
Supplementary Material:
Origin of Biomolecular Networks

1 GRAPH THEORY AND ITS APPLICATION TO BIOMOLECULAR NETWORKS

In this section, we discuss fundamentals of graphs and networks as well as other important topics that are
critical for the study and analysis of biomolecular networks.

Our discussions deal with an abstraction that facilitates reasoning about a set of entities, denoted V and
a binary relation E ⊆ V × V : the binary relation is usually irreflexive, asymmetric and not necessarily
transitive. It is often represented as a directed graph, with vertices V and edges E. When V denotes
biomolecules and E denotes interactions (e.g., regulations, proximity, binding, synteny, etc.), the resulting
graph is called a biomolecular network, object of our study. Such networks evolve over time with additions
and deletions to the sets V and E.

GRAPHS FROM A COMBINATORIAL PERSPECTIVE

We collect here essential results from graph theory. For these results, we refer to Serre Serre (1980) and
Biggs Biggs (1993).

DEFINITION 1. A (directed) graph X is a pair of sets X = (V,E) (the set of vertices V and edges E
respectively), where a directed edge e is defined as an ordered pair of vertices e = (a, b), where a is the
origin of the directed edge e and b is the terminus of e. A rigorous definition then is augmented with two
maps

φ1 : E → V × V : e 7→ (o(e), t(e)),

and
φ2 : E → E : e 7→ e

that satisfy the following condition: for each e, e = e, e 6= e, and t(e) = o(e). The bar operation is
reversing the direction. Henceforth, we denote the graph X = (V,E, o, e) as a 4-tuple.

For each edge e ∈ E, o(e) is called the origin of the edge e and t(e) is called the terminus of the edge e.
A graph Y = (V ′, E′, o′, t′) is called a subgraph of X if V ′ ⊆ V,E′ ⊆ E and o′ and t′ are restrictions of o
and t respectively to E′.

For some studies we need to provide an orientation of an undirected graph. An orientation of a graph X
is a subset E+ of the edges such that E is the disjoint union of E+ and E+.

DEFINITION 2. A walk of length n in a graph is a sequence of alternating vertices and edges,

〈v0, e1, v1, e2, . . . , vn, en〉,

such that o(ei) = vi−1 and t(ei) = vi for all i = 1, . . . , n.

DEFINITION 3. A graph X = (V,E, o, e) is said to be connected if any two vertices are the extremities
of at least one walk. The maximally connected subgraphs (under the relation of inclusion) are called the
connected components of X .
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DEFINITION 4. A graph is called bipartite if the vertex set can be partitioned into two parts V1 and V2
such that each edge has one vertex in V1 and one vertex in V2.

The distance between two vertices u and v is the length of the shortest walk connecting them, if both
vertices are in the same connected component (∞, otherwise). The shortest walk connecting u and v is
called a geodesic.

Let n be an integer ≥ 1. Consider the oriented graph on Z/nZ, and the orientation is given by the edges
[i, i+ 1] (i ∈ Z/nZ) with o([i, i+ 1]) = i and t([i, i+ 1]) = i+ 1.

DEFINITION 5. A subgraph Y of a graph X is called a circuit of length n if it is isomorphic to the circle
graph on Z/nZ.

A circuit of length 1 is called a loop. If the relation E is irreflexive then the graph is loop-free.

DEFINITION 6. A graph is called combinatorial or simple if it has no circuit of length ≤ 2.

DEFINITION 7. A non-empty connected graph T without circuits is called a tree.

DEFINITION 8. A weighted graph G has weights assigned with edges, by the weight function, w :
V × V → R non-negative, with w(u, v) = 0 if and only if e = (u, v) /∈ E. The weighted degree dv of a
vertex v is defined as dv :=

∑
uw(v, u). We also define volume V of the graph as vol(G) :=

∑
v dv.

GRAPHS FROM AN ALGEBRAIC PERSPECTIVE

Certain linear operators can be associated with a graph and can be given a physical meaning in terms
of diffusion (of information) over the graph, as common in the signaling games over the biomolecular
networks. Spectral analysis of such linear operators yields eigenvalues, eigenvectors, and spectra of graphs,
playing important roles in determining various properties of the network – specifically, with respect to how
information diffuses over them (see Chung (1997) and Chung and Lu (2006)).

DEFINITION 9. Algebraically a graph G (network) can be represented as an n× n adjacency matrix
A(G), in which, Aij is 1 iff ∃e ∈ E, o(e) = i & t(e) = j; otherwise it is 0. The matrix is symmetric if
the graph is undirected, i.e., e = ē, ∀e ∈ E. If the graph G is weighted, then Aij = w(i, j) for every edge
(i, j) = e ∈ E, and 0, otherwise.

We can think of A as operating on the space V = Cn of complex n-tuples written as column vectors X
as follows: X → AX . X can be thought of as values of a function evaluated on the vertices. One can show
that there exist lines through the origin, in V that are left invariant along those lines. That is to say, there
exist scalars λi (called eigenvalues), and corresponding non-zero vectors Xi (called eigenvectors spanning
invariant lines) that span invariant lines such that Ai = λiX , for 1 ≤ i ≤ n. The spectrum of the graph X
is defined to be Spec(X) := Spec(A) := {λ1, · · · , λn}, a collection of A’s eigenvalues.

It can also be shown that if A is a real symmetric matrix, then the eigenvalues of A are real and its
spectrum can be presented in decreasing order, i.e., {λ1 ≥ λ2 ≥ · · ·λn}. This fact is very important for
our study of graphs and networks.

Let us consider a more general weighted graph as defined earlier. Let T be the diagonal matrix with
dv along the diagonal. First, consider the stochastic matrix P = T−1A, which may be thought of as
describing the probabilities of certain “information” being moved from one node to a neighboring node
by a diffusion process. Let {v0, e0, v1, e1, · · · , vs} be a random walk in the graph with (vi−1, vi) ∈ E(G),
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for all 1 ≤ i ≤ s, and determined by transition probabilities P (u, v) = Prob(xi+1 = v|xi = u) which are
independent of i. Normally we take p(u, v) = w(u, v)/du, as defined by the stochastic matrix P .

Then, let f : V → R with
∑

v f(v) = 1 be a probability distribution on V (G). Then
∑

v P (u, v) = 1.
Then for any initial distribution f : V → R with

∑
v f(v) = 1, the distribution after k steps is P kf , where

f is viewed as a column vector and P is the matrix of transition probabilities. In particular, a probability
distribution satisfying the fixed point equation φ = Pφ = P 2φ = · · · = P kφ describes the stationary
distribution of the diffusion process and can be described as an eigenvector of the corresponding matrix.

Thus intuitively, algebraic techniques allow thinking about the graph features in terms of a set of “blurrier”
notions such as random walks (instead of walks), diffusion distances (instead of geodesic distances), ranks
(instead of informational relevance), etc. However, because such spectral analysis is based on linear algebra,
the underlying algorithms become tractable.

The adjacency matrix should be best viewed as an operator on functions of V (G). A modified operator,
called the Laplacian operator is the most effective formulation. The Laplacian operator can be used
in interpolation on graphs, graph clustering, resistance networks, rapid mixing, linear solving, linear
optimization, and many other applications.

Thus, one may define L = T − A = T (I − P ), as the Laplacian Matrix of G, where L is defined
as follows: L(u, v) = −w(u, v) (when u and v are distinct), and dv if u = v. Imagine assigning a
scalar-valued rank function ρ : V (G)→ R : v 7→ ρ(v) such that the following Dirichlet Sum of G∑

(u,v)∈E
w(u, v) (ρ(u)− ρ(v))2 ,

is minimized. Thus ρ has the meaning that if a gene in a GRN is important then the genes it regulates and
the genes that regulate it are also important; one expects p53 to be labeled as an important gene because of
its “hubbiness,” but so also, MDM1, ATM, BRCA1, etc. as they are in the pathways directly regulating
p53; and also making the genes such as p63 and p73 important as they are regulated by this cluster of
genes (which may have preferentially attached themselves to p53 and its duplicates, which they continue
to regulate). Note that solution to the optimization problem for Dirichlet sum is given by the following
equation (under suitable conditions—see Gleich (2015); Easley and Kleinberg (2010); Chung (1997);
Chung and Lu (2006)):

1

d(x)

∑
(y,x)∈E

(ρ(x)− w(y, x)ρ(y)) = (I − P )ρ = 0.

Thus functions such as ρ can be rapidly computed by iterating over the graph while performing weighted-
averaging. An example of this process is seen in Google’s PageRank algorithm based on the “Random
Surfer (with Teleportation) Model,”. This and other PageRank algorithms have been successfully applied
mutatis mutandis to rank genes in a GRN (GeneRank), to rank Proteins in a PPI Networks (PPIRank), and
in other biomolecular networks (see the survey Gleich (2015)).

From now, we assume that G is weight symmetric w(u, v) = w(v, u). Then the eigenvalues of L(G)
are real, and indeed 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1. Then λG := λ1 is called the spectral gap of G. The
spectral gap (and other eigenvalues) can be determined by the Courant-Fisher theorem. For example, if one
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considers L as an operator on the space of functions g : V (G)→ R, then

λG := λ1 = inf
g⊥1

〈g, L〉
〈g, g〉

One can show that if the spectral gap λG is large, and k is large enough any initial distribution f converges
to the stationary distribution very rapidly.

EXPANSION PROPERTIES AND INFORMATION FLOWS IN GRAPHS

We shall consider graphs X = (V,E, ·, ·), where V is the set of vertices and E is the set of edges of X . We
will assume that the graph is undirected and connected and we shall only consider finite graphs. For F ⊂ V ,
the boundary ∂F is the set of edges connecting F to V \ F . The expanding constant, or isoperimetric
constant of X is defined as,

h(X) = min
∅6=F⊂V

|∂F |
min{|F |, |V \ F |}

(S1)

Moreover if X is viewed as the graph of a communication network, then h(X) measures the quality of
the network as a transmission network. In all applications, the larger the h(X) the better, so we seek graphs
(or families of graphs) with h(X) as large as possible with some fixed parameters.

In Tanner (1984), M. Tanner introduced another notation for the expansion coefficient. Let as before
X = (V,E, ·, ·), be a graph where V is the set of vertices and E is the set of edges of X . Let X ⊆ V with
|X| ≤ α|V |, then

c(α) = min
∅6=X⊂V ∧|X|≤α|V |

|∂X|
min{|X|, |V \X|}

(S2)

It is well-known that the expansion properties of a graph are closely related to the eigenvalues of the
adjacency matrix A of the graph X = (V,E); it is indexed by pairs of vertices x, y of X and Axy is the
number of edges between x and y. When X has n vertices, A has n real eigenvalues, repeated according to
multiplicities that we list in decreasing order

λ0 ≥ λ1 ≥ . . . ≥ λn−1.

It is also known that if X is D-regular, i.e. all vertices have degree D, then λ0 = D and if moreover the
graph is connected λ1 < D. Also X is bipartite if and only if −λ0 is an eigenvalue of A. We recall the
following (see for example Chung (1997) Davidoff et al. (2003)):

THEOREM 1. Let X be a finite, connected, D-regular graph then

(D − λ1)/2 ≤ h(X) ≤
√

2D(D − λ1).

And

THEOREM 2. (see Chung (1997), Davidoff et al. (2003)) Let (Xm)m≥1 be a family of finite connected,
D-regular graphs with |Vm| → +∞ as m→∞. Then

lim inf
N→∞

λ1(Xm) ≥ 2
√
D − 1.
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This leads to the following.

DEFINITION 10. A finite connected, D-regular graph X is Ramanujan if, for every eigenvalue λ of A
other than ±D, one has λ ≤ 2

√
D − 1.

We will also need an important definition.

DEFINITION 11 (Bipartite Ramanujan Graphs). Let X be a (c, d)-regular bipartite graph. Then X is
called a Ramanujan graph if

λ(X) ≤
√

(c− 1) +
√

(d− 1).

It is known that computing the expansion coefficient of arbitrary graphs is an NP-complete problem.
Thanks to the work of Tanner, and Alon and Millman, one can derive bounds on the expansion coefficient
in terms of λ. The complexity of determining λ, though in P, is still difficult if the number of vertices is
large (for example of the order 104-106 or more for biomolecular networks such as GRN or PPI).

There are useful bounds on λ for arbitrary (bipartite) graph X in terms of the number of edges, the
maximum degree λmax, and the rank rχ of the adjacency matrix of X . Since effective upper bounds exist
on λmax, and rχ, (see Hø holdt and Janwa (2012)) we thus obtain a bound that is easily computable.

An expander graph is a highly connected sparse graph (see, for example Sarnak (2004)). Expander graphs
have numerous applications including those in communication science, computer science (especially
complexity theory), network design, cryptography, combinatorics and pure mathematics (see the references
under Bibliographic Notes below))). Expander graphs have played a prominent role in recent developments
in coding theory (LDPC codes, expander codes, linear time encodable and decodable codes, codes attaining
the Zyablov bound with low complexity of decoding (see the Bibliographic notes for references).

DEFINITION 12. A matrix A with rows and columns indexed by a set X is called irreducible when
it is not possible to find a proper subset S of X so that A(x, y) = 0, whenever x ∈ S and y ∈ X \ S.
Equivalently, A is not irreducible if and only if it is possible to apply a simultaneous row and column
permutation on A to get a matrix in a square block form so that one of the blocks is a zero block. For the
following lemma, see for example (Horn and Johnson (2013) p. 363).

LEMMA 1. Let D be a finite graph. Then the adjacency matrix of A is irreducible if and only if D is
connected.

We shall also need the following.

PROPOSITION 1 (Perron-Frobenius). Let A be an irreducible non-negative matrix. Then, there is up to
scalar multiples, a unique non-negative eigenvector a := (a1, a2, · · · , an) all of whose coordinates ai are
strictly positive. The corresponding eigenvalue λ0 (called the dominant eigenvalue of A) has algebraic
multiplicity 1 and λ0 ≥ λi for any eigenvalue λi of A.

We recall the following special case of Courant-Fisher theorem (also, called the Raleigh-Ritz Theorem)
(see for example, (Horn and Johnson (2013), Theorem 4.2.2))

THEOREM 3. Let A be an n× n Hermitian matrix over the complex field C, then it is known that all its
eigenvalues are real, with maximum eigenvalue λmax (i.e. the spectral radius of A ). For 0 6= X ∈ Cn,
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define the Raleigh quotient

RX :=
X∗TAX

X∗TX
.

Then λmax = maxX 6=0RX . Furthermore, RX ≤ λmax with equality if and only if X is an eigenvector
corresponding to the eigenvalue λmax.

GROUPS ACTING ON GRAPHS

To understand symmetries of graphs, and to understand original motivation of graphs as objects associated
with topology and algebraic topology, we briefly discuss groups acting on graphs (as groups acting
on topological spaces). This converts graph isomorphism problems into much more manageable group
isomorphism problem. It is needed in alignment and motif detection, We say that a group G acts on a graph
X(V,E, o, t) if it acts on V and E such that the actions are compatible with φ1 and φ2, i.e., it commutes
with φ1 and φ2, i.e., g(φ1(e)) = φ1(g(e)), o(g(v)) = g(o(v)), t(g(v)) = g(t(v)) and g(φ2(e)) = φ2(g(e)),
∀g ∈ G.

An inversion is a pair consisting of an element g ∈ G and an edge e ∈ E such that g(e) = e. We will say
that a group acts freely on X if it acts without inversion and g = 1 is the only element having a fixed point.
For the following result, we refer to Serre (Serre, 1980, Page 27).

THEOREM 4. If G acts freely on a tree, then G is a free group.

DEFINITION 13. The Graph X(G,S): Let G be a group and S ⊆ G. The Cayley graph X(G,S) is
defined as the oriented graph with the vertex set G and edge set E = G× S.

o(g, s) = g and t(g, s) = gs

The group G acts on X(G,S) by left multiplication. This action preserves orientation; and its action is
free on the set of vertices and on the set of edges.

PROPOSITION 2. i) X(G,S) is connected if and only if S generates G. In fact, the connected
components correspond in a 1-1 fashion to the cosets of H = 〈S〉 (the group generated by S).

ii) X contains a loop if and only if 1 ∈ S.

iii) For X to be combinatorial, it is necessary and sufficient that
S ∩ S−1 = ∅.

The adjacency matrix provides significant amount of information about the graph. For example Ar gives
the number of walks of length r between vertices.

DEFINITION 14. The girth of X is the smallest positive integer r such that Trace(Ar) > 0. Let d(X)
be the smallest integer (if it exists) so that for every pair of vertices (u, v) there is a walk of length at most
d from u to v. Then d(X) is called the diameter of the graph X .

Important results about diameter, girth and other combinatorial invariants (important for biomolecular
networks) and bounds on them in terms of spectral invariants can be found for general graphs in Bollobas
(Bollobás (1978), pp. 156–157).

LEMMA 2. Let X be a k-regular graph. Then
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i) λi ≤ k, for 0 ≤ i ≤ n− 1.

ii) λ0 = k and m(λ0) equals the number of connected components of X .

iii) λn−1 = −k if and only if X is bipartite.

iv) For a bipartite graph X , if λ is an eigenvalue with multiplicity m(λ), then so is −λ with multiplicity
m(λ).

The adjacency matrix A can be considered as the matrix of a Hecke operator on l2(X) (which can be
called the adjacency operator) as A(f(x)) =

∑
y∈V A(x, y)f(y) (here A(x, y) = 1 if there is an edge from

x to y and 0 otherwise). As mentioned earlier in the context of rank function, another interpretation of the
adjacency operator is an averaging function of information contained on the neighboring vertices that flow
along the adjacencies. An iterative process, then leads to mixing and diffusion globally in the network via
the adjacency or the corresponding Laplacian operators.

MISCELLANEOUS RELATED COMMENTS

Remark (1)

The topics we expanded upon are the following (in order): (1) graphical representation of Networks;
(2) algebraic representation of graphs; and finally, (3) algebraic properties, such as spectral analysis that
provide us large number of tools and techniques to deduce various properties of the biomolecular networks.
For complex and mid-size networks and models, there are important algorithmic questions related to
random graphs and their evolution (Erdös-Renyi model), degree-distribution, power laws, preferential
attachment models, scale free networks, random-walks and mixing, spectral distance, graph similarity,
clustering, smoothing analysis, sparsification and linear solvers and applications.

Remark (2)

Algebraic representation of biomolecular networks has several advantages. In particular, the combinatorial
meaning is inherent in the Adjacency matrix A(X) of a graph X . In the study of biomolecular networks,
it is very important to know the number of walks of length m between any two entities i to j, wmij , (e.g.
between any two proteins in the PPI network). But that is given by the (ij)th entry in Am. From this
one can deduce that the diameter of the network is the dimension of what is called the adjacency algebra
A(L) associated with A. If this diameter is small, we can deduce that the networks shows small world
phenomenon, as we explained in the main text. The sequence (wmij ) can be put into coefficients of a series
called the zeta function ζ(X) of the graph X , and it has a very simple form as a rational polynomial
in terms of what are called spectra (or frequencies) of the network. And from ζ(X) we can find simple
expressions for the set of walks.

Remark (3)

One can explain spectra (frequencies) of a biomolecular network in an intuitive manner as follows.
In analogy with the physical sciences, if one considers the whole network as a space, one can think
of its vibration modes, that is the frequencies (eigenvalue spectra) and their amplitudes (corresponding
eigenvectors). One can indeed determine the shape of the the biomolecular network from its Spectra (in
the manner of Marc Kac (Can one determine the shape of the drums? (from its spectra) Kac (1966) ), and
its analogy to networks and graphs Chung (1966). The advanced matrix of the biomolecular network can
be then shown to take a simple diagonal form with respect to the basis of eigenvectors, and that leads to
immense simplification of explanation of many phenomena associated with the biomolecular networks,
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and plays important roles in the spectral algorithms and their complexity analysis. The coefficients of
polynomials whose roots are the eigenvalues, carries information about the motifs at the nodes. The
spectral gap λ(X) (the difference between the two largest frequencies) of the biomolecular network
determines expansion in the biomolecular network, meaning how fast spreading and mixing takes places
between a set of nodes. How fast partitioning and cuts can be carried out—-important ingredient of many
algorithms in biomolecular networks. In particular the spectral gap of the biomolecular network, λ(X),
gives lower bounds in terms of the combinatorial invariant, the Cheeger constant, as defined below. We
will state isoperimetric inequality results where λ(X) provides an excellent lower bound on h(X), and for
explanation of combinatorial phenomenon or for spectral approximation to combinatorial algorithms, λ(X)
can replace h(X) and still one can get excellent approximate results. For example, it is very easy to show
fast mixing and spreading phenomenon—-it is just Anf = λ(X)nf , where f is the initial distribution on
the nodes.

Remark (4)

We have defined important algebraic concepts in graph theory in precise mathematical terms. Networks
(molecular or otherwise) have algebraic representations as their adjacency matrix (from which one can
re-derive the graphical representation if one wishes). From these one derives algebraic invariants such
as eigenvalues and spectra of graphs, eigenvectors, and spectral gaps. In the main text we had defined
the combinatorial invariant called the isoperimetric constant h(G). The determination of h(G) is an NP-
complete problem. In the next sections we will show that h(G) can be bounded in terms of the spectral
gap λ(X). This helps immensely in the determination of spectral graph algorithms as approximation to
NP-complete combinatorial algorithms.

Remark (5)

One application of large spectral gap is rapid mixing (one can envisage that it is expected to prove
very important in many biological applications). Indeed, the discrete analog of Cheeger inequality has
increasingly crucial utility in the study of random walks and rapid mixing on Markov chains and new
powerful spectral techniques such as Heat-Kernels and Sobolov inequalities have emerged to deal with
general graphs (see Chung and Lu (2006), Chung and Lu (2004)). Rapid mixing in Markov chains
can be framed as: How long does it take for an irreducible finite state Markov chain to converge to
equilibrium? A fundamental application is to Markov Chain Monte Carlo (MCMC) simulation algorithms
that are used widely in the scientific community to simulate Gibb’s measures and to derive approximate
solutions to difficult combinatorial questions. as Markov Chain Monte Carlo simulations are used widely
in the scientific community to simulate Gibb’s measures and to derive approximate solutions to difficult
combinatorial questions—-that have high complexity and many of which appear in the topological analysis
of biomolecular networks (such as clustering, community detection, and so on). Indeed two of the most
heavily studied problems in the analysis of networks are graph clustering and graph diffusion. We already
studied the importance graph clustering biomolecular networks in the main text. Graph diffusion refers to
problems involving spreading or propagation along the edges of a graph. These problems are of fundamental
important in algorithms such as PageRank and Hitts algorithms (see Easley and Kleinberg (2010), Levin
and Peres (2017),Chung and Lu (2006), and Chung and Lu (2004)).

2 BIBLIOGRAPHIC NOTES

For further comprehensive treatment of applications of spectral graph theory to biomolecular networks
we refer to Chung and Lu (2004) and the survey article Banerjee and Jost (2009). For state of

8



Supplementary Material

the art in spectral methods in algorithmic analysis, we refer to the lecture notes of Spielman
(http://www.cs.yale.edu/homes/spielman) biomolecular networks algorithms in clustering, mixing,
partitioning, random walks, Schur complements, effective resistance and applications, expander graphs and
applications, graph sparsification and related algorithms, testing isomorphism of networks.

Related to spectral graph theory, expander graphs have become prominent in many recent developments
in information and coding theory (LDPC codes, expander codes, linear time encodable and decodable
codes, codes attaining the Zyablov bound with low complexity of decoding (see Tanner (1984), Sipser and
Spielman (1996), Davidoff et al. (2003), Sarnak (1990), Lubotzky (1994), Hø holdt and Janwa (2012),
Hø holdt and Janwal (2009), Janwa (2003), Janwa and Lal (2003), Janwa and Moreno (1998), Lubotzky
(2012)),Sipser and Spielman (1996) Spielman (1996), Tanner (2001), Janwa and Lal (2003), Barg and
Zémor (2004), Guruswami and Indyk (2001), and others).

The following articles are relevant for a comprehensive treatment of spectral graph theory, and spectral
graph theoretic algorithms that are relevant to biomolecular networks described in the main text: Alon
and Spencer (1992), Babai (1979), Bien (1989), Bollobás (1978), Bollobás (1986), Bollobás (1991),
Brouwer et al. (1989), Chung (1991), Chung et al. (1988), Cvetković et al. (1980), Cvetković et al. (1988),
Diaconis (1988), Diaconis (1991),Janwa and Rangachari (2015),Delgado and Janwa (2017), Piñero and
Janwa (2014),Hø holdt and Janwa (2012), Hø holdt and Janwal (2009),Janwa and Lal (2003),Janwa and
Moreno (1996),Janwa et al. (1995), Dougherty and Janwa (1991), Li (1996), van Lint and Wilson (1992),
Lubotzky (1994), Lubotzky et al. (1988), MacWilliams and Sloane (1977), Margulis (1988), Paul et al.
(1976/77), Pippenger (1990a),Pippenger and Lin (1994),Pippenger (1990b), Sarnak (1990), Sipser and
Spielman (1996), Tanner (1984), Terras (1999)).

For application of spectral graph theory to networks (e.g., biomolecular) we suggest Van Mieghem
(2011), Masuda et al. (2017), Lovász et al. (1999), Ganguly et al. (2009), Beyer (2009), Solé and Valverde
(2004) Piraveenan et al. (2012), Banerjee and Jost (2009), Alderson (2008), Willinger et al. (2009),
Chatterjee et al. (2011), Takemoto and Oosawa (2007), Randles et al. (2011)), and general spectral
analysis applicable to biomolecular networks (Chung (2009), Andersen et al. (2008), Andersen et al.
(2007), Chung and Lu (2006), Chung and Lu (2004).

For algorithmic analysis of various properties of biomolecular networks discussed below we refer to
(Van Mieghem (2011), Masuda et al. (2017), Lovász et al. (1999), Ganguly et al. (2009), Beyer (2009),
Solé and Valverde (2004) Piraveenan et al. (2012), Banerjee and Jost (2009), Alderson (2008), Willinger
et al. (2009), Chatterjee et al. (2011), Takemoto and Oosawa (2007), Randles et al. (2011)), and general
spectral analysis applicable to biomolecular networks (Chung (2009), Andersen et al. (2008), Andersen
et al. (2007), Chung and Lu (2006), Chung and Lu (2004)).
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Mathematics (Basel: Birkhäuser Verlag). With an appendix by Jonathan D. Rogawski

Lubotzky, A. (2012). Expander graphs in pure and applied mathematics. Bull. Amer. Math. Soc. (N.S.) 49,
113–162. doi:10.1090/S0273-0979-2011-01359-3

Lubotzky, A., Phillips, R., and Sarnak, P. (1988). Ramanujan graphs. Combinatorica 8, 261–277.
doi:10.1007/BF02126799

MacWilliams, F. J. and Sloane, N. J. A. (1977). The theory of error-correcting codes. II (Amsterdam:
North-Holland Publishing Co.). North-Holland Mathematical Library, Vol. 16

Margulis, G. A. (1988). Explicit group-theoretic constructions of combinatorial schemes and their
applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii 24,
51–60

Masuda, N., Porter, M. A., and Lambiotte, R. (2017). Random walks and diffusion on networks. Phys.
Rep. 716/717, 1–58. doi:10.1016/j.physrep.2017.07.007

Paul, W. J., Tarjan, R. E., and Celoni, J. R. (1976/77). Space bounds for a game on graphs. Math. Systems
Theory 10, 239–251. doi:10.1007/BF01683275
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