ) + ~ ( l l ~ 1  -4Il)+$(llP3 -Pzll). 
which shows that we get larger values off  when the points are 
noncollinear. 

Then the gradient of f vanishes at a maximum of f. Since 
+(t )  # 0 for all t ,  at  a critical point of f a straightforward 
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calculation shows that the normals to the object a t  the corre- 
sponding points are parallel to the vectors, 

We hence need to look at the intersection of the lines Li = 
{Pi + Ami : X E W), i = 1 ,2 ,3 .  These lines are well defined as 
long as mi # 0, which holds if the Pi’s are not all equal. We 
assume this is the case. The crucial fact here is that for any 
choice of (s1,92,s3) (not necessarily a critical point of f )  these 
lines intersect a t  a point which is a strict convex combination 
of the Pi’s. To simplify the notation set 

The point of intersection is then given by the formula, 

p =  I( QI2f f l3p l  + 0 1 2 f f 2 3 P 2  + ffl3a23P3) 

where 
A = ff12ff13 + f f12a23 + a13a23. 

The following formulas show that the point P is in fact in 
the intersection of the three lines. For each i = 1 ,2 ,3 ,  

P = Pi +Ximi 

where 
X .  - Qjk i ,  j ,  k distinct. A I -  

To conclude the proof we still need to show that the point 
P actually lies in the positive rays (with respect to the inward 
normals). To simplify the notation we define g : aA x aA x 
aA + W by 

where y(s,) = Pi. 
We now show that if P is in the negative ray of the inward 

normal ni then ( P 1 , 9 ,  P3) is not a maximum off .  Say P i s  on 
the negative ray of n l .  We first show the existence of a vector 
w such that w*nl > 0, u T ( 4  - 9) > 0, and u*(A - P3) > 0 
(see Figure 3). Then we show that any point of the form 
PI = P~+XuwithX > Osatisfiesg(Pl,P2,P3) > g(Pl,P2,P3). 
Finally, since uTn1 > 0 there exists X > 0 such that PI + Xu E 
aA. 

- 

Since P I ,  Pz, P3 form a triangle we have 

The following vector u then satisfies the requirements 

Figure 3: Point of concurrence outside object. 

In fact, since P is in the negative ray of nl  we can write 

with p,  v > 0. The desired inequalities are then a consequence 
of (2). Since uTnl > 0 the vector u points “inside” the object 
A. Hence it is easy to see (using local coordinates) that for 
small values of X > 0 the point PI + X u  lies in the interior of A. 
And then for some larger value Xo > 0 we have +Xov E aA. 
But then, replacing PI with PI + Xov we get a larger value of 
g contradicting the maximality of (PI ,  P2, P3). 

This shows that P must lie in the positive rays for all nor- 
mals n,. This concludes the proof of the theorem. 

Remark 5.9 It is easy to see that if the triangle formed by 
a maximal triplet (PI,  4, P3) is not equilateral then there are 
infinitely many “good” triplets (i.e. triplets for which the nor- 
mal inward rays intersect a t  one point). They can be obtained 
choosing different functions 4. The example of an object with 
an ellipse as boundary illustrates this fact. Moreover, the 
same example also shows that in general we can not expect 
to find “good” four finger grasps except as two pairs of an- 
tipodal points. Finally, the example shows that five finger 
grasps with concurrent normals need not exist. 

I 

6 Three and four finger grasps for 
3D objects 

The following assumptions are the 3 dimensional equivalents 
of Assumptions (Al)-(A5). 

(Bl)  The boundary a A  is diffeomorphic to the sphere S2. The 
case of aA diffeomorphic to a tours with n holes is com- 
pletely analogous. 

(B2) The fingers are modeled as isolated points. These point 
fingers are assumed capable of exerting forces in any di- 
rection but individually cannot exert any torque. 

(B3) There is a nonzero coefficient of friction between the 
object and the fingers (we assume a Coulomb friction 
model). This means that the only forces the fingers can 
transmit to the object are those which lie inside the cone 
of friction at the corresponding contact point. 
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(B4) Let { B )  be a fixed coordinate frame. For any three fin- 
gers PI, P2, P3 there exist three pairs of angles @:,@:, 
@;,e;, @;,e: such that, the ZYX-Euler angles u , B , y  of 
the frame {PI - P2,4 - P3,Pl - Pa x PI - Pa} with 
respect to  {B} satisfy, 0: 5 a 5 e:, e: 5 /3 5 By", and 
Of. 5 y 5 8;. (If PI, 4 and Pa  are collinear no conditions 
are imposed.) 

Remark 6.1 In three dimensions there is no analogue to As- 
sumption (A5). 

Theorem 6.1 Under Assumptions (Bl)-(BS),  there exist an- 
tipodal points on the boundary of A .  

PROOF. The proof is completely analogous to  that of Propo- 
sition 4.1 except that  the function f is defined on S' x S' by 

f(81,82) = (IY(-'l) - r(SZ)ll' 

where y : S' + aA is a diffeomorphism. 

Theorem 6.2 For a three dimensional smooth conuez object 
there exist at least two disjoint seta consisting of antipodal 
points. Moreover, the points are not collinear. 

PROOF. The proof is analogous to  that of Theorem 5.1. 1 

Remark 6.2 It is easy to  show that with two antipodal pairs 
we get force closure. All forces and torques can be balanced by 
one antipodal pair except for a torque about the line joining 
the two points. This can be seen using the same calculations 
used in Proposition 4.1 by projecting on suitable planes con- 
taining the two points. The remaining torque can be balanced 
using the other pair of antipodal points (again with similar 
calculations). 

Theorem 6.3 There ezist three-fingerforce closure gmsps for 
smooth 3D objects in which no two of the grippingpoints are 
antipodal. 

PROOF. Use the function f : Sz x S' x Sz 4 31 defined by 

1 

where here 7 is a diffeomorphism between the sphere S' and 
the boundary of A and 9 is a function satisfying assumptions 
(a)-(c) from Theorem 5.3. The rest of the proof follows as in 
Theorems 5.3 and 6.1. 

The existence of torque closure is a consequence of the fact 
that the point of intersection of the normals is in the plane 
passing through the grasping points. I 

7 Conclusions and further work 
We presented here several results on the existence of certain 
grasps suitable for fine manipulation. Additionally, some no- 
tions about fine manipulations were made precise. The results 
introduce new techniques for searching for suitable grasps and 
suggest other research directions. Among them are: 

Establishing and implementing specific algorithms for ac- 
quiring a grasp and planning a finger gait following the 
ideas in the proofs. 

0 

0 

Studying the sensitivity of such grasps to small errors in 
the location of the gripping points. 

Extending the techniques to  piecewise smooth objects. 
A natural approach would be to allow the parametrizing 
functions y to  lose rank at some points. The critical point 
condition on f would then not give us information about 
the normal. Instead we may consider studying the limits 
of y(t) / l ly(t) l l  as L approaches a critical point. That in- 
formation, together with a suitable definition of tangent 
cone (to replace that of tangent line and plane) could be 
used to formulate some existence results. 
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