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ABSTRACT2

Biomolecular networks have already found great utility in characterizing complex biological3
systems arising from pair-wise interactions amongst biomolecules. Here, we review how graph4
theoretical approaches can be applied not only for a better understanding of various proximate5
(mechanistic) relations, but also, ultimate (evolutionary) structures encoded in such networks. A6
central question deals with the evolutionary dynamics by which different topologies of biomolecular7
networks might have evolved, as well as the biological principles that can be hypothesized8
from a deeper understanding of the induced network dynamics. We emphasize the role of9
gene duplication in terms of signaling game theory, whereby sender and receiver gene players10
accrue benefit from gene duplication, leading to a preferential attachment mode of network11
growth. Information asymmetry between sender and receiver genes is hypothesized as a key12
driver of the resulting network topology. The study of the resulting dynamics suggests many13
mathematical/computational problems, the majority of which are intractable but yield to efficient14
approximation algorithms, when studied through an algebraic graph theoretic lens.15

Keywords: Biomolecules, Regulation and Communication, Interaction (Binary) Relationship, Network Model, Network Analysis,16
Spectral analysis17

1 GENESIS OF BIOMOLECULAR INTERACTIONS

1.1 Introduction and a Road Map18

A range of complex phenotypes of biomolecular systems can be inferred from macromolecular19
interactions, represented using networks. Such biomolecular networks include gene (regulatory) networks20
(GRNs) Thompson et al. (2015), protein-protein interaction (PPI) networks Huang et al. (2017), protein21
and RNA neutral networks Schuster et al. (1994) Govindarajan and Goldstein (1997), metabolic networks22
McCloskey et al. (2013) and meta-metabolic networks (composite metabolic networks of communities)23
Yamada et al. (2011). Our major focus here will be on GRNs and PPI networks, but the principles outlined24
are also applicable to the other types of biomolecular networks.25

The paper covers the following topics: (i) A brief introduction to biomolecular networks (a topic26
also covered by other accompanying articles); (ii) A compendium of known results in (algebraic and27
combinatorial) graph theory ; (iii) Algorithmic (and algebraic) complexity, arising in the study of evolution28
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of networks; (iv) Current state of the field and open problems. The list of open problems focuses largely29
on the following: How to devise efficient (algebraic) algorithms that can shed important lights on game30
theoretic models of the evolution of biological interactions, given that they are driven by information31
asymmetry (leading to duplications, complementation, pseudogenization, etc.). Some of these important32
mechanisms have been studied qualitatively elsewhere, albeit not mathematically rigorously.33

1.2 Ohno’s Evolution by Duplication34

At the genetic level, the growth of a GRN or PPI network is driven by gene mutation: e.g., duplication,35
translocation, inversion, deletion, short indels, and point mutations, of which duplication plays an outsized36
role. Susumu Ohno coined the phrase evolution by duplication (EBD) to emphasize this evolutionary37
dynamic Ohno (1970). The classic view of molecular evolution is that gene families may expand and38
contract over evolutionary time due to gene duplication and deletion Demuth et al. (2018). Here, we wish39
to present a more complex view, by exploring how biomolecular networks may grow, contract, or alter40
their topology over time, from the relative dynamic contributions and interactions of their constituent genes41
and gene families. This evolution is ultimately driven by the process of gene duplication and deletion,42
which leads to node and edge addition, or removal, from a biomolecular network, respectively. Since such43
variations in the network alter the phenotypes, over which selection operates, the evolution of networks and44
their features ultimately captures the essence of Darwinian evolution.45

Recently, we introduced a signaling games perspective of biochemistry and molecular evolution Massey46
and Mishra (2018). There, we focused on interactions between biological macromolecules, which may be47
described using the framework of sender-receiver signaling games, where an expressed macromolecule48
such as a protein or RNA, constitutes a signal sent on behalf of a sender agent (e.g., gene). The signal49
comprises the three-dimensional conformation and physicochemical properties of the macromolecule. A50
receiver agent (e.g., a gene product, another macromolecule) may then bind to the signal macromolecule,51
which produces an action (such as an enzymatic reaction). The action produces utility for the participating52
agents, sender and receiver, and thereby – albeit indirectly – a change in overall fitness of the genome (in53
evolutionary game theory, utility and fitness are treated as analogous). When there is common interest, the54
utility is expected to benefit both sender and receiver and their selection, thus driving Darwinian evolution.55

Replicator dynamics allow the signaling game to be couched in evolutionary terms Taylor and Jonker56
(1978). Replicator dynamics arise from the increased replication of players with higher utility (fitness).57
Thus, if a gene has a strategy that results in increased utility, then it will increase in frequency in a58
population. For a sender gene this would entail sending a signal that results in an increase in utility, while59
for a receiver gene this would entail undertaking an action that likewise results in an increase in utility.60
As already suggested, these dynamics represent a process analogous to Darwinian (adaptive) evolution or61
positive selection.62

Biomolecular signaling games are sustained by information asymmetry between sender and receiver63
and so their interactions can be represented using directed graphs. Information asymmetry arises because64
the receiver is uninformed regarding the identity of the sender gene: it must rely on the expressed signal65
macromolecule to determine the identity of the sender gene. But, this strategy may be open to deception.66
Most biomolecular signaling games in the cell are between sender and receiver genes which have perfect67
common interest. This is so, because they are cellularized, chromosome replication is synchronized and68
so the genes replicate in concert. Such games are termed ‘Lewis’ signaling games, and rely on honest69
signaling from sender to the receiver Lewis (1969). A biomolecular signaling game is illustrated in Figure70
1, part (1).71
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Figure 1. The influence of information asymmetry on growth of a PPI network. Interactions between
macromolecules are envisaged as a biomolecular signaling game whereby a sender gene expresses a
macromolecule, the signal, that then binds specifically to a receiver macromolecule, which then undergoes
an action (such as an enzymatic reaction, or conformational change), which produces utility (fitness). The
signal consists of the three-dimensional conformation and physicochemical properties of the macromolecule
(1). The sender gene may undergo duplication, which has a dosage effect on the expressed macromolecule,
resulting in signal amplification (2). This mechanism is expected to lower the Shapley value of the gene
players in the genome, as the signal is partially redundant and so inefficient. Subsequently, the sender gene
duplicate may acquire a new function (evolve a new signal) although the majority would be expected to
undergo pseudogenization (3). Both these scenarios represent the re-establishment of a Nash equilibrium.
If a new signal macromolecule evolves, it is likely to bind to the same receiver macromolecule initially.
This preferential attachment arises because gene duplicates have a tendency to bind to their interaction
partner initially, and then subsequently undergo interaction turnover Zhang et al. (2005), and is illustrated
to the right of the figure. A key problem is how a new action by the receiver arises as the result of the
evolution of a new signal; the new action may co-evolve with the new signal, or may be necessary first
before a new signal can evolve. The latter would imply that receiver gene duplication and action genesis
facilitates the evolution of new signals and sender genes (an exception would be when there is a conflict of
interest; here the sender is more likely to make the first move in evolving a novel deceptive signal, and then
the receiver would respond with a better discriminative recognition mechanism). This key, and novel aspect
of gene duplication might be deciphered via consideration of the topology of directed graph representations
of biomolecular interactions as sender-receiver signaling games. Refinements to the illustrated scheme
include situations where the original signal protein binds to a variety of receiver proteins, or where the
gene that codes for the receiver protein undergoes duplication (Figure 2).

However, situations may arise where a sender has a conflict of interest with the receiver. This kind of72
misalignment can occur when a sender gene is selfish, and would prefer to replicate itself at the expense73
of the rest of the genome. Such genes are termed ‘selfish elements,’ and come in a variety of forms, all74
marked by decoupled replication from the rest of the genome Burt and Trivers (2006). In a signaling game,75
when there is a conflict of interest between sender and receiver, then the sender is expected to adopt some76
degree of deceptive signaling Crawford and Sobel (1982). Consistent with this prediction, there are a range77
of examples of selfish elements that utilize molecular deception Massey and Mishra (2018).78
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Gene duplication is a fundamental evolutionary driver of organismal complexity Lespinet et al. (2002).79
The first step in the process of duplication of a sender gene may be viewed as one of signal enhancement.80
Because gene duplication results in gene dosage effects, it also results in amplification of the signal, the81
expressed gene product. This strategy can be viewed as lowering the overall utility of the genome, given82
that there is a cost involved in producing excessive signal. It is, thus, expected to lower the Shapley value83
Shapley (1969) of the gene players that cooperate within the genome. This conflict is usually resolved84
when the duplicated gene becomes pseudogenized, the usual fate of gene duplicates Innan and Kondrashov85
(2010).86

Subsequent to duplication, the gene duplicates will sometimes diverge in function, although the exact87
mechanism remains to be elucidated Innan and Kondrashov (2010). This process represents signal88
divergence if the gene is a sender gene, and action divergence if the gene codes for a receiver macromolecule.89
The genesis of a new sender gene with a new signal may then promote evolution of a novel action by90
the receiver macromolecule, potentially facilitating duplication of the receiver gene itself. Likewise, the91
duplication of a receiver gene may facilitate the diversification of macromolecular signals that interact92
with the two duplicated receiver macromolecules. The process modifies the GRN or PPI network in a93
non-obvious manner and it deviates considerably from the way evolution of random graphs is usually94
treated, following Erdös and Rényi, discussed in more detail in Section 3 Erdös and Rényi (1959).95

Signal and action genesis via gene duplication may have features in common with a Pólya’s urn model of96
signal genesis Alexander et al. (2012) (Pólya’s urn models are statistical models that involve sampling with97
replacement influenced by the identity of the sampled element. These models can lead to a ‘rich get richer’98
effect, of which ’preferential attachment’ is an example, discussed in more detail in Subsection 3.2). In99
this model, reinforcement of signals (similar to reinforcement learning) may promote the invention of new100
synonyms. These considerations may provide parallels for how signals originate elsewhere, not dissimilar101
to how new words in a language can arise from existing words by a process of derivation Cotterell et al.102
(2017). Mechanistic commonalities in the process of signal genesis in these diverse systems as exhibited103
in GRNs remain to be explored. These models hint at a possibly new, but universal form of “preferential104
attachment” that drives the variations in biomolecular networks as well as the selectivity in Darwinian105
evolution.106

1.3 Network Topology, Evolution by Duplication, and Preferential Attachments107

Consequently, the topology of gene networks is non-deterministic and yet not memoryless, since it must108
encode layers of ripples produced earlier via the dynamics of gene duplication (paralogs and orthologs),109
as amplified during the network’s history. Just as physicists infer the theories of origin of universe from110
the cosmic background radiation, we expect to enrich our understanding of the origin of machinery of life111
(e.g., codon evolution, evolution of multicellularity, evolution of sex etc.) from a rigorous analysis of the112
signaling games and their equilibria, which has rippled through the extant biomolecular networks. Taking113
this analogy further, we observe that the ripples in gravitational waves have been proposed to reflect the114
existence of parallel universes, whose presence created asymmetries in the initial conditions, giving rise to115
filamentary structures in the visible universe Hawking and Hertog (2018) This comparison is inspired by116
the notion of a ‘protein big bang’ from a single (or handful of) ur-protein(s) in the first complex life forms,117
evolving by gene duplication into the extant ‘protein universe,’ hinting at the information asymmetries118
fossilized in the GRN and PPI networks. Dokholyan et al. (2002).119

Likewise, we point out that information asymmetry in macromolecular sender-receiver interactions120
may point to evolutionary paths that might have been abandoned unexplored; which may suggest new121
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engineering approaches needed by synthetic biology, or in drug discovery, or immuno-therapy. Note that122
during the process of evolution of signaling, gene duplication and deletion contribute to a certain degree of123
non-determinism and “conventionality” to the Nash equilibria that stabilize and manifest as non-trivial124
anisotropies in gene network topology.125

In summary, the process of gene duplication, tempered by signal and action genesis can be thought of126
as a driver of preferential attachment in shaping the topology of gene networks, in which information127
asymmetry between senders and receivers is expected to play an indelible role. Figure 1 illustrates a basic128
mechanism whereby signal genesis may lead to preferential attachment during the growth of a PPI network.129
Topological features expected to hint at this process include: (i) the degree distribution, (ii) hierarchicity,130
(iii) assortativity and many others; they require powerful statistical and algebraic tools – covered in the131
later sections, where it is assumed that genome evolution is a complex process involving diverse groups132
of mutations such as insertions, deletions, conversions, duplications, transpositions, translocations and133
recombinations, and that it is further affected by selective constraints and effective population size and other134
factors such as the environment. With recent understanding of large scale cellular networks (regulatory,135
metabolic, protein-protein interactions) one must now aim at investigation between the evolutionary rates136
of a gene mutations and its effects on the network topology using mathematical models and analytics: see137
Wagner (1994). For instance, combining sequence analysis in a single genome and its close relatives, one138
can infer the rate and tempo of the evolutionary dynamics acting on the genome, and the resulting effects139
on the network’s algebraic structures. We provide an example of how evolution by duplication leads to a140
preferential attachment mode of gene network growth in Figure 2, using the duplication of the p53 gene,141
and its paralogs p63 and p73 – all transcription factors regulating pathways involved in related phenotypes142
of somatic or developmental surveillance and interacting with similar family of genes (e.g., MDM2 or143
MDMX), as illustration 1.144

Note that these abstract models generate refutable hypotheses that need experimental verification and145
support from mechanistic explanations. However, unfortunately, the biochemical processes involved in146
the hypothesized preferential attachment dynamics are not fully understood. For example, the duplication147
processes are often driven by Non-Homologous End Joining (NHEJ), a pathway that repairs double-148
strand breaks in DNA. To guide repair, NHEJ typically uses short homologous DNA sequences called149
microhomologies, which are often present in single-stranded overhangs on the ends of double-strand150
breaks Chang et al. (2017). When the overhangs are perfectly compatible, NHEJ usually repairs the151
break accurately. However, imprecise repair can lead to inappropriate NHEJ resulting in translocations,152
duplications and rearrangements Rodgers and McVey (2016), which add to variations that are random153
but not memoryless. Perhaps some of such hypotheses may need to be carefully examined using cancer154
genome data such as TCGA, and models of tumor progression. This analysis may also explain efficacy of155
certain therapeutic interventions in cancer as well as their failures via drug and immuno resistance.156

2 NETWORK ANALYSIS

In this section, we discuss fundamentals of graphs, a mathematical formalism used in the study of157
biomolecular networks, as well as other related important topics. Consider a set of entities, denoted V158
and a set of binary relations between the entities E ⊆ V × V . When V denotes biomolecules and159
E denotes interactions between them (e.g., regulations, proximity, synteny, etc.), the resulting graph160
represents a biomolecular network. One important advantage of graphs is that they have intuitive graphical161

1 A mutation in MDM affects all p53, p63 and p73 allowing utility tradeoffs between fecundity (through increased embryonic lethality) and cancer risks
(through reduced somatic surveillance) in a population.
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Figure 2. Gene duplication of p53, p63 and p73 as a signaling game, and GRN growth. An illustrative
example of a signaling games view of network growth is provided by the paralogs p53, p63 and p73, which
code for transcription factors, p53 being of critical importance in many cancers Joerger and Fersht (2006).
Here, p53 and the common ancestor of p63/p73 duplicated (2), followed by the duplication and divergence
of p63 and p73 Lu et al. (2009) Belyi et al. (2010) (3). The signal is the DNA binding site, while the
receivers are the p53, p63 and p73 proteins (here the sender is the protein coding gene downstream of
the DNA binding site). The receiver protein undergoes an action upon binding to the DNA binding site
(the signal), which consists of the recruitment of additional transcription factors, and contribution to the
assembly of the transcription initiation complex Nogales et al. (2017). The gene products of p53, p63 and
p73 mostly bind to the same DNA binding sites Smeenk et al. (2008), thus each signal (and ultimately
sender gene) has acquired two new binding partners, in addition to the original interaction with the gene
product of the common ancestor of p53/p63/p73. This is a form of preferential attachment, which should
influence network topology as the number of genes increase by duplication, as illustrated to the right of the
figure. The signaling games perspective allows us to better understand scenarios where there is a conflict
of interest between the genome, and a selfish entity such as a selfish element, a cancer or a virus. When
there is a conflict of interest, a deceptive signal is expected to be emitted by the sender Crawford and Sobel
(1982) (the selfish entity). Here, the DNA binding site of the selfish entity will mimic that of canonical
DNA binding sites associated with normal cellular function, ’tricking’ a transcription factor to bind to it,
and altering the transcription of the sender gene (or alternatively abolishing transcription factor binding).
Examples include cis-regulatory mutations in cancer Poulos et al. (2015)

representation. Such networks evolve over time with additions and deletions to the sets V and E. In order162
to create a bridge to algebraic approaches, we extend the standard combinatorial definition by endowing it163
with additional maps.164

Formally, a graph is a pair of sets G = (V,E) where V are the vertices (nodes, points) and E ⊆ V × V165
are the edges (arcs) respectively. When E is a set of unordered pair of vertices the graph is said to be166
undirected or simple. In a directed graph G = (V,E, o, t), E consists of an ordered set of vertex pairs, i.e.167
for each edge e ∈ E, e→ (o (e) , t (e)) where o (e) is called the origin of the edge e and t (e) is called the168
terminus of the edge e [Serre (1980) and Biggs (1993)]. A graph is weighted if there is a map (weighting169
function, w : E → R+) assigning to each edge a positive real-valued weight.170
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If G = (V,E, ·, ·) and G′ = (V ′, E′, ·, ·) are two graphs such that V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′),171
then G′ ⊆ G, G′ is a subgraph of G. If E′ = E ∩ (V ′ × V ′) (E′ contains every edge in e ∈ E with172
o(e), t(e) ∈ V ′) then G′ is an induced subgraph of G. G′ and G are isomorphic (G′ ≡ G) if there is a173
bijection f : V ′ → V with (u, v) ∈ E′ ⇐⇒ (f(u), f(v)) ∈ E, ∀u, v ∈ V ′.174

2.1 Topological Properties175

Network properties are governed by its topology, such as degree distribution, clustering coefficients,176
motifs, assortativity, etc. Comprehensive treatments can be found in Thulasiraman et al. (2015); Loscalzo177
and Barabási (2016), and for more in-depth treatment regarding biomedical networks in Loscalzo et al.178
(2017).179

Degree Distribution180

The degree of a vertex v, deg(v), is the number of edges that connect the vertex with other vertices. In181
other words, the degree is the number of immediate neighbors of a vertex. In directed graphs in-degree and182
out-degree of a vertex can be defined as the number of incoming and outgoing edges respectively. Let nk183
be the number of vertices of degree k and |V | = N , the total number of vertices in the graph and |E| =M ,184
the total number of edges in the graph. Note that

∑
k nk = N and

∑
knk =

∑
v∈V deg(v) = 2|E| = 2M .185

The degree distribution is the fraction of vertices of degree k, P (k) = nk/N , and two isomorphic networks186
will have same degree distributions (though not necessarily the converse). Thus, the degree distributions187
can tell a great deal about the structure of a family of networks. For example, if the degree distribution188
is singly peaked, following the Poisson (or its Gaussian approximation) distributions, the majority of the189
nodes can be described by the average degree 〈k〉 =

∑
k kP (k) = 2M/N . The graph is said to be sparse,190

if 〈k〉 = o(logN) (or M = o(N logN)). Biomolecular networks are usually sparse, which can be fruitfully191
exploited in their algorithmic analysis. We can talk of typical nodes of the networks as being those that192
have degree distribution as those within 1 to 2 standard deviations from the average, while, with probability193
decreasing exponentially, it is possible to find nodes with degree much different from the average. While194
power-law degree distributions follow a completely different pattern: they are fat-tailed; the majority of195
the nodes have only few neighbors, while many nodes have relatively large number of neighbors. The196
highly-connected nodes are known as hubs.197

Distance Metrics198

One of the most fundamental metrics is the distance on a graph. First we define a walk of199
length m in a graph G from a vertex u to v as a finite alternating sequence of vertices and edges200
〈v0, e1, v1, e2, . . . , em, vm〉, such that o (ei) = vi−1 and t (ei) = vi, for 0 < i ≤ m, such that u = v0 and201
v = vm. Then the number of edges traversed in the shortest walk joining u to v is called the distance in G202
between u and v denoted by d(u, v). If there is a walk from u to itself, then we say that the set of vertices203
(respectively edges) form a cycle. The smallest number of m edges in a walk from u to itself is called a204
cycle of length m. The girth g(G), is the shortest cycle in G. A walk whose vertices are distinct is called a205
(simple) path.206

The concept of a walk allows us to define other properties of the graph. A graph G = (V,E, o, e) is207
said to be connected, if any two vertices are the extremities of at least one walk. The maximally connected208
subgraphs are called the connected components of G. A giant component is a connected component209
containing a significant fraction of the nodes. The maximum value of the distance function in a connected210
graph is called the diameter of the graph. Frequently real life networks have small diameter and are said211
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to exhibit small world phenomenon. For many biomolecular networks the average distance between two212
nodes depends logarithmically on the number of vertices in the graph.213

Additionally, a complete graph G is the undirected graph, in which each vertex is a neighbor of all other214
vertices; deg(v) = N − 1, ∀v ∈ V ; or equivalently, each distinct pair of vertices are connected (or are215
adjacent) by a unique edge. G is then denoted as KN . A clique in an undirected graph is a subset of vertices216
such that its induced subgraph is complete. Additional combinatorial invariants of graphs useful in the217
analysis of networks can be defined (see Supplementary material for details).218

Expanding Constants219

Let G = (V,E, ·, ·) be an undirected graph. Then for all F ⊂ V , the boundary ∂F is the set of edges
connecting F to V \ F . The expanding constant, or isoperimetric constant of X is defined as,

h(X) = min
∅6=F⊂V

|∂F |
min{|F |, |V \ F |}

.

For molecular network, then, the invariant h(X) measures the quality of the network with respect to the220
flow of information within it, (e.g., via chemical reactions, or signaling). Larger h(X) implies better221
expansion, faster mixing, faster partitioning, and many other related properties that may give the network a222
selective advantage.223

Using various combinatorial algorithms devised for the study and analysis of biomolecular networks,224
one may compute h(X) to determine their complexity. However precise characterization of h(X) itself is225
an intractable (i.e., NP-complete) problem. Isoperimetric inequalities give bounds on h(X) in terms of a226
related algebraic invariant, γ(X) – called its spectral gap, determination of which has complexity O(|V |)c,227
where c is at most 3; furthermore, c = 1 for many sparse graphs. We give isoperimetric bounds and results228
applicable to biomolecular networks in the Supplement, where we also introduce local Cheeger constant.229
We also introduce algebraic invariants in Section 2.2.230

Clustering and Clustering Coefficients231

Biological networks are modular, forming communities and hierarchies, likely to have been sculpted by232
EBD (Evolution by Duplication). To study these local structures in network science, one may perform233
community analysis, which aims to identify a group of nodes that have a higher probability of connecting234
to each other than to nodes from other communities (see for exmple Pellegrini (2019)). Various notions235
such as k-cliques, k-clubs and k-clans have been developed to detect communities, but they are ultimately236
closely connected to the problem of finding cliques and consequently, do not generally lend themselves237
to any reasonable algorithm other than brute-force enumeration. However, even detecting communities238
approximately may prove valuable for general evolutionary studies, since in these biological networks239
communities determine how specific biological functions are encoded in cellular networks – and thus240
subjected to Darwinian selective pressure, since these players are likely to have formed communities in the241
first place to carry out specific cellular functions. (see Hartwell, Hartwell et al. (1999)). Figure 4 highlights242
significant evidence that communities play important role human disease networks (see Loscalzo et al.243
(2017)).244

Usually a simpler approach is commonly employed and deals with the problem of clustering in a245
graph, which seeks to partition the graph into disjoint subgraphs such that nodes in each such subgraph246
are “closer” to the other nodes in the same subgraph, while they are “farther” from the nodes of other247
subgraphs. Hierarchical clustering algorithms have been developed to uncover communities (approximately)248
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in polynomial time and depend upon the similarity matrix (xij), where the entry xij equals the distance249
between node i and node j. Among the classical algorithms are included those by Ravasz and by Girvan and250
Newman Girvan and Newman (2002). Other related algorithms include those for random-walk betweenness251
and network centrality.252

The local clustering coefficient captures the degree to which the neighbors of a given node link to each
other. In general, for undirected graphs, the local clustering coefficient Ci of node i with degree ki is
defined as

Ci :=
Li

ki(ki − 1)/2

where the numerator Li is the actual number of connections between ki immediate neighbors of i, and
the denominator is the number of connections if the neighbors formed a complete graph (i.e. a clique).
Note that an undirected complete graph Kki of ki nodes has ki(ki − 1)/2 edges. Thus, a fully clustered
node will have Ci = 1 and for completely isolated node Ci = 0. We can define the (average) clustering
coefficient of the whole network with N nodes as

〈C〉 = 1

N

∑
Ci.

The clustering coefficients can be used to characterize a network’s modularity, as discussed later (in Section253
3) in details.254

Subgraphs and Motifs255

Biomolecular networks have been found to contain network motifs, representing elementary interaction256
patterns between small subgraphs that occur substantially more often than as predicted by a completely257
random network of similar size and connectivity. The presence of such motifs is usually explained by an258
evolutionary process that can quickly create (usually by a variation involving duplication) or eliminate259
(usually by a selection process that favors pseudogenization and complementation) regulatory interactions260
in a fast evolutionary time scale – relative to the rate at which individual genes mutate. It is usually261
hypothesized that the underlying evolutionary processes are convergent. Thus efficient algorithms to detect262
such motifs are important in the analysis of biomolecular networks. These algorithms focus on estimating263
how much more frequently a subgraph isomorphic to a motif graph (with n vertices and m edges) occurs264
relative to what would be expected by pure chance.265

The number Nmn of subgraphs with n nodes and m interactions expected of a network of N nodes can be266
estimated from the two key topological parameters of a complex network – namely the power-law exponent267
β and the hierarchical exponent α as we discuss in equations (1 and 2) below. In general the subgraph268
motifs can be classified in two types: Type I motifs are those where (m− n+1)α− (n− β) < 0, and type269
II subgraph motifs are those that satisfy the reverse inequality. One can determine their numbers N I and270
N II approximately as a function of (m− n+ 1)α− (n− β) and nmax, the degree of the most connected271
node in the network. One can show that N I

nm >> N II . One can also show that the relative number of272
Type II subgraphs is vanishingly small compared to Type I.273

2.2 Algebraic Invariants and Spectrum274

The intuitive pictorial/combinatorial representation of graphs is an extremely useful aid to their275
understanding. However, computing the topological properties of graphs combinatorially is computationally276
challenging especially when the size of the graph becomes large. As noted earlier, indeed, most277
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combinatorial algorithms on biomolecular networks such as on PPI networks and GRNs are computationally278
complex problems (most of them fall in the NP-complete complexity class) Karp (2011). Therefore, in279
order to carry out any quantitative and computational analysis, graphs are better represented as algebraic280
objects. This representation allows us to use linear algebra and mathematical analysis techniques. The key281
to this representation is the adjacency matrix A(G). It is defined as {0, 1}n×n matrix in which, Aij = 1 if282
the vertices i and j are connected (∃e ∈ E, o(e) = i, t(e) = j) and 0 otherwise. The matrix is symmetric if283
the graph is undirected. For weighted graphs we can assign weights wij for existing edges.284

Algebraic properties provide us with tools to deduce various properties of the biomolecular networks. In285
particular, the spectral representation of the graph is of importance for a number of applications such as286
graph classification, etc. We can think of the adjacency matrix A as operating on the space V = Cn of287
complex n-tuples written as column vectors x,y as followsAx→ y. It can be shown that there are directions288
left invariant in this space. That is to say, Aixi = λixi where λi are the eigenvalues and corresponding xi289
the eigenvectors (spanning invariant directions) of the adjacency matrix for 1 ≤ i ≤ n. The spectrum of the290
graphG is defined as the collection of eigenvalues of the adjacency matrix Spec(G) = Spec(A) = λ1, .., λn.291
Naturally, if A is a real symmetric matrix, then the eigenvalues of A are real.292

In particular, one algebraic invariant of the graph is the spectral gap γ(G). It can be shown that the293
spectral gap gives excellent bounds on a combinatorial invariant, the Cheeger constant h(G) (see the294
Supplementary material).295

3 NETWORK EVOLUTION

Starting with the seminal work of Erdös and Rényi Erdös and Rényi (1959), a number of mathematical296
frameworks have been developed to model the “evolution” of graphs, covering the family of biomolecular297
networks. These frameworks may prove useful in explaining why most biological networks have certain298
non-obvious properties: namely, (i) Small-world property; (ii) High clustering coefficients (varying with299
degree distribution); (iii) Emergence of “hubs.” Such network models are ultimately expected to capture300
various observed properties of biomolecular networks, and the evolutionary trajectories leading up to them.301

3.1 Random Network Models302

Erdös and Rényi Model303

The Erdös and Rényi model of random graphs (ER-graphs, denoted G(n, p)) is characterized by two304
parameters, the number of vertices in the networkN and the fixed probability of choosing edges p Erdös and305
Rényi (1959). The graph G is generated by choosing N vertices and connecting each pair of vertices with306
probability p. The model yields a network with approximately p

(N
2

)
= O(pN2) randomly distributed edges.307

The probability of choosing a specified graph G with N vertices and e edges is therefore
(M
e

)
pe(1−p)M−e,308

where M = N
2 = the maximum number of possible edges connecting N vertices.309

It can be shown that in such random graph the average vertex degree is 〈k〉 = p(N − 1) = O(pN). The310
diameter of such graph is d = lnN/ ln〈k〉 ≈ lnN/(lnN − ln(1/p)) which is small compared to the graph311
size. Thus, random graphs exhibit “the small world property.” The degree distribution for ER graphs is312
a binomial distribution P [deg(u) = k] =

((N−1)
k

)
pk(1 − p)N−k−1, which for large N (relative to 1/p:313

where N = λ/p) converges to the Poisson distribution P [deg(u) = k] = e−λ λ
k

k! . Then the local clustering314
coefficient is Ci = p is independent of the degree of the node and the average clustering coefficient315
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C = p/N scales with the network size. Therefore, the standard ER random model seems not to capture316
either the properties of degree distribution or the clustering coefficient of biomolecular networks.317

Typically, an ER random graph model is used as a “null model” for the evolutionary process. However,318
while deviations from randomness are frequently used as evidence for the direct action of natural selection,319
often non-randomness may reflect neutrally generated (non-adaptive) emergent phenomena Massey (2015).320
We emphasize here that many topological features of biomolecular networks are unlikely to be directly321
selected for, but instead are a side-product of network growth, and decay, captured by the dynamics of edge322
and node addition and removal.323

Small World Model324

The biomolecular networks have features that are not captured by the Erdös and Rényi random graph325
model. As we have seen, random graphs have low clustering coefficient and they do not account for326
formation of hubs. To rectify some of these shortcomings, the small world model or popularly known as the327
six degree of separation model was introduced as the next level of complexity for probabilistic model with328
features that are closer to the real world networks Watts and Strogatz (1998); Watts (1999). The evolution329
and dynamics of such networks have been discussed in detail Watts (2003), in particular in the diseases330
propagation literature Dodds and Watts (2005).331

In this model the graph G of N nodes is constructed as a ring lattice, in which, (i) first, wire: that is,332
connect every node toK/2 neighbors on each side and (ii) second, rewire: that is, for every edge connecting333
a particular node, with probability p reconnect it to a randomly selected node.334

The average number of such edges is pNK/2. The first step of the algorithm produces local clustering,335
while the second dramatically reduces the distance in the network. Unlike the random graph, the clustering336
coefficient of this network C = 3(K − 2)/4(K − 1) is independent of the system size. Thus, the small337
world network model displays the small world property and the clustering of real networks, however, it338
does not capture the emergence of hubby nodes (e.g., P53 in biomolecular networks).339

3.2 Scale-free Network Models340

Most biomolecular networks are hypothesized to have a degree distribution, described as scale-free. In a341
scale free network the number of nodes nk of degree k is proportional to a power of the degree, namely,342
the degree distribution of the nodes follows a power-law343

nk = k−β, (1)

where β > 1 is a coefficient characteristic of the network Barabási and Albert (1999). Unlike in random344
networks, where the degree of all nodes is centered around a single value – with the probability of finding345
nodes with much larger (or smaller) degree decaying exponentially, in scale-free networks there are nodes346
of large degree with relatively higher probability (fat tail). In other words, since the power low distribution347
decreases much more slowly than exponential, for large k (heavy or fat tails), scale-free networks support348
nodes with extremely high number of connections called “hubs.” Power law distribution has been observed349
in many large networks, such as the Internet, the phone-call maps, the collaboration networks, etc. Képès350
(2007); Barabási (2009); Loscalzo and Barabási (2016). A caveat to these reports is that inappropriate351
statistical techniques are often been used to infer power law distributions, and alternative heavy tailed352
distributions may fit the data better Clauset et al. (2009a). However, the power law is a useful approximation353
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that allows mechanisms of network growth to be explored, such as Preferential Attachment, discussed next,354
while the examination of alternative heavy tailed distributions is set as an Open Problem.355

Preferential Attachment356

The original model of preferential attachment was proposed by Barabási–Albert Barabási and Albert357
(1999). The scheme consists of a local growth rule that leads to a global consequence, namely a power358
law distribution. The network grows through the addition of new nodes linking to nodes already present in359
the system. There is higher probability to preferentially link to a node with a large number of connections.360
Thus, this rule gives more preferences to those vertices that have larger degrees. For this reason it is often361
referred to as the “rich-get-richer” or “Matthew” effect.362

With an initial graph G0 and a fixed probability parameter p, the preferential attachment random graph363
model G(p,G0) can be described as follows: at each step the graph Gt is formed by modifying the earlier364
graph Gt−1 in two steps – with probability p take a vertex-step; otherwise, take an edge-step:365

(i) Vertex step: Add a new vertex v and an edge {u, v} from v to u by randomly and independently366
choosing u proportional its degree;367

(ii) Edge step: Add a new edge {r, s} by independently choosing vertices r and s with probability368
proportional to their degrees.369

That is, at each step, we add a vertex with probability p, while for sure, we add an additional edge. If370
we denote by nt and et the number of vertices and edges respectively at step t, then et = t + 1 and371
nt = 1 +

∑t
i=1 zi, where zi’s are Bernoulli random variables with probability of success = p. Hence the372

expected value of nodes is 〈nt〉 = 1 + pt.373

It can be shown that exponentially (as t asymptotically approaches infinity) this process leads to a374
scale-free network. The degree distribution of G(p) satisfies a power law with the parameter for exponent375
being β = 2 + p

2−p . Scale-free networks also exhibit hierarchicity. The local clustering coefficient is376
proportional to a power of the node degree377

C(k) ≈ k−α (2)

where α is called the hierarchy coefficient.378

This distribution implies that the low-degree nodes belong to very dense sub-graphs and those sub-graphs379
are connected to each other through hubs. In other words, it means that the level of clustering is much380
larger than that in random networks.381

Consequently, many of the network properties in a scale-free network are determined by the local382
structures – namely, by a relatively small number of highly connected nodes (hubs). A consequence of383
this structure of the scale-free network is its extreme robustness to failure, a property also displayed by384
biomolecular networks and their modular structures. Such networks are highly tolerant of random failures385
(perturbations); however, they remain extremely sensitive to targeted attacks.386

Assortativity Network Model387

Assortative mixing refers to the property exhibited by a preference of nodes to attach to similar388
(respectively, dissimilar) nodes; for example, high-degree vertices exhibit preference to attach to high-389
degree (resp. low-degree) vertices. Network models, discussed earlier and including the preferential390
attachment model, do not capture such important properties exhibited by real biomolecular networks391
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Girvan and Newman (2002). Assortativity can be measured by the Pearson correlation coefficient r of392
degrees of linked nodes Girvan and Newman (2002). Positive correlation means connections between393
nodes of similar degree (assortativity) and negative correlation means connections between nodes with394
different degree (disassortativity). Unlike technological networks and social networks (showing assortative395
mixing), biological networks appear to evolve in a disassortative manner.396

Many genetic networks, especially the DNA networks, lead to directed graphs. Assortative mixing can be397
generalized to directed biological graphs Piraveenan et al. (2012). For directed networks two new measures,398
in-assortativity and the out-assortativity , can be defined measuring the correlation between the in-degree rin399
and out-degree rout of the nodes respectively. Biological networks, which have been previously classified400
as disassortative, have been shown to be assortative with respect to these new measures. Also it has been401
shown that in directed biological networks, out-degree mixing patterns contain the highest amount of402
Shannon information, suggesting that nodes with high local out-assortativity (regulators) dominate the403
connectivity of the network Piraveenan et al. (2012). The occurrence of assortativity in social networks404
has been attributed to a process of homophily (that is people tend to associate with others on the basis of405
ethnicity, religion, sports preferences etc McPherson et al. (2001); Newman (2003a)). The mechanisms406
that give rise to assortativity in biomolecular networks likely arises by a similar proximate mechanism of407
like nodes forming edges with like nodes, but the ultimate cause(s) remains unclear.408

Duplication Model409

Our earlier discussions suggest that biomolecular networks exhibit power-law degree distribution.410
However, unlike other complex networks, such as the Internet, the growth exponent of biomolecular411
networks typically falls into a lower range 1 < β < 2, as opposed to β ≥ 2. This discrepancy has been412
suggested to have resulted from evolution by gene duplication dominating evolutionary mechanism Chung413
et al. (2003). Various biomolecular networks have been studied using a partial duplication process, which414
proceeds in the following manner: Let the initial graph G0 have N0 vertices. In each step, Gt is constructed415
from its previous graph Gt−1 as follows: A random vertex u is selected. Then a new vertex v is added in416
such a way that for each neighbor w of u, a new edge (u,w) is added with probability p. The process is417
then applied repeatedly. The full duplication model is simply the partial model with p = 1.418

It has been shown that as the number N of vertices becomes infinitely large, the partial duplication model
with selection probability p generates power-law graphs with the exponent satisfying the transcendental
equation Chung et al. (2003)

p(β − 1) = 1− pβ−1,

whose solution determines the scale-free exponent β as a function of p. In particular, if 1/2 < p < 1 then419
β < 2.420

For illustrative purposes, we describe below an abstract gene network growth model incorporating the421
processes of gene duplication and deletion, as described above ( Mishra and Zhou (2004) and Zhou (2005)).422
Using a Markov chain model the following features were investigated: (i) the origination of the segmental423
duplication; (ii) the effect of the duplication on the genome structure; and (iii) the role of duplication and424
deletion process in the genomic evolutionary distance. Unlike standard models of stationary Markov chain425
models, most processes in evolutionary biology belong to the group of non-stationary Markov processes, in426
which the transition matrix changes over time, or depends upon the current state.427

This model results in the neutral emergence of scale-free degree distributions. It shows that the genomes428
of different organisms exhibit different network properties, likely reflecting differences in the rates of gene429
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duplication and deletion Mishra and Zhou (2004). This analysis provides an example of how network430
topology can be used to provide insight into fundamental molecular evolutionary (neutral/Markov) processes431
in different species. Note that the model is relatively idealized, as it does not account for higher order432
interactions in a population involving: effective population size and allelic fixations; sex, diploidy and433
sex-chromosomes (e.g., X and Y in mammals or W and Z in birds, etc.); surveillance and repair in somatic434
cells; embryonic lethality; homologous recombination, etc. The mathematical model explored here is kept435
simple to motivate the machinery from graph theory developed later.436

Hierarchical Network Models437

Another interesting model, introduced by Ravasz and Barabasi and dubbed hierarchical network model,438
simulates the characteristics of many real life complex models and may be relevant. The resulting networks439
have modularity, high degree of clustering, and scale-free property. Modularity refers to the network440
phenomenon where many sparsely inter-connected dense subgraphs can be identified – “one can easily441
identify groups of nodes that are highly interconnected with each other, but have only a few or no links to442
nodes outside of the group to which they belong to.” (from Ravasz and Barabási (2003)).443

A generative process for hierarchical network model may be described as follows: For instance, consider444
an initial network H0 of c fully interconnected nodes (e.g., c = 5). As a next step, create (c− 1) replicas of445
this cluster H0 and connect the peripheral nodes of each replica to the central node of the original cluster to446
create H1 with c2 (e.g., c2 = 25 ) nodes. This step can be repeated recursively and indefinitely, thereby447
for any k steps the number of nodes generating the graph Hk with ck+1 nodes. If the central nodes of H0448
is called a hub and other nodes peripheral, then each recursion replicates additional copies of hubs and449
peripheral nodes.450

One can carry out carry out a recursive analysis and shows that one obtains a power-law (i.e. scale-free)451

network with exponent β = 1 + ln(c)
ln (c−1) . The local clustering coefficients (for the hub-nodes) follow452

C(k) ≈ 2
k . Also, one can show that this duplication feature of evolution leads to hierarchical behavior of453

the network. The networks are expected to be fundamentally modular, in other words, the network can454
be seamlessly partitioned into collection of modules where each module performs an identifiable task,455
separate from the function(s) of other modules. One can also show that the average clustering coefficient on456
N nodes at any given stage is about C = .7419282.. (for c = 4), C = 0.741840 (for c = 5), and a constant457
for a fixed c, independent of N (see Ravasz and Barabási (2003), and for exact computations Noh (2003)).458
While for the preferential attachment model of Barbasi-Albert has the average clustering coefficient C on459
N nodes decreases as 1/N , in addition not exhibiting modularity.460

4 OPEN PROBLEMS AND FUTURE CHALLENGES

The study of biomolecular networks is still a relatively young field and has thus far focused on a mechanistic461
perspective. As we begin to explore it from an evolutionary view point, we encounter a large array of462
promising areas of investigation – most of which focuses on how information asymmetries among the gene463
players ultimately sculpt the information flow, as necessary for an organism to navigate in a complex and464
fluctuating environment. In particular, at its core this program requires an explanation of how features of465
genome evolution and structure might be algorithmically inferred from a network science perspective.466

The traditional approaches of phylogenetic study may be applied here, but examining specifically the467
family of species-specific biomolecular networks. Thus mathematically we would need the networks to be468
aligned, motifs to be mapped to each other and network-distances to be correlated to deep evolutionary469
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time. In order to account for the evolution by duplications, orthologs and paralogs of a gene (or gene470
families) are to be identified and connected to their roles in biochemical pathways. Ultimately, this analysis471
could be targeted at extracting the origin of various information-asymmetric signaling games and how they472
stabilized in their Nash equilibria.473

Network analysis is used in disease studies, but there have been more focused studies with applications474
to disease processes in cancer. In Figure 4 we show part of an interactome network useful in deciphering475
aberrant interactions in diseases (Figure 2.3 from Loscalzo et al. (2017)).476

4.1 Algorithmic Complexity Issues477

A key problem central to this program would be in detecting isomorphism mappings among pairs of478
graphs or subgraphs, a problem of infeasible algorithmic complexity (assuming P 6= NP .) We start with a479
discussion of these issues and cite heuristics that can tame the problem, albeit computing the solutions480
approximately.481

Intractability: NP-Completeness482

Many combinatorial optimization problems seem impossible to solve except by brute-force searches483
evaluating all possible configurations in the search space. They belong to a complexity class called NP-484
complete and include such problems as whether a graph has a clique of size k. Since finding certain shared485
motifs in a class of networks shares many computational characteristics of the clique problem and since486
it could be central to discovering important evolutionary signatures (e.g., EBD), it seems unlikely that it487
would be possible to characterize the evolutionary trajectories precisely – especially when the number of488
genes involved are in the thousands. See the supplement for additional discussions on graph representations489
and to derive their algebraic invariants, that provide bounds on complexity of algorithms possibly leading490
to excellent approximate results in the study of sparse complex networks (see Chung (1997); Chung and491
Lu (2006).492

Problem 4.A493

Classify various computational problems involved in detecting evolutionary trajectories of biomolecular494
networks and characterize their algorithmic complexity.495

Problem 4.B496

Explore PTAS (Polynomial Time Approximation Schemes) for these problems – Especially when the497
graphs satisfy certain sparsity, modularity and/or hierarchy properties.498

Algebraic Approximation499

As described earlier, many interesting topological features of a graph can be computed efficiently (on both500
sequential and parallel computers) from their descriptions in terms of adjacency matrices. The resulting501
spectral methods have found recent applications in complex networks (e.g., communication, social, Internet)502
(see Spielman (2018), Spielman (1996), Spielman and Teng (2014), Spielman and Teng (2013), Spielman503
and Teng (2011a), Spielman and Teng (2004) Chung and Lu (2006), Chung (1997), Chung (2010), MacKay504
(2003)). These methods are efficient (linear time complexity) for sparse graphs, whose number of edges is505
roughly of the same order as the number of vertices. Thus, they are well suited to biomolecular networks506
(for example for clustering, community detection, hubs, robustness, assortative mixing, spreading and507
mixing, closeness, isomorphism, among others).508
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Thus, spectral graph theory may be expected to have many applications in the analysis of biomolecular509
networks, most prominently, in clustering, graph similarity and graph approximation, but also in smoothing510
analysis and sparsification. One can envisage that many, if not most, classical network algorithms in511
biomolecular networks can be made faster by spectral methods. Indeed, since most biomolecular networks512
are sparse – both in terms of sparse connections, and in precise algebraic sense (see the supplementary513
section), these algorithms likely lead to linear time algorithms. The smoothing analysis methods, as well as514
sparsification approximations are worth exploring in these contexts.515

Another fruitful direction is in parallelizing these algorithms. As an illustration, in several studies of516
biomolecular networks it would be useful to identify when two networks X1 and X2 are “close.” We may517
wish to say that two networks are close if Spec(X1) and Spec(X2) are close – a computational problem that518
is polynomially computable (and efficiently parallelizable) (see Spielman and Teng (2013)). We can now519
give a mathematical formulation of this closeness, which can also be incorporated into phylogenetic studies.520
These biomolecular networks may be annotated with weights that are linear or quadratic approximation of521
relations, as common in these studies. These analyses may identify subnetworks that have been influenced522
by EBD, in concert with selection.523

Problem 4.C524

Classify various algebraic problems involved in detecting evolutionary trajectories of biomolecular525
networks and characterize their ability to approximate. Explore their practical implementations on526
sequential and parallel computers.527

4.2 Design Principles via Motif Analysis528

The study of Systems Biology postulates that there are important design principles of biological circuits529
that provide a great deal of insight. The connections of gene and protein interaction networks are assumed530
to provide the necessary robustness and control to achieve cellular function in the face of chemical noise.531
However, it remains unclear how random variations alone provide such robustness. A possible explanation532
may come from a game-theoretic model that lead to stable equilibria and is expected to have precipitated533
from duplication of genes, interactions and motifs.534

Machine Learning535

The biomolecular networks of interest are derived from highly noisy data e.g., CHIP-Chip, CHIP-Seq536
(for GRN) or co-localization or two-hybrid (for PPI) and consequently, the inferred edges of the network537
may miss certain genuine interactions or include several spurious interactions. Various machine learning538
algorithms (with fdr, false discovery rates, control and regularization techniques) have been devised in order539
to improve the accuracy of such models. Biomolecular networks from related species (with orthologs and540
paralogs analysis) are often combined to improve the accuracies and cross-validate results. The accuracies541
may be further ascertained via various local properties.542

One important local property of networks are so-called network motifs, which are defined as recurrent and543
statistically significant sub-graphs or patterns. Thus, network motifs are sub-graphs that repeat themselves544
in a specific network or even among various networks. Each of these sub-graphs, defined by a particular545
pattern of interactions between vertices, may reflect a framework in which particular functions are achieved546
efficiently. Indeed, motifs are of notable importance largely because they may reflect functional properties.547
They have recently gathered much attention as a useful concept to uncover structural design principles of548
complex networks. Although network motifs may provide a deep insight into the network’s functional549
abilities, their detection is computationally challenging. Thus an important challenge for both experimental550
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and computational scientists would be to study the evolutionary dynamics starting with the experimental551
data ab initio, as well as in improving the accuracy and efficiency of both the experimental and algorithmic552
techniques simultaneously.553

Problem 4.D554

Classify the species distributions of the different forms of heavy tailed distributions (e.g. power law,555
exponential, power law with exponential decay, lognormal), in different types of biomolecular network,556
and infer the mechanistic causes during network growth, and ultimate molecular evolutionary origins557

Problem 4.E558

Characterize the motifs in the biomolecular networks of closely related species starting with the noisy559
experimental data. Explain the structure of the motifs via their effect on the information flow. For instance,560
one may focus on DOR (Dense Overlapping Regulons) motifs and how they might have evolved from a561
simpler ancestral regulon Alon (2006).562

Problem 4.F563

Study Subgraph Isomorphism Algorithms (and heuristics) for sparse graphs and identify special cases564
most suitable for studying evolutionary trajectories, while relating them to biomolecular design principles.565

Network Alignment566

Critical to the evolutionary studies, described above, is the topic of network alignment and subsequent567
network tree building. Networks may be aligned in a pairwise fashion to calculate similarity, and from this568
a distance matrix calculated, and used for the construction of a network tree, showing the relationships569
between multiple networks. For example, in the case of meta-metabolic networks, such studies will reveal570
relationships between the meta-metabolic networks of different microhabitats. A plausible prediction is571
that the network tree should show convergent evolution in microbial communities from microhabitats with572
similar conditions (e.g., anaerobic habitats). Thus this approach could lead to a tool to study convergent573
evolution of microbial community structure in similar habitats Goldford et al. (2018).574

From an algorithmic point of view, one may employ any of the three types of network alignment575
approaches:576

1. where node identity is known;577

2. where node similarity can be determined (based on sequence similarity for example); and578

3. where node identity is unknown, here only network topology is used for alignment.579

The first is a straightforward edge alignment. However, a refined expression is required that incorporates580
similarities in edge widths in addition to the basic edge alignment (presence / absence of common edges581
between networks). There do exist some first generation heuristics that utilize the second and third types582
of alignment approach (i.e., sequence similarity and topology, and only topology) Kuchaiev and Przulj583
(2011), but the underlying graph isomorphism problem is known to be #P-complete. But these heuristics,584
as would be expected, do not work well – a straightforward test for this problem is applying them to align585
the social networks of the Gospels of Luke and Matthew (Figure 3) - the Jesus node should always align,586
as it is rather obvious topologically; but often leads to failure.587

Problem 4.G588

Classify and characterize the graph alignment algorithms.589
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a) b)

Figure 3. Topological Alignment of Networks. Similar Biomolecular networks could be topologically
aligned and compared in order to express an evolutionary distance, which may then augment the traditional
approaches of phylogenetic study. In order to account for the evolution by gene duplications, genes (or gene
families) are to be identified and connected to their roles in biochemical pathways. Such an approach would
lead to a program to understand the critical role of information asymmetries in driving evolution. Network
alignment, a core problem in this program, is computationally intractable. To sharpen our intuition, we
illustrate the problem using the social networks of the Gospels of Matthew and Luke. These networks
represent social interactions between characters in the gospels of Matthew (a) and Luke (b). These were
chosen as a basic test for topological alignment procedures, given that they share a similar number of
nodes, and the highly connected node of Jesus. A straightforward test for the efficacy of a topological
alignment algorithm therefore constitutes aligning both networks and verifying that the Jesus node from
both networks is matched

4.3 Somatic Evolution and Cancer590

Cancer is a complex disease, but governed by somatic genomic evolution, as propelled by mutation. Thus591
as a consequence GRNs may be used to better understand cancer susceptibility, map its progression, design592
better tailored therapies, and better understand the evolution of endogenous anti-cancer strategies. Cancer593
genes are often network hubs Karimzadeh et al. (2018), as they are often involved in critical developmental594
pathways. But a better network analysis will shed light on many natural questions: Why is it so? How does595
this come about from the process of network growth over evolutionary time? What clues do they provide to596
understand the somatic evolution in cancer and its progression?597

During cancer progression, the disease reduces a cell’s healthy genome into an aberrant mutant, where598
cancer eventually leads to metastasis, ultimately resulting in death of the patient. The healthy cells in599
the patient may be thought to possess a normal network, that is a gene network that engenders health600
and well-being. Cancer progression is reflected by a dynamic change of the normal network into an601
aberrant network. The aberrant network manifests itself by tumorigenesis, and finally metastasis. There is a602
substantial literature enumerating the identity of oncogenes and tumor suppressor genes, which aberrantly603
gain function (e.g., amplification of copy number) or lose function (e.g., deletion in copy number, hemi-604
or homozygously), respectively. They modify the cell biology of cancer progression, effected via the605
dynamics of GRN and PPI networks in cancer progression – all remain to be fully characterized.606

Of particular interest is the question whether there is an identifiable phase transition in network topology607
associated with metastasis. Figure 2 shows a simple model for how the evolution of p53 and its paralogs608
may affect GRN topology; such molecular evolutionary signaling games approaches may help to better609
understand the motifs associated with oncogenes in GRNs. An additional important factor in cancer is the610
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Figure 4. Interactome Networks Used in the study of Diseases. Undesirable interactions within a
biomolecular network result in various disease states. Disease neighborhoods within the interactome
can then be mapped to understand the progression of the disease. Progression of cancer have been studied
using analysis of functionalization of oncogenes and dysfunctionalization of tumor suppression genes via
copy number fluctuations, but much more can be learned from the topological features of these genes in
their interaction neighborhood. (A) Global map of the interactome, illustrating its heterogeneity. Node
sizes are proportional to their degree, that is, the number of links each node has to other nodes. (B) Basic
characteristics of the interactome. (C) Distribution of the shortest paths within the interactome. The average
shortest path is 〈d〉 = 3.6. (D) The degree distribution of the interactome is approximately scale-free.”
(from Figure 2.3 in Loscalzo et al. (2017))

pervasive occurrence of molecular deception Bhatia and Kumar (2013), which from a signaling games611
perspective is consistent with cancer’s conflict of interest with somatic cells. The identity of deceptive612
macromolecular signals may be incorporated into the network, potentially shedding a novel light on the613
mechanism of carcinogenesis. The genesis of deceptive signals therefore is expected to impact and drive614
carcinogenesis.615

An additional factor to understanding this biology are copy number variants (CNVs) – types of gene616
mutations where a number of large sections of genomic DNA may be duplicated (or deleted), resulting in617
dosage effects of the resident gene sequences, which are exactly duplicated (or deleted). The numbers of618
CNVs can commonly vary substantially within a population, and have been shown to have significant roles619
in the propensity to develop cancer Krepischi et al. (2012). An increase in the number of CNVs would have620
the effect of enhancing the weight of an edge, which represents the interaction of the CNV gene product621
with its macromolecular binding partner. Such a network variant represents an increased disposition to622
develop cancer, and can be understood as occupying a position in ‘network space’ (the space of all possible623
network topologies) in greater proximity to an aberrant network, than a normal network.624
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Problem 4.H625

Study Cancer progression models in terms of GRN’s and identify the role of driver and passenger genes626
in the somatically evolving networks.627

4.4 Gene Regulation and 3D Networks628

In the genome of the ancestral life form, once a number of genes with separate function had evolved, it629
then would have become beneficial to evolve gene regulation. Therefore, genes with the dedicated function630
of regulating other genes in the genome would have arisen (transcription factors). The combination of631
regulatory and functional genes would have comprised the first gene regulation network. Increases in632
organismal complexity have been facilitated by an increase in the complexity of the gene regulation network633
Burton (2014).634

Recent work has outlined the importance of three-dimensional proximity of genes to genes on other635
chromosomes, in addition to their immediate neighborhood on their own chromosome Li et al. (2018).636
This effect implies that gene proximity and spatial relationships within the nucleus can be meaningfully637
represented as a network. Such a network would be comprised of two types of edge: 1) linear distance on638
the same chromosome (centimorgans), 2) physical distance with genes on other chromosomes (nanometers).639
Such networks may be termed 3D gene orientation networks.640

Gene regulation and co-regulation may be better understood by the construction and analysis of 3D gene641
orientation networks. This is because the proximity of regulatory modules to a gene has an influence of gene642
expression. Most genes have a regulatory region 5’ of the transcription start site, the promoter. In addition,643
regulatory enhancers and other regulatory elements may be located distant from the gene, generally on644
the same chromosome Gondor and Ohlsson (2018). It is thought that the bending and juxtaposition of645
chromosomes within the nucleus may bring such elements into physical proximity to the gene Gondor646
and Ohlsson (2018). Clearly, the physical distance, and frequency with which the element is brought into647
contact with the gene will influence the nature of its regulatory input. Using 3D gene orientation networks,648
additional information may be incorporated into edges, such as whether physical proximity is static, or has649
movement. If there is movement, this may be coordinated (or not) with other regulatory elements affecting650
the same gene. Likewise, interactions with regulatory elements may show some coordination between651
genes.652

Problem 4.I653

Describe the Gene Duplication process and their utilities in terms of the genome’s 3D structure.654

5 CONCLUSION

Here, we have outlined graph theoretical approaches that may reveal some novel aspects of the molecular655
evolutionary process, which become manifest at the level of the phenome. Further work is required to link656
the diverse features of network topology with network evolution and growth. While the evolutionary aspects657
shaping individual gene-gene interactions has been addressed by geneticists and molecular evolutionists,658
we believe that a multi-disciplinary effort combining game theory, graph theory, and algebraic/statistical659
analysis will provide a more informative omnigenic model of gene interactions, in contrast to the traditional660
homogenic view. Given our view that biomolecular networks may be modeled using evolutionary game661
theory, and game theoretical approaches in the study of social networks, we expect that some surprising662
similarities and convergences between the topologies of the two might be observed. Finally, we note that663
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the field of statistics gained impetus from the consideration of biological problems, from workers such as664
Fisher, Haldane, Rao, Wright, Kimura, Crow and others, and so we suggest that consideration of the open665
problems listed here might also lead to a similar development of new mathematics.666

6 BIBLIOGRAPHIC NOTES

We recommend the following articles for further reading: (Liu et al. (2013), Song et al. (2010), Davis667
et al. (2010), Vazquez et al. (2008), Candia et al. (2008), Goh and Barabási (2008), Barabási et al. (2004),668
Barabási et al. (2003), Barabási (2003), Farkas et al. (2002), Barabási et al. (2002), Schwartz et al. (2002),669
Albert and Barabási (2002)), Chung and Lu (2004), Chung and Lu (2006) and Janwa and Rangachari670
(2015). For other important sources (especially with respect to directed graphs), we refer to Zhang671
et al. (2017),Zhang et al. (2016), (Karrer and Newman (2010), Newman (2010), Clauset et al. (2009b),672
Moore et al. (2006), Newman (2006), Meyers et al. (2006),Newman (2004),Newman (2003c),Newman673
(2003d),Newman (2003b), Girvan and Newman (2002),Newman (2001),Newman and Watts (1999)),674
Newman et al. (2011). For network alignments and evolution of networks see for example Sharan et al.675
(2005); Pinter et al. (2005); Kalaev et al. (2008); Mazurie et al. (2010) . For bipartite networks (Hø holdt676
and Janwa (2012) and Janwa and Lal (2003)). For Spectral methods (Cvetković et al. (1980), Chung677
(1997),Spielman and Teng (2011a), Spielman and Teng (2011b),Chung and Lu (2006),Lubotzky (1994),678
Janwa and Rangachari (2015),Lubotzky et al. (1988),Sarnak (2004), Davidoff et al. (2003), and Lubotzky679
(2012)).680
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Candia, J., González, M. C., Wang, P., Schoenharl, T., Madey, G., and Barabási, A.-L. (2008). Uncovering722

individual and collective human dynamics from mobile phone records. J. Phys. A 41, 224015, 11.723
doi:10.1088/1751-8113/41/22/224015724

Chang, H., Pannunzio, N., Adachi, N., and Lieber, M. (2017). Non-homologous dna end joining and725
alternative pathways to double-strand break repair. Nature Reviews Molecular Cellular Biology 18,726
495–506727

Chung, F. (2010). Graph theory in the information age. Notices Amer. Math. Soc. 57, 726–732728
Chung, F. and Lu, L. (2004). The small world phenomenon in hybrid power law graphs. In Complex729

networks (Springer, Berlin), vol. 650 of Lecture Notes in Phys. 89–104. doi:10.1007/978-3-540-44485-5730
4731

Chung, F. and Lu, L. (2006). Complex graphs and networks, vol. 107 of CBMS Regional Conference Series732
in Mathematics (Published for the Conference Board of the Mathematical Sciences, Washington, DC; by733
the American Mathematical Society, Providence, RI). doi:10.1090/cbms/107734

Chung, F., Lu, L., Dewey, T. G., and Galas, D. J. (2003). Duplication models for biological networks.735
Journal of computational biology : a journal of computational molecular cell biology 10, 677–87736

This is a provisional file, not the final typeset article 22



Heeralal Janwa et al. Origin of Biomolecular Networks

Chung, F. R. K. (1997). Spectral graph theory, vol. 92 of CBMS Regional Conference Series in Mathematics737
(Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American738
Mathematical Society, Providence, RI)739

Clauset, A., Shalizi, C., and Newman, M. (2009a). Power-law distributions in empirical data. SIAM Rev740
51, 661–703741

Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009b). Power-law distributions in empirical data.742
SIAM Rev. 51, 661–703. doi:10.1137/070710111743

Cotterell, R., Vylomova, E., Khayrallah, H., Kirov, C., and Yarowsky, D. (2017). Paradigm completion744
for derivational morphology. Proceedings of the 2017 Conference on Empirical Methods in Natural745
Language Processing , 714–720746

Crawford, V. P. and Sobel, J. (1982). Strategic information transmission. Econometrica 50, 1431–1451747
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Academic Press). 978 – 987. doi:https://doi.org/10.1016/B978-0-12-809633-8.20428-7870

Frontiers 25



Heeralal Janwa et al. Origin of Biomolecular Networks

Pinter, R. Y., Rokhlenko, O., Yeger-Lotem, E., and Ziv-Ukelson, M. (2005). Alignment of metabolic871
pathways. Bioinformatics 21, 3401–3408. doi:10.1093/bioinformatics/bti554872

Piraveenan, M., Prokopenko, M., and Zomaya, A. Y. (2012). On congruity of nodes and assortative873
information content in complex networks. Netw. Heterog. Media 7, 441–461. doi:10.3934/nhm.2012.7.874
441875

Poulos, R., Sloane, M., Hesson, L., and Wong, J. (2015). The search for cis-regulatory driver mutations in876
cancer genomes. Oncotarget 6, 32509–32525877

Ravasz, E. and Barabási, A.-L. (2003). Hierarchical organization in complex networks. Physical Review E878
67, 026112879

Rodgers, K. and McVey, M. (2016). Error-prone repair of dna double-strand breaks. J Cell Physiol 231,880
15–24881

Sarnak, P. (2004). What is. . . an expander? Notices Amer. Math. Soc. 51, 762–763882

Schuster, P., Fontana, W., Stadler, P., and Hofacker, I. (1994). From sequences to shapes and back: A883
case-study in rna secondary structures. Proc R Soc Lond B 255, 279–284884

Schwartz, N., Cohen, R., ben Avraham, D., Barabási, A.-L., and Havlin, S. (2002). Percolation in directed885
scale-free networks. Phys. Rev. E (3) 66, 015104, 4. doi:10.1103/PhysRevE.66.015104886

Serre, J.-P. (1980). Trees (Berlin: Springer-Verlag). Translated from the French by John Stillwell887

Shapley, L. (1969). A value for n person games. In The Shapley Value (Cambridge: Cambridge University888
Press)889

Sharan, R., Suthram, S., Kelley, R. M., Kuhn, T., McCuine, S., Uetz, P., et al. (2005). Conserved890
patterns of protein interaction in multiple species. Proceedings of the National Academy of Sciences 102,891
1974–1979. doi:10.1073/pnas.0409522102892

Smeenk, L., van Heeringen, S., Koeppel, M., van Driel, M., Bartels, S., Akkers, R., et al. (2008).893
Characterization of genome-wide p53-binding sites upon stress binding. Nuc Acids Res 36, 3639–3654894

Song, C., Qu, Z., Blumm, N., and Barabási, A.-L. (2010). Limits of predictability in human mobility.895
Science 327, 1018–1021. doi:10.1126/science.1177170896

Spielman, D. (2018). Spectral Graph Theory and Its Applications897
(http://www.cs.yale.edu/homes/spielman)898

Spielman, D. A. (1996). Linear-time encodable and decodable error-correcting codes. IEEE Trans. Inform.899
Theory 42, 1723–1731. doi:10.1109/18.556668. Codes and complexity900

Spielman, D. A. and Teng, S.-H. (2004). Smoothed analysis of algorithms: why the simplex algorithm901
usually takes polynomial time. J. ACM 51, 385–463. doi:10.1145/990308.990310902

Spielman, D. A. and Teng, S.-H. (2011a). Spectral sparsification of graphs. SIAM J. Comput. 40, 981–1025.903
doi:10.1137/08074489X904

Spielman, D. A. and Teng, S.-H. (2011b). Spectral sparsification of graphs. SIAM J. Comput. 40, 981–1025.905
doi:10.1137/08074489X906

Spielman, D. A. and Teng, S.-H. (2013). A local clustering algorithm for massive graphs and its application907
to nearly linear time graph partitioning. SIAM J. Comput. 42, 1–26. doi:10.1137/080744888908

Spielman, D. A. and Teng, S.-H. (2014). Nearly linear time algorithms for preconditioning and solving909
symmetric, diagonally dominant linear systems. SIAM J. Matrix Anal. Appl. 35, 835–885. doi:10.1137/910
090771430911

Taylor, P. and Jonker, L. (1978). Evolutionary stable strategies and game dynamics. Mathematical912
Biosciences 40, 145–156913

Thompson, D., Regev, A., and Roy, S. (2015). Comparative analysis of gene regulatory networks: from914
network reconstruction to evolution. Annual Review of Cell and Developmental Biology 31, 399–428915

This is a provisional file, not the final typeset article 26



Heeralal Janwa et al. Origin of Biomolecular Networks

Thulasiraman, K., Arumugam, S., Brandstadt, A., and Nishizeki, T. (2015). Handbook of Graph Theory,916
Combinatorial Optimization, and Algorithms. Chapman & Hall/CRC Computer and Information Science917
Series (Taylor & Francis)918

Vazquez, A., de Menezes, M. A., Barabási, A.-L., and Oltvai, Z. N. (2008). Impact of limited solvent919
capacity on metabolic rate, enzyme activities, and metabolite concentrations of s. cerevisiae glycolysis.920
PLoS Comput. Biol. 4, e1000195, 6. doi:10.1371/journal.pcbi.1000195921

Wagner, A. (1994). Evolution of gene networks by gene duplications: a mathematical model and its922
implications on genome organization. Proc Natl Acad Sci USA 91, 4387–4391923

Watts, D. J. (1999). Small worlds. Princeton Studies in Complexity (Princeton University Press, Princeton,924
NJ). The dynamics of networks between order and randomness925

Watts, D. J. (2003). Six degrees (W. W. Norton & Co. Inc., New York). The science of a connected age926
Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393,927

440–442928
Yamada, T., Letunic, I., Okuda, S., Kanehisa, M., and Bork, P. (2011). ipath2.0: interactive pathway929

explorer. Nuc Acids Res 39, W412–W415930
Zhang, P., Moore, C., and Newman, M. E. J. (2016). Community detection in networks with unequal931

groups. Phys. Rev. E 93, 012303, 12. doi:10.1103/physreve.93.012303932
Zhang, X., Moore, C., and Newman, M. E. J. (2017). Random graph models for dynamic networks. Eur.933

Phys. J. B 90, Paper No. 200, 14. doi:10.1140/epjb/e2017-80122-8934
Zhang, Z., Luo, Z., Kishino, H., and Kearsey, M. (2005). Divergence pattern of duplicate genes in935

protein-protein interactions follows the power law. Mol Biol Evol 22, 501–505936
Zhou, Y. J. (2005). Statistical Analyses and Markov Modeling of Duplication in Genome Evolution. Thesis937

(Ph.D.)–New York University (NYU)938

Frontiers 27


	Genesis of Biomolecular Interactions
	Introduction and a Road Map
	Ohno's Evolution by Duplication
	Network Topology, Evolution by Duplication, and Preferential Attachments

	Network analysis
	Topological Properties
	Algebraic Invariants and Spectrum

	Network evolution
	Random Network Models
	Scale-free Network Models

	Open Problems and Future Challenges
	Algorithmic Complexity Issues
	Design Principles via Motif Analysis
	Somatic Evolution and Cancer
	Gene Regulation and 3D Networks

	Conclusion
	Bibliographic Notes

