
On Algorithmic Complexity of Biomolecular
Sequence Assembly Problem

Giuseppe Narzisi1, Bud Mishra1,2, and Michael C Schatz1

1Simons Center for Quantitative Biology, One Bungtown Road, Cold Spring Harbor
Laboratory, NY, USA, 11724

2Courant Institute of Mathematical Sciences, New York University, New York, NY,
USA, 10012

{gnarzisi,mschatz}@cshl.edu, mishra@nyu.edu

Abstract. Because of its connection to the well-known NP-complete
shortest superstring combinatorial optimization problem, the Sequence
Assembly Problem (SAP) has been formulated in simple and sometimes
unrealistic string and graph-theoretic frameworks. This paper revisits
this problem by re-examining the relationship between the most com-
mon formulations of the SAP and their computational tractability under
different theoretical frameworks. For each formulation we show examples
of logically-consistent candidate solutions which are nevertheless unfea-
sible in the context of the underlying biological problem. This material
is hoped to be valuable to theoreticians as they develop new formula-
tions of SAP as well as of guidance to developers of new pipelines and
algorithms for sequence assembly and variant detection.

Keywords: Genome Assembly, Sequence Assembly Problem, Optimal-
ity, NP-complete Problem.

1 Introduction

The ability to sequence a genome and reconstruct its DNA sequence is changing
human genetics research [14]. Recent advances in DNA sequencing technology
have driven the cost of sequencing a complete human genome to below $1000
US1, and the potential applications to biology and medicine have rekindled
enormous interest in several classical algorithmic problems at the core of ge-
nomics and computational biology, especially the DNA sequence assembly prob-
lem (SAP). Two decades back, in the context of the Human Genome Project,
the problem had received unprecedented scientific prominence: its computational
complexity and intractability were thought to have been well understood; various
competitive heuristics, thoroughly explored and the necessary software, properly
implemented and validated. However, recent studies on the experimental valida-
tion of de novo assemblers, have highlighted several limitations [19, 4, 2].

The process of reducing/relating the problem of reconstructing the genome
sequence into a well-defined computer science problem is not straightforward:

1 http://dx.doi.org/doi:10.1038/nature.2014.14530

2 G. Narzisi, B. Mishra, and M.C. Schatz

for instance, limited or incomplete knowledge of the original biological prob-
lem, can lead to erroneous formulations. Consequently, a perfectly well-defined
“optimal solution” in the computational setting may turn out to be irrelevant,
infeasible or incorrect, when translated back to the original biological setting.
The sequence assembly problem is in fact a wicked2 problem: incomplete, con-
tradictory, changing requirements (e.g., genome structure) lead to incomplete
and biologically incorrect formulations.

This paper carefully examines the most popular formulations for SAP over
the last 20 years. Each formulation is rigorously defined. Similarity and dif-
ferences among paradigms are explained, demonstrating a strong connection
between the different formalisms. More importantly, we present examples of log-
ically consistent solutions in each of this formulations which are intractable or
unfeasible in the context of biology.

2 The dovetail-path framework

The dovetail-path framework was first introduced by Myers in [16]. The output
of a sequencing project consists of a set of reads F = {r1, r2, . . . , rN}, where each
read ri is a string over the alphabet Σ = {A, C, G, T }. Each read is associated
a pair of integers (si, ei), i ∈ [1, |F |] where si and ei are respectively the starting
and ending points of the read ri in the reconstructed string R (to be computed
by the assembler), such that 1 ≤ si, ei ≤ |R|. The order of si and ei encodes the
orientation of the read (whether ri was sampled from Watson or Crick strand of
the DNA molecule).

The overlaps between pairs of reads capture where the suffix of the first
matches the prefix of the second within some maximum error rate, and may
be computed using the Smith-Waterman algorithm [24] with match, mismatch
and gap penalty scores dependent on the error model of the sequencing technol-
ogy. Thanks to the high throughput of next-generation sequencing technology,
overlaps computed using exact-match are now adequately informative for short
reads, although emerging third-generation long read sequencing requires in-exact
matching algorithms [11, 23]. The complete description of an overlap π is given
by specifying:

1. the substrings π.A[π.sA, π.eA] and π.B[π.sB , π.eB] of the two reads that are
involved in the overlap;

2. the offsets from the left-most and right-most positions of the reads π.Ahang

and π.Bhang ;
3. the relative directions of the two reads: Normal (N), Innie (I);
4. a binary predicate suffixπ(r) on a read r such that:

suffixπ(r) =

{

true iff suffix of r participates in the overlap π

false iff prefix of r participates in the overlap π
(1)

2 A problem is wicked, if from its original formulation, one is led to a “correct” solution
that reveals the incorrectness, incompleteness or inconsistencies in the formulation
of the problem [22].

Algorithmic Complexity of Biomolecular Sequence Assembly Problem 3

A π.sAAπ.e Aπ.e

Bπ.s π.eB Bπ.s π.eB

hangA
B hang

B

hangA
B hang

B

A A

Normal

π
Innie

.s

Fig. 1. Two possible overlaps (illustration): left overlap is normal (with both reads
pointing to the same direction) right overlap is innie (with both reads pointing against
each other); The suffix predicate for the left (normal) overlap is s.t. suffixπ(A) = true

and suffixπ(B) = false

Figure 1 illustrates two possible overlaps. Because of the double-stranded
nature of the DNA molecule, each read can be sampled from either the Watson
or Crick strands and they have different orientation.

Definition 1 (Layout). The layout L associated to a set of reads F is defined
as:

LF = r1

π1

⇋ r2

π2

⇋ r3

π3

⇋ . . .
πN−1

⇋ rN (2)

Informally a layout is simply a sequence of reads with each neighboring read
pair connected by overlap relations. The previous definition assumes that there
are no containments3; without any loss of correctness or generality, contained
reads can be initially removed (in a preprocessing step) and then reintroduced
later after the layout has been created. Among all the possible layouts (possibly,
exponential in the number of reads), it is imperative to efficiently identify the
ones that are consistent according to the following definition:

Definition 2 (Consistency Property). A layout L is consistent if the fol-
lowing property holds for i = 2, . . . , N − 1:

πi−1

⇋ ri

πi

⇋ iff suffixπi−1
(ri) 6= suffixπi

(ri) (3)

The consistency property imposes a directionality for traversing the sequence
of reads in the layout. The directionality of each internal read in the layout must
be preserved so that the left and right overlaps have opposite values for the suffix
predicate. Figure 2 shows an example of layout arising from 7 overlapping reads.

Appealing to parsimony, we are typically interested in a layout whose length
is minimal (although we will see that this assumption is biologically incorrect).
The following theorem shows the correlation between the length of a layout and
the sizes of its overlaps. Let us define the weight of a layout L to be the sum
of the lengths of its overlaps, weight(L) =

∑

π∈L length(π), then the following
theorem holds [25, 26]:

Theorem 3 (Min-length reconstruction). A layout of maximum weight re-
sults in a reconstruction of minimum length.

3 Reads that are proper subsequences of another read.

4 G. Narzisi, B. Mishra, and M.C. Schatz

B
C

D
E

F
G

A

sp sp sp sp sp spspB C D E F GA

Fig. 2. Example of layout for a set of fragments F = {A, B, C, D, E, F, G} with se-
quence of overlaps πN

(A,B), π
I
(B,C), π

N
(C,D), π

I
(D,E), π

N
(E,F), π

N
(F,G)

3 Shortest Superstring Problem (SSP)

Researchers first approximated the shotgun sequence assembly problem as one of
finding the shortest common superstring of a set of sequences. This formulation
was encouraged by the results of the previous theorem and the growing body of
literature on efficient algorithms to solve the SSP .

Definition 4 (Shortest Superstring Problem). Given a set of strings S =
{r1, r2, . . . , rn} find the shortest string R (reconstruction) such that ∀i, ri is a
substring of R.

This formulation led to a simple theoretical abstraction, but by being obliv-
ious to how biological sequences are organized by evolution, it often yielded
biologically implausible and incorrect solutions. Its inability to correctly model
the assembly problem is owed to a multitude of reasons, but primarily because:

1. the shortest-superstring formulation does not account for possible errors aris-
ing during the process of sequencing the fragments,

2. it does not model fragment orientation (the sequence source can be one of
the two DNA strands), and

3. most importantly, it fails in the presence of repeats, as it encourages repeat-
induced compressions.

Elaborating on the last point it is of interest to consider Richard Karp’s
statement in 2003 [9]: The shortest superstring problem [is an] an elegant but
flawed abstraction: [since it defines assembly problem as finding] a shortest string
containing a set of given strings as substrings. Figure 3 shows an example of
the kind of errors that such formulation could lead to. Since strings contained
inside a repeat regions cannot be disambiguated, multiple copies of a repeat are
compressed into a single one.

Because of the theoretical computational intractability (NP-completeness
[5]) of the SSP , most of the approaches for genome sequence assembly have

Algorithmic Complexity of Biomolecular Sequence Assembly Problem 5

CA

A

B

M
is

−
as

se
m

bl
y

C
or

re
ct

 A
ss

em
bl

y

rm rm

l rB C

R2R1

rm

1R 2R

l

l l

Fig. 3. Example of compression: the two copies of repeat (R1 and R2) are compressed
into one leading to a shorter but misassembled sequence

resorted to greedy and heuristic methods that, by definition, restrict themselves
to near-optimal solutions, where the “nearness” may be guaranteed within a
multiplicative competitiveness factor. The best known greedy algorithm for the
SSP has an approximation factor of 2 2

3 [1].

4 Graph-Theoretic formulation

Differently from string-based approaches, graph-theoretic formulations convert
sequence assembly into solving specific problems for general graphs constructed
using the overlap information of the input set of reads. This mapping has the ad-
vantage of allowing us to apply the large collection of algorithms and heuristics
that have been developed in graph theory for many decades. However, this for-
mulation still fails to completely cure the problems and limitations of the SSP

model, since it can produce mis-assembly errors (as shown later). In this sec-
tion we introduce the two most used graphical models for the sequence assembly
problem: string graph and De Bruijn graph. But before formally specifying these
graphs, we need to give a few basic definitions.

4.1 Strings, Overlaps and Overlap Graph

Let x and y be two strings over the alphabet Σ. Let us denote the length of x by
|x|. The ith character of x is denoted by x[i]. If 1 ≤ i ≤ j ≤ |x|, we use x[i, j] to
denote the substring of x starting at position i and ending at position j. Given
two strings x and y over the alphabet Σ, we say that there is an overlap between

6 G. Narzisi, B. Mishra, and M.C. Schatz

x and y, and we denote it with x ⇋ y, if there exists a suffix of x matching4 a
prefix of y. Let us denote with o(x, y) the length of the longest such match.

Definition 5 (Overlap Graph). Given a set of strings S = {r1, r2, . . . , rn}
and a minimum overlap threshold value k, the overlap-graph for S is a weighted
bidirected graph OGk = (V, E) where:

– V = S = {r1, r2, . . . , rn};
– E = {(ri, rj) : (ri ⇋ rj) ∧ o(ri, rj) ≥ k, ri, rj ∈ V };
– the weight of each edge (ri, rj) is w(ri, rj) = |sj | − o(ri, rj).

The overlap graph [16] represents all the relationships that can be inferred
between the strings in the set S. Note that |rj | − o(ri, rj) is the length of the
overhang5 for string rj , Since each vertex/string ri has an orientation, thus every
edge has two orientations, one with respect to each of its endpoints. Because the
graph is bidirectional, we need to describe how to explore the nodes of the graph
to generate the set of valid paths.

Definition 6 (Path validity). A path P = 〈r1

e1

⇋ r2

e2

⇋ r3

e3

⇋ . . .
em−1

⇋ rm〉 in
G is valid if ∀i, 2 ≤ i ≤ m − 1, ei−1 and ei have opposite directions at ri.

Note that this definition is equivalent to the consistency property for a layout.
In order to traverse a node in the graph we need that the entry edge and the
exit edge have opposite directions at the node. So we are allowed to enter a node
x even if the edge ei is pointing out of the node as long as we use an edge ej

with opposite direction to ei when we exit the node (see figure 4 for an example
of overlap graph).

Given any path P in the overlap graph, we associate a path-string to P that
consist of the concatenation of the strings according to the order in the path,
where only one copy of the overlap is kept. Clearly the weight of a path P is
given by the sum of the weights of its edges:

w(P) =
∑

(ri,rj)∈P

w(ri, rj) =
∑

(ri,rj)∈P

(|rj | − o(ri, rj)) (4)

Note that because of the weight function associated to the edges of the graph,
a path of minimum weight defines a path-string of minimum length.

4.2 String Graph

The size of the overlap graph can be dramatically reduced by a sequence of
transformations whose goal is to eliminate edges that can be transitively inferred.

4 The matching does not have to be perfect and it can be approximated allowing up
to ǫ percent error on real data.

5 A relaxation to an overlap, such that some small number of bases at the beginning
or end of the read are excluded from the overlap region, typically because of a high
error rate.

Algorithmic Complexity of Biomolecular Sequence Assembly Problem 7

Definition 7 (transitively inferable edge). If x
e1

⇋ y
e2

⇋ z and x
e3

⇋ z are
mutually consistent overlaps among nodes x, y and z then the edge e3 is said
to be transitively inferable from the sequence of edges e1 and e2.

Informally the overlap between strings x and z is implied by the composi-
tion of the overlaps between x, y and z. It is important to note the edges must
be mutually consistent: entry edge and the exit edge must have opposite direc-
tions. The string graph is a particular graph where all the contained string and
transitively inferable edges are removed [17].

Definition 8 (String Graph). Given a set of strings S = {r1, r2, . . . , rn} and
a minimum overlap threshold value k, the string graph SGk for S is obtained
from the overlap graph OGk by removing contained strings (strings that are
substrings of other strings) and transitively inferable edges [17].

Such transformation can be computed in polynomial time using the algorithm
proposed by Myers in [17]. In order to correctly apply the transitivity reduction
step to the graph, it is important to first mark all transitively inferable edges and
then remove all marked edges in a distinct phase. This is because this process is
not Church-Rosser [3] and any arbitrary strategy would fail to remove some of
the transitively inferable edges. Equipped with the notion of string graph, the
sequence assembly problem can be formulated as follows:

Definition 9 (Sequence Assembly Problem). Given a set of fragment or
reads S = {r1, r2, . . . , rn} and a minimum overlap threshold k, the Sequence
Assembly Problem (SAP) is the problem of finding an Hamiltonian Path in the
string graph SGk for S such that its weight is minimum.

The problem is clearly a special case of the Traveling Salesman Problem
(TSP) with the following two differences: (1) instead a looking for a Hamiltonian
cycle we look for an Hamiltonian path; (2) we work with bi-directed graphs
instead of undirected or directed graphs. However, for circular genomes (such as
plasmids and bacterial genomes), the first difference does not apply anymore as
we need to find an Hamiltonian cycle as well.

Note that this formulation differs from the one presented in [18]. Specifically
Nagarajan and Pop define the sequence assembly problem as one of finding a
generalized Hamiltonian path (every node is visited at least once) of minimum
weight in the string graph of the reads. This is in accordance to the solution
proposed in [17] where they seek a cyclic tour. In such model each edge has
assigned a selection constraint c that says how many times the edge should
appear in the target solution: exact edge (c = 1), required edge (c ≥ 1) and
optional edge (c ≥ 0). Note that, even if we allow a read to be potentially used
more than once, the appeal to parsimony (min weight) could compromise the
correctness of the layout.

Before discussing the complexity of this problem it is important to observe
that this graph-theoretical formulation suffers from the same kind of problems
of the shortest superstring approach. Figure 4 show an example of string graph

8 G. Narzisi, B. Mishra, and M.C. Schatz

Layout generation

1 3

A A

R 1

B

2

A

7

6

5

4

8

3

7

4

6

58

2 3

7

4

6

58

2

1

2 4

53

6

A A A A

R 1 R 2

B B

7

8

1 1

Transitivity reduction

Graph construction

String−GraphOverlap−Graph

1

A

2

6

5

4

A A

7

8

M
is−

assem
bly 1

M
is−

assem
bly 2

R

B

1

T
rue layout

3

Fig. 4. Example of mis-assembly using a string graph: the removal of the transitively in-
ferable edges (in red) produces a string graph where every (Hamiltonian) paths through
all nodes creates mis-assemblies. The layouts for two of these paths are shown at the
bottom: the first one with compression and the second one with both compression and
inversion

Algorithmic Complexity of Biomolecular Sequence Assembly Problem 9

where all the possible Hamiltonian paths create mis-assembly error due to the
presence of a repeat. The compression error is due to the fact that repeats can
induce false positive transitively inferable edges. For example consider the reads
3, 7 and 8 in figure 4, we have that 7 ⇋ 3, 3 ⇋ 8 and 7 ⇋ 8, so the edge 7 ⇋ 8
is removed with the negative effect to merging together reads that belong to two
different copies of the repeat R2. In particular, after removal of the transitively
inferable edges, there is more than one path that traverses all the nodes and it
always produces mis-assembled layouts. Note that edge 2 ⇋ 6 cannot be removed
because, although there are edges 2 ⇋ 7 and 7 ⇋ 6, the directions at node 7 do
no match and so it cannot be traversed (the edges are not mutually consistent).

This example also shows another problem associated to this framework. Even
if it would be possible to efficiently compute the Hamiltonian path, the string
graph might have many different Hamiltonian paths (as in this example) of
minimum length and all these paths represent a possible reconstruction of the
genome. Additional information, such as mate-pairs, can sometimes be used to
help resolve this ambiguity, although since mate-pairs are generally at most 10
to 20kbp long, in general they do not fully resolve the ambiguity except for the
smallest genomes lacking any large repeats. The problem of finding a minimum
weight Hamiltonian path in a directed or undirected graph is known to be NP-
complete. Since directed graphs are special types of bidirected graphs, we have:

Theorem 10. The Sequence Assembly Problem is NP-complete.

4.3 De Bruijn graph

In a de Bruijn graph the notions of nodes and edges are somehow inverted
compared to the overlap graph. A de Bruijn graph is formally defined as follows.

Definition 11 (De Bruijn Graph). Given a set of strings S = {r1, r2, . . . , rn}
and a minimum overlap threshold value k, the de Bruijn graph for S is a directed
graph BGk = (V, E) where:

– V = {d ∈ Σk | ∃i s.t. d is a substring of ri ∈ S};
– E = {(di, dj) : if the prefix of length k − 1 of di is a suffix of dj};

Informally the set of vertices of BGk is the set of k-mers for the set of
input strings S (the spectrum L), and the edges correspond to their perfect k−1
overlap. Clearly every read ri ∈ S is translated into a path composed of (|ri|−k)
nodes. Let us call such a path a walk and define it w(ri). Also note that there is
no weight associated to the edges (the overlap weight is k − 1 for all the edges
and it can be omitted). Specifically, we create one node for each k-mer in the set
L and a directed edge from node x1 to node x2 if the k−1 suffix of x1 is a prefix
of x2 and we label the edge with the remaining rightmost string in x2. Hence,
in this graph each edge corresponds to one of the k-mers and so the general
problem consists of finding a path that visits all the edges exactly once, namely,
an Eulerian path. The string S corresponding to a path in this graph can be

10 G. Narzisi, B. Mishra, and M.C. Schatz

reconstructed by concatenating k-mer sequence of the first node, in order, with
all the labels of the edges in the path.

The de Bruijn Graph framework is currently the most popular approach
for assembling the shorter reads coming from next-generation sequencing tech-
nologies such as Illumina [6, 12]. Moreover, it is now becoming more and more
important to model the haplotyipic structure of DNA, specifically in the context
of detecting DNA mutations such as short insertions and deletions of bases (IN-
DELs). Recent works [21, 13, 8] demonstrate how sequence assembly approaches
are the most promising methods for this task. However, repetitive structures,
in particular near-perfect repeats, within genomes can produce artifacts in the
assembly graphs that mislead such methods to make false-positive calls. Figure 5
shows an example of a near-perfect repeat that can be misinterpreted as a large
deletion. The key observation is that the beginning of this sequence is a nearly
perfect 69bp repeat. There is just 1bp difference between the two copies that are
15bp apart. The sequence is segmented as 19-C-49-A-14-19-T-49-G-21 where 19
and 49 are 19bp and 49bp perfect repeats, separated by a 15bp unique sequence
(A, C, T, G are the regular bases). Since the longest exact repeat is 49bp long,
one would expect that using k-mer=55 should be large enough to correctly as-
semble reads sampled from this sequence. However, if the sequencing data also
contains reads with sequence 19-C-49-G, it can be wrongly interpreted as a long
84bp deletion of the A-14-19-T-49 segment when instead it is just a single base
change. Since the de Bruijn graph is constructed using perfect matches of length
k−1 = 54 (no mismatches allowed), the only way to connect all the 55-mers from
these two sequences is to construct a false bubble jumping form the first copy of
the near-perfect repeat to the second copy. When aligned to the reference, the
sequence associated to the branch will show a false-positive deletion.

Fig. 5. Example of false bubble in a De Bruijn graph

Finally, it is important to note that in the de Bruijn framework, similarly to
the String Graph framework, the graph can have more then one Eulerian path
and choosing the correct one is not trivial. Indeed the number of valid paths
may be extremely large, and bounded only by the product of the factorial of the
degrees of the nodes times the number of potential spanning trees of the graph

Algorithmic Complexity of Biomolecular Sequence Assembly Problem 11

[10]. Although an Eulerian path can be computed in polynomial time (using
the Hierholzer’s algorithm [7]), it might not represent a correct assembly of the
input reads (the path may not be read-coherent [17]). However, as mentioned
before, each read correspond to a particular walk in the de Bruijn graph, and any
walk that contains all the reads as subwalks (a superwalk) represents a possible
assembly of the reads. In this framework a parsimonious solution corresponds to
a superwalk of minimum length:

Definition 12 (Superwalk Problem). Given a set of reads S = {r1, . . . , rn}
find a minimum length superwalk in the De Bruijn graph BGk of S.

It can be shown that this problem is also NP-complete by reduction from
the Shortest Superstring Problem [15]:

Theorem 13. The Superwalk Problem is NP-complete.

5 Discussion

The process of abstracting a problem from its biological interpretation is a pow-
erful tool to better investigate a biological problem. However, as demonstrated
in this paper for the sequence assembly problem, it is very important to de-
velop (biologically) correct formulations. The shortest superstring formulation
was an elegant theoretical abstraction, but it was clearly oblivious to what bi-
ology needs to make a correct interpretation of genomic data. The subsequent
graph-theoretical formulations, although more powerful than the simpler SSP
model, still suffer from similar problems when dealing with repeat structures.
We have presented examples of many popularly accepted formulations that can
lead to miss-assembly errors. Although all the SAP formations presented in this
paper lead to computationally intractable problems (NP-complete), approxi-
mated solutions can be efficiently computed using graph search methods (BFS
vs DFS) often in combination with branch-and-bound method [20, 21]. A better
understanding and modeling of the sequence composition (e.g., repeats) con-
tained within genomes has been one of the key factors to improve accuracy in
computational genomics, but much work needs to be done to achieve the goal
of an error-free reconstruction. Finally there is now the urgency to model the
haplotypic structure of the human genome which introduces another level of
complexity for example in the algorithms seeking to discover genetic mutations.

References

1. Armen, C., Stein, C.: A 2 2/3-approximation algorithm for the shortest superstring
problem. In: CPM. pp. 87–101 (1996)

2. Bradnam, K., et al.: Assemblathon 2: evaluating de novo methods of genome as-
sembly in three vertebrate species. GigaScience 2(1), 10 (2013)

3. Church, A., Rosser, J.B.: Some properties of conversion. Transactions of the Amer-
ican Mathematical Society 39(3), 472–482 (1936)

12 G. Narzisi, B. Mishra, and M.C. Schatz

4. Earl, D.A., et al.: Assemblathon 1: A competitive assessment of de novo short read
assembly methods. Genome Research (2011)

5. Gallant, J., Maier, D., Astorer, J.: On finding minimal length superstrings. Journal
of Computer and System Sciences 20(1), 50 – 58 (1980)

6. Gnerre, S., et al.: High-quality draft assemblies of mammalian genomes from mas-
sively parallel sequence data. Proceedings of the National Academy of Sciences
108(4), 1513–1518 (2011)

7. Hierholzer, C., Wiener, C.: Ueber die mglichkeit, einen linienzug ohne wiederholung
und ohne unterbrechung zu umfahren. Mathematische Annalen 6(1), 30–32 (1873)

8. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly
and genotyping of variants using colored de bruijn graphs. Nature Genetics 44(2),
226–232 (2012)

9. Karp, R.M.: The role of algorithmic research in computational genomics. Compu-
tational Systems Bioinformatics Conf., IEEE Computer Society 0, 10 (2003)

10. Kingsford, C., Schatz, M., Pop, M.: Assembly complexity of prokaryotic genomes
using short reads. BMC Bioinformatics 11(1), 21 (2010)

11. Koren, S., et al.: Hybrid error correction and de novo assembly of single-molecule
sequencing reads. Nature Biotechnology 30(7), 693–700 (Jul 2012)

12. Li, R., et al.: De novo assembly of human genomes with massively parallel short
read sequencing. Genome Research 20(2), 265–272 (2010)

13. Li, S., Li, R., Li, H., Lu, J., Li, Y., Bolund, L., Schierup, M., Wang, J.: Soapindel:
Efficient identification of indels from short paired reads. Genome Research (2012)

14. Mardis, E.R.: The impact of next-generation sequencing technology on genetics.
Trends in Genetics 24(3), 133 – 141 (2008)

15. Medvedev, P., Georgiou, K., Myers, G., Brudno, M.: Computability of models for
sequence assembly. In: Giancarlo, R., Hannenhalli, S. (eds.) Algorithms in Bioin-
formatics, LNCS, vol. 4645, pp. 289–301. Springer Berlin Heidelberg (2007)

16. Myers, E.W.: Toward simplifying and accurately formulating fragment assembly.
Journal of Computational Biology 2, 275–290 (1995)

17. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21(suppl 2),
ii79–85 (2005)

18. Nagarajan, N., Pop, M.: Parametric complexity of sequence assembly: theory and
applications to next generation sequencing. Journal of computational biology 16(7),
897–908 (July 2009)

19. Narzisi, G., Mishra, B.: Comparing de novo genome assembly: The long and short
of it. PLoS ONE 6(4), e19175 (04 2011)

20. Narzisi, G., Mishra, B.: Scoring-and-unfolding trimmed tree assembler: concepts,
constructs and comparisons. Bioinformatics 27(2), 153–160 (2011)

21. Narzisi, G., O’Rawe, J.A., Iossifov, I., ha Lee, Y., Wang, Z., Wu, Y., Lyon, G.J.,
Wigler, M., Schatz, M.C.: Accurate detection of de novo and transmitted indels
within exome-capture data using micro-assembly. bioRxiv (2013)

22. Rittel, H.W.J., Webber, M.M.: Dilemmas in a general theory of planning. Policy
Sciences 4, 155 – 169 (1973)

23. Roberts, R., Carneiro, M., Schatz, M.: The advantages of smrt sequencing. Genome
Biology 14(7), 405 (2013)

24. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147(1), 195–197 (March 1981)

25. Tarhio, J., Ukkonen, E.: A greedy approximation algorithm for constructing short-
est common superstrings. Theor. Comput. Sci. 57(1), 131–145 (1988)

26. Turner, J.S.: Approximation algorithms for the shortest common superstring prob-
lem. Inf. Comput. 83(1), 1–20 (1989)

