GO TO ASME.ORG HOME >

Submit Abstract

NEMB2014-93307 (Status: Abstract accepted) Schedule:

Mr. Andrey Mikheykin Virginia Commonwealth

Company

University

University Courant Institute of Printer Friendly

Poster Presentation

Copyright Received

Publication Schedule

About NEMB

Doctoral Student Poster Competition

Post-doc Conference Awards

NEMB in the News

Registration

Exhibits/Sponsorships

Hotel Information

Travel Information

Visas/ Invitation Letters

Mandatory Presenter Registration

Organizers

Track 1 Bioengineering for Medical Diagnostics, Therapeutics, and Imaging

Name Company Phone & Fax Role

Atomic Force Microscopy for Measuring Gene Expression from Single Cells

Virginia Commonwealth

Mathematical Sciences, New York University

California NanoSystems

Department of Physics,

Virginia Commonwealth

Institute, University of California at Los Angeles

☐ Omid Farokhzad P:617-732-6093 Track Organizer

Have questions?

Acceptance Notification, Technical Content, etc. Volunteer Organizers

Program & Events Christine Reilley

Registration & Hotel Info. Leslie DiLeo

Copyright Forms copyright@asme.org

Web Tool Support

Session: 1-4 Advanced Physical Diagnostics in Translational Medicine

University

Name Company Phone & Fax Role

Larry Nagahara P:(301) 451-3388 Session Organizer

Abstract

Paper Details

M Kevin A. Leslie

Jason C. Reed

James K. Gimzewski

M Bud Mishra

Name

Novel scientific instruments are required to apply post-genomic era data in medicine and biotechnology. Here we propose a high-sensitive nanosensor-based technique to quantify mRNA abundance form minute sample, even single cells. Quantification of multiple nucleic acid targets is used in many biological and biomedical applications, for example pathogen detection and identification as well as gene expression quantification in cancer diagnostics, tumor profiling and drug design. Currently quantitative Polymerase Chain Reaction (qPCR) is a "golden standard" for quantification of nucleic acids; however, its implementation to some biomedical application such as tumor profiling is limited due to insufficient level of multiplexing. In this project, we propose a technique which combines the powers of two widely used approaches came from molecular biology and nanotechnology: target-specific multiplex exponential amplification with 10-15 cycles of PCR followed by high-sensitive single-molecule detection with Atomic Force Microscopy (AFM). Note that amplicons are distinguished by their sizes so the level of multiplexing may be up to tens targets; as a single-molecule technique it has orders of magnitude higher sensitivity (1000x) compared to bulk fluorescent techniques such as microarray and capillary electrophoresis; no fluorescent dyes or any other types of labeling are used thus reducing the complexity and cost of the analysis. We demonstrated the application of our technique to the measurement of the expression level of 10 human genes in different samples. This technique can also be used in any case to quantify multiple nucleic acids targets such as copy number variation, splice, gene translocation and other genetic variations or a combination of them in a single tube at down to the single-cell level.

Author Order

Status

Event Date
Abstract submitted 30 Oct 2013
Abstract accepted 06 Nov 2013

« Back to Status Printer Friendly

Sponsored By

Media Sponsor

Contact Presentation and

Lead Author

Co-Author

Co-Author

Co-Author

Co-Author

Minimum Site Requirements: IE 6.0+ • Firefox 2.0+ • Chrome 4.0+ • Acrobat Reader 4.0+

Copyright © 1995-2013 ABME. All Rights Reserved. Terms of Use | Privacy Statement Powered by Conference Toolbox ™ version 4.0. For more information, contact us.