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Abstract

This paper introduces Cancer Hallmark Automata, a formalism to
model the progression of cancers through discrete phenotypes (so-called
hallmarks). The classification of various cancers using stages and hall-
marks has become common in the biology literature, but primarily as
an organizing principle, and not as an executable formalism. The pre-
cise computational model developed here aims to exploit this untapped
potential, namely, through automatic verification of progression models
(e.g., consistency, causal connections, etc.), classification of unreachable or
unstable states (e.g., “anti-hallmarks”) and computer-generated (individu-
alized or universal) therapy plans. The paper builds on a phenomenological
approach, and as such does not need to model the biochemistry underlying
the progression. Rather, it abstractly models transition timings between
hallmarks as well as the effects of drugs and clinical tests, and thus allows
formalization of temporal statements about the progression as well as
notions of timed therapies. The model proposed here is ultimately based
on hybrid automata (with multiple clocks), for which relevant verification
and planning algorithms exist in the literature. By establishing a suitably
expressive formalism, this paper also prepares the readers for its sequels,
which plan to explore deeper algorithmic connections, model building
techniques and realistic clinical applications.

1 Introduction

1.1 Background

Cancer is generally thought of as a progressive disease – in particular, a disease
which has certain discrete states through which it progresses towards a full-blown
final phenotype (e.g., metastasis). This view is reflected in the so-called hallmarks
of cancer proposed by Hanahan and Weinberg [17], and it has become one of
the predominant ways of thinking about cancer, solidified through many further
publications and experiments. A recent article by the same authors [18] reviews
and consolidates the new insights of the last decade.
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According to that model, tumors must necessarily acquire certain “interme-
diate” hallmarks culminating in the “final” hallmarks of tissue invasion and
metastasis. As the authors write,

Simply depicted, certain mutant genotypes confer selective advantage
on subclones of cells, enabling their outgrowth and eventual domi-
nance in a local tissue environment. Accordingly, multistep tumor
progression can be portrayed as a succession of clonal expansions,
each of which is triggered by the chance acquisition of an enabling
mutant genotype. [18, p. 658]

The current list of cancer hallmarks includes the abilities to reproduce au-
tonomously, to ignore anti-growth signals, or to signal for formation of new
blood vessels, as well as some other phenotypes. Hallmarks can be obtained in
various different orders, but not every order is viable. Intuitively, a hallmark can
be acquired by a certain population of cells if it conveys a selective advantage
compared to the predominant phenotype in that population. For example, in a
wildly growing cluster of cells, the ability to signal for new blood supply, and thus
nutrients, oxygen, and waste disposal, will allow the respective sub-population
to outgrow the others.

Most hallmarks are acquired through mutations of very specific sets of
genes, and many of the targeted drugs that have been developed in recent years
influence the function of the products of these genes [31]. For example, the
vascular endothelial growth factor (VEGF) signals for creation of new blood
vessels (angiogenesis), and the drug Avastin inhibits the associated signaling
pathway, thus preventing growing tumors from obtaining the needed blood
supply.

1.2 Motivation

The view of cancer progression and therapy bears a striking resemblance to
formal models of state-transition machines in computer science. While cancer
biologists obviously think in these concepts, they do not have, or aim at, such
formal models. In this paper we present a formal framework called Cancer
Hallmark Automaton (CHA) that allows us to formally capture cancer progression
through accumulation of successive hallmarks. States of these automata represent
hallmarks, and directed edges among pairs of states define paths, representing
successive hallmark acquisitions.

Drugs can then be thought of as inhibiting specific transitions in a hallmark
automaton. This simple model prompts a further application of computer science
techniques, namely controller synthesis, to aid in the increasingly complex task
of designing therapeutic plans for cancer treatment. A therapy can be designed
to satisfy a broad range of goals. For example, one may require that the system
stays within a specified region of the state space or satisfies a given temporal
formula. The controller synthesis problem then consists in finding a timed
therapy that manipulates the model in such a way that the desired behavior is
satisfied.
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In the following we describe our motivation to investigate cancer hallmark
automata in more detail.

Useful abstraction level The hallmark view models carcinogenesis abstractly
as a progression through distinct phenotypes, following particular traces. It is
useful for two reasons. On the one hand, it is abstract enough to allow practically
all forms of cancers to be analyzed in one comprehensive and intuitive framework
– without getting bogged down by their complexity. On the other hand, it retains
a sufficient level of detail to connect these phenotypes to specific genotypes and
thus, to important low-level mechanisms involved in gene regulation, metabolism
and signaling, some of which are accessible to various therapeutic agents.

Advantage of formalization Hallmark models are currently used both to
establish diagnostic categories, and to inform therapeutic decisions. By making
all assumptions explicit and establishing a formal framework, we hope to better
understand the disease and its progression as well as its resilience against
therapeutic interventions. For example, cocktail drugs are currently typically put
together through trial and error. We expect our formal model to help identify
more rigorously exactly which (parallel or back-up) paths in cancer progression
need to be perturbed/blocked by the cocktail. We also wish to understand, by
including time in our formal framework explicitly, how cancer progression can
be slowed down to the point that it is manageable as a chronic disease, rather
than cured completely. Such an approach may be preferable since it requires
lower levels of toxicity.

Advantage of computation Even though current literature in cancer biology
typically lists no more than a dozen hallmarks, the resulting models are not
necessarily simple or easy to analyze, and future progression models may make
more fine-grained distinctions between hallmarks (see next point). Also, the list
of targeted drugs has grown enormously, and the task of finding a (near-)optimal
therapy plan is soon to be beyond manual planning. An additional increase
in complexity results from combinatorial notions like synthetic lethality [30]
and cocktail drugs, or path-dependent notions like oncogene-addiction [43].
Automated computational tools will help tackle these complexities. Model
checking can be used to automatically verify hypotheses about cancer progression,
and controller synthesis to generate suggestions for therapeutic plans, possibly
personalized based on patients’ genetics.

Connecting to data Starting from a rigorous formulation of cancer hallmark
progression models, we aim to take further steps towards implementing a practical
system. The model we introduce is hoped to pave the way for both the automatic
generation of fine-grained hallmark models from data (e.g., The Cancer Genome
Atlas project1) and their systematic usage in cancer diagnostics and therapeutics.

1http://cancergenome.nih.gov
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Model-discovery tools such as GOALIE [41] can be used to generate models from
data using any desired resolution for the state space. Ultimately, these models are
expected to be used for a wider variety of purposes, some discussed here, and some
yet to be imagined: for example, mining clinical data to discover “bottlenecks” in
cancer progression that point to promising drug targets, developing personalized
models for specific cancers and patients, or even creating “expert systems” for
clinicians and pathologists to query patient health records.

1.3 Approach

The current paper is the first one in a sequence and starts by motivating and
defining cancer hallmark automata, suggesting further extensions and providing
some preliminary algorithmic considerations. The framework proposed in this
paper evolves gradually from a simple Kripke model by the successive addition
of:

(i) “costs” of drugs in various dimensions (e.g., toxicity, side effects, eventual
resistance, mode and frequency of delivery, discomfort, monetary cost, etc.)
that are to be optimized,

(ii) timing of transitions and drug effectiveness,

(iii) partial observability of the tumor’s internal state along with tests that can
provide additional information about the state, as well as

(iv) the possibility of factoring in other parts of the tumor’s host organism
which may be affected by a therapy (e.g., stroma, liver, immune system,
stem cells, etc.).

2 Related Work

In the following, we briefly review the relevant literature from the two fields that
are combined: biology and computing.

2.1 Biology literature

The hallmark view of cancer, originally proposed by Hanahan and Weinberg
in [17], and subsequently further modified [18], is the idea that carcinogenesis
proceeds through a series of discrete phenotype states or hallmarks. We refer
to the recent survey article [18] and the numerous references therein, for the
developments of the last decade.

Most hallmarks are acquired through mutations of specific sets of genes, while
global genomic instability drives the tumor progression through these hallmarks.
These hallmark principles are also highly relevant to the development of targeted
therapies. See Table 1 for a small sample of therapeutic agents that attack
specific hallmarks based on the product of the genes that they influence [31].
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Typically, these therapeutic agents are thought to act on the pathways that
are behaving abnormally in the hallmark and thus restore normalcy (as in
EGFR-mutated lung adenocarcinoma treated with Tarceva, or VEGF-mutated
colorectal, lung, kidney, and glioblastoma cancers treated with Avastin). In
these models, there is no notion of time or history of the cancer progression.

Combinatorial approaches to cancer therapy can also help to improve treat-
ment of the disease [31]. For example, by combining several drugs affecting
different mechanisms, or different signaling pathways used in a heterogeneous
population, the progression to a next hallmark can be prolonged (or prevented).
Our therapy-planning approach allows for searching over the combinatorial space
of cocktail drugs.2

Finally, many other parts of the tumor’s host organism influence, or are
influenced by, the tumor’s progression and therapeutic agents: stroma, liver [40],
immune system [14], stem cells, etc. These parts of the host organism can be
factored into our framework by modeling them separately and creating a suitable
product automaton. It is then possible to model the effects of a therapy on the
whole system, describe interactions between subsystems and specify therapeutic
goals over all of them. To illustrate such a composite model, we formulate a liver
automaton which progresses through different states of damage depending on
the toxicity of the given drugs, and show how this can be combined with a CHA.
The goal of a therapy is then to treat cancer without adversely affecting the
liver. Other factors such as metabolic stress can also influence cancer progression
[29, 31], but can be incorporated into CHA components mutatis mutandis, as
will be described in a future paper in this series.

Agent Target Hallmarks References

ABT-737 BCL-CL, BCL-2 EvAp Stauffer, 2007
Alvocidib CDKs SSG Lee and Sicinski, 2006

Bevacizumab VEGF Ang Folkman, 2007
BEZ235 PI3K SSG, Ang Maira et al., 2008

GRN163L hTERT LRP Dikmen et al., 2005;
Harley, 2008

Nutlin-3 HDM2 EvAp, IAG Vassilev, 2007

Table 1: Some therapeutic agents attacking specific hallmarks. Adapted from Luo
et al. [31, Table 1], who give an extensive list and full references. We briefly
explain the relevant hallmarks in Section 5.

2Note that we do not model cell types and heterogeneity explicitly, but its effects can
be represented by having multiple outgoing transitions from a particular hallmark, each
corresponding to the acquisition of a new hallmark by one of the sub-populations. See also
Section 10.1.
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2.2 Computer science literature

Automata represent formal frameworks to describe the (non-deterministic)
behavior of discrete-state systems. These frameworks range from simple finite
automata, where states are described by nodes and transitions by edges, to
complex state machines involving real-time progression and partial observability.
See, e.g., the book by Hopcroft et al. [25] for a general introduction.

Timed Automata extend classical automata to model progression of real-
time systems. A timed automaton is a finite automaton with a set of real-valued
variables, called clocks. Clock constraints on the edges and clock invariants at
the states are used to restrict the possible progressions of the system. We refer
to [2, 4] for an overview of timed automata.

Hybrid Automata further extend timed automata to allow for non-
synchronous continuous evolution. More precisely, while in timed automata
clocks increase synchronously at the same rate, clocks in so-called hybrid au-
tomata can run at different rates, which can change independently with the
transition to another state. For an overview of the theory of hybrid automata
see [19].

Stochastic Automata are stochastic state machines which satisfy the
Markov property, i.e., their evolution only depends on the current state and not
on the whole history of visited states. In that sense, they also belong to the
paradigm of automata. Markov models exist in a variety of forms. They can
allow for partial observability (HMMs, Hidden Markov Models [39]), for external
control of the system’s progression (MDPs, Markov Decision Processes [37]) or
both (POMDPs, Partially Observable MDPs [33]).

System verification, and in particular model checking [12], is concerned with
formally verifying whether a given system satisfies a given property. Such a
property could pertain to the (non-)reachability of certain good or bad states,
or, more generally, be any temporal statement about visited states. Typically,
a temporal logic like Computation Tree Logic (CTL, [10]) is used to express
properties. There exist many extensions of CTL, of which a particularly useful
one for our purposes is Timed CTL [1]. It allows statements not only about
the qualitative temporal order of visited states, but also includes quantitative
temporal operators. Timed CTL can be generalized further to reason about costs
and the values of different clocks [7]. System verification becomes more difficult
when the behavior of the system is not fully observable. In such situations of
partial observability, the observer can narrow down the possible states of the
system to a subset of states, but the exact state may not be known. In many
formalisms that include partial observability, it is assumed that the observer is
“automatically” notified whenever the currently available observation changes.
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Control theory and planning In control theory the objective is to manip-
ulate a system (“plant”) in such a way that the controlled system (“plant +
controller”) satisfies a certain desired specification. Much work has been done
on automatically generating controllers for untimed automata (see [28] for an
algorithm that uses CTL specifications) as well as timed automata (see, e.g.,
[3, 24]). More recently, timed control with partial observability has received
more attention (e.g., [8]). Cassez et al. [9] show an efficient on-the-fly controller
synthesis algorithm for timed automata with partial information. In hybrid
automata theory, methods have been developed to design controllers for specific
properties like non-reachability of bad states (so-called safety properties) as well
as more general properties expressed in temporal logics, both using continuous-
and discrete-time control [20, 22].

In the planning literature, algorithms have been developed to construct and
validate action plans so that the resulting behaviors satisfy complex temporal
formulas, called (temporally) extended goals. For example, in [6] planning under
partial observability is studied, and in [38] planning in real-time systems.

Our contributions Our cancer hallmark automaton is shown to be a special
case of a hybrid automaton. In the absence of reliable and sufficiently large
amounts of data on expected outcomes from clinical tests, we have shifted
our initial focus away from probabilistic models, and towards nondeterministic
models, which capture uncertainty about state transitions, but lack quantitative
probability distributions. Thus, the resulting therapies are highly conservative as
they allow planning against the worst-case behavior, rather than the average or
expected case. Still, our framework is justified by underlying stochastic processes
involved in somatic evolution, see Section 4. Hybrid automata (rather than
simple timed automata) are thus ideal for modelling how drugs may slow down
those processes and thus affect their stopping times. Various drugs affect the
transition to possible next states in different ways; we use multiple clocks to
capture these processes.

Besides model-checking (verifying whether a certain set of properties is satis-
fied) these models of cancer progression, we are interested in their manipulation,
so we proceed to develop notions of therapeutic intervention against the progres-
sion of cancer – taking into account its partial observability. We define notions of
therapy, remaining consistent with various notions originally defined by control
theorists in similar contexts. For example, a therapy is defined as a function from
the set of runs to the set of controller actions, namely, administration of drug
cocktails and medical tests. In Section 7 we show how this notion of therapy can
be translated into a conditional plan as is common in the planning literature. We
use CTL and its extensions to specify therapeutic goals as in some related works;
and we model partial observability, but our convention for obtaining observations
differs from the literature in that they are not automatically emitted by the plant
but be actively obtained through test actions.3 In Section 9 we describe the

3This point is mainly conceptual, since a system with test-based observations can be
translated into one with automatic observations using additional states.
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underlying controller synthesis algorithms, adapting those for hybrid automata
developed in the control theory literature.

3 Overview

The rest of this paper is organized as follows. In the next section we start
by outlining the basic assumptions underlying CHAs. Then, in Section 5, we
introduce a basic CHA formalism. In this section, a CHA is modeled as a
finite non-deterministic automaton whose nodes represent hallmarks and whose
directed edges represent transitions from one hallmark to the next. The edges
are labeled with drugs that can inhibit the transition. A therapy is defined as a
function that assigns a set of drugs to each finite progression history, or run. An
execution of a therapy is defined as a run of the CHA that respects the therapy,
that is, no transition of the execution is inhibited by the therapy. Our model
includes costs by associating a cost vector with each state and each cocktail.
Therapies may be selected by comparing costs of possible executions using a
notion of Pareto dominance, in addition to the required qualitative properties
specified in CTL.

In Section 6 we extend the CHA framework to include real time. In this
model, transitions take certain durations of time, and drugs can prolong (or
stop) the transition process. This is modelled using a hybrid automaton with
multiple clocks. Clock constraints on the edges and clock invariants at the states
restrict the possible progressions of the system. Multiple clocks are needed to
allow for the scenario that a drug affects the transition to possible next states
in different ways. Possible runs and therapies of a timed CHA now include the
clock values. An extension of CTL, Timed CTL, is used to specify extended
goals about the system.

In Section 7 we introduce uncertainty into the framework. The oncologist may
have only partial knowledge about the tumor’s internal state, which we model
by keeping track of his belief set. Tests are incorporated into the definition
of a therapy as actions that reduce uncertainty about the current state. In
our framework, tests have costs, but take no time. To integrate the observer’s
information about the system, we add epistemic operators to Timed CTL. In
Section 7.4 we give a translation from therapies for timed CHAs with partial
observability into conditional plans.

In Section 8, we present a simple liver automaton as an example of a system
of the host organism that may be affected by the therapy. These systems can be
combined with the CHA using parallel composition.

In Section 9, we discuss various algorithmic issues related to generating
therapies, i.e., controller synthesis for CHAs.

Finally, Section 10 concludes with a discussion and an outline of the plans
for the sequels of this paper.
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4 Underlying Assumptions for Timed CHAs

There are a few tacit assumptions that we have used to motivate our model
(especially, timed CHAs) and to a large degree, the structure of a therapy.
Though all of of these assumptions are known to and largely accepted by the
cancer biology community, for the sake of completeness, they are made explicit
below.

1. Our models do not concern themselves with the origin of a cancer : e.g., we
do not assume that cancer is a disease of the genome, initiated by a gain-of-
function mutation in an oncogene or a loss-of-function mutation in a tumor
suppressor gene, or a disease of aberrant signaling or a disease of addictive
metabolic processes (e.g., Warburg effect), etc. We only focus on the
cancer phenotypes and their dynamics, without an explicit need for causal
mechanistic models (which may be governed by genomics, epigenomics,
transcriptomics, proteomics, mateabolomics, etc).

2. Our models postulate finitely many discrete phenotypes that can be exhib-
ited in cancer. The dynamics, possible transitions from one phenotype to
another, are known, since they could be extracted by statistical analysis
of patients, model animals, cancer cell lines or systems biology data. In
the future, the models may be further extended to assume certain stress-
hallmarks (e.g., certain characteristics of the tumor population, stroma or
microenvironment) or other types of hallmarks.

3. Our models’ dynamics assumes that cancer progression is primarily driven
by a Darwinian somatic evolution (based only on mutation and selec-
tion). In other words, exhibited changes in phenotypes are determined by
genotypic changes. Possible genotypic changes are determined by various
processes operating on the genome, e.g., point mutations, translocations,
amplifications, deletions, loss of heterozygosity (LOH), which collectively
may be labeled as a “Genome Organizing Device” (GOD). We only as-
sume that GOD creates diversity, but not how exactly GOD functions.
Advantageous cancer phenotypes of hallmarks are successively ‘selected’.

4. Our models further assume that each hallmark state has an associated
(stochastic) hitting time, i.e., a particular instance of a stopping time,
representing the first time the modeled process “hits” a successor hallmark
– a well-defined subset of the state space. The stopping time is modeled
using Fisher’s Fundamental Theorem of Genetics, and is incorporated in
the clocks of timed CHAs:

d

dt
〈F 〉 = σ2 − µ∆µ,

where F represents a fitness function (corresponding to a hallmark) map-
ping genotypes to phenotypes, with the diversity in genotypes determining
the variability in fitness, whose density function is over the population, 〈F 〉
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and σ2 are respectively the expectation and variance over the population
and µ a mutation rate, and ∆µ a contribution in average gain/loss in
fitness due to mutation (which may be non-additive due to epistasis). A
straight-forward derivation (with a simple model of genotypes), for the case
involving mutation and selection (but no recombination) may be found
in [35].

Note that in our framework we do not need to know how precisely the inter-
hallmark clocks move, but only that they can be described by certain stochastic
or ordinary differential equations, whose parameters are obtained from elsewhere.
The fitness function may be assumed to change over time (e.g., an uncontrolled
proliferative state may lead to hypoxia in a certain sub-population of cells and
confer a higher fitness to mutations that promote angiogenesis, or other similar
Malthusian effects), σ2 may be non-constant (e.g., the tumor’s clonality and
progression rates being variable), and also the mutation rates may vary over
time. Thus, all we take from this model is just the ability to represent the clocks
mathematically, without being encumbered by the different mechanisms involved
in different hallmarks.

Altogether, these assumptions lead to a model of cancer progression that
uses the classical formalisms of hybrid automata with multiple clocks, whose
mathematical and computational structures have been well-studied.

5 Cancer Hallmark Automata

A simple, intuitive example CHA is shown in Figure 1. It comprises the following
hallmarks (see [17] for more details):

SSG: Self-sufficiency in growth signals. Roughly speaking, cells no longer
depend on external growth-promoting signals, but grow autonomously.
Usually, such a state is associated with a gain of function of an oncogene
or a loss of function of a tumor suppressor gene.

IAG: Insensitivity to anti-growth signals. Cells with this hallmark continue to
grow even in the presence of inhibiting signals. Usually, certain cell-cycle
checkpoints are no longer properly regulated.

Ang: Sustained angiogenesis. This state enables a cancer cell to signal for the
construction of blood vessels.

LRP: Limitless replicative potential. While most normal cells can only divide a
certain number of times, cells with this hallmark can divide without limits.
In this state, a cancer cell may upregulate telomerase to restore telomere
lengths.

EvAp: Evading apoptosis. Normally, cells have a program for controlled cell-
death, which is used to remove damaged or otherwise unwanted cells.
This program is disabled in this hallmark which enables cells with highly
corrupted DNA to survive, which facilitates cancer.
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Normal

SSG IAG

IAG SSG

Ang

LRP EvAp

EvAp LRP

M

Avastin

Avastin

Figure 1: A simple hallmark automaton whose progression can be stalled by a
VEGF-inhibitor such as Avastin.

M: Metastasis.

Various possible progressions through these hallmarks can be seen as transi-
tions in the picture (note that this is a simplified and incomplete model). For
example, Ang can be acquired after SSG and IAG. Moreover, as mentioned in
Section 1, if a growing tumor fails to acquire Ang, it may starve; in this case,
a solid tumor is unable to grow further and attain the later hallmarks. For
simplicity, it may be modeled as a transition to the normal state.

In this example, the therapy “give the drug Avastin whenever a state leading
up to Ang is reached” will prevent the cancer from reaching M.

5.1 Formal model

In the following, we start with a preliminary and simple formalization of the
notions described above. We will successively extend the formal model in the
later sections.

We assume a global set D of drugs.

Definition 5.1. A Cancer Hallmark Automaton (CHA) is a tuple

H = (V,E, v0) ,

where

• V is a set of states, corresponding to hallmarks,4

• E ⊆ V × 2D × V is a set of directed edges labeled with sets of drugs, and

• v0 ∈ V is the initial state.

We usually omit v0 and write just (V,E).

Intuitively, an edge (v,D, v′) represents a transition from state v to state v′

that can be inhibited by any drug from the set D ⊆ D. We allow several drugs
to be given simultaneously and refer to such sets C ⊆ D of drugs as cocktails.

4Strictly speaking, a state corresponds to a subset of hallmarks that have been acquired.
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Given a cocktail C, the edge (v,D, v′) ∈ E is inhibited by C if C ∩D 6= ∅. Given

a state v and a cocktail C, v can transition to v′ under C, in symbols v
C−→ v′,

if there is an edge (v,D, v′) that is not inhibited by C. Note that we allow
multiple edges (with different labels) between the same two states. To prevent a
transition between two states, all edges connecting them need to be inhibited,
which is why we need to consider cocktails rather than just single drugs. We
assume that for every state v and every cocktail C there exists some state v′

such that v
C−→ v′ (possibly v′ = v, these edges were omitted in Figure 1).

A run of a CHA H = (V,E, v0) is a sequence of transitions in E. Let
Runs(v,H) denote the set of runs that start in v. We write Runs(H) for
Runs(v0, H), and by Runs f(v,H) we denote the set of finite runs from Runs(v,H).

We now formalize how it is possible to interfere with the progression of the
system.

Definition 5.2. A therapy is a function π : Runs f(H) → 2D. A possible
execution of π in H is a run

S = v0v1v2 . . . ,

such that for each i ≥ 0, vi
π(Si)−−−→ vi+1, where Si denotes the initial segment of

S up to step i.

Definition 5.3. Costs are given by the following (overloaded) function, for
some finite dimension n:

• c : V → Rn≥0 specifying costs of states,

• c : 2D → Rn≥0 specifying costs of cocktails.

Thus, both states and cocktails have costs assigned to them, represented as
n-dimensional vectors. Dimensions may include toxicity of the drugs, monetary
cost of the drugs, discomfort for the patient, etc.

The cost of a possible execution S = v0v1v2 . . . of a therapy π with discount
factor 0 < δ ≤ 1 is

c(S, π,H) =
∑
i≥0

δi
(
c(vi) + c(π(Si))

)
.

The set of possible costs of π for a CHA H is

c(π,H) = {c(S, π,H) | S is possible execution of π in H}.

Now that we have a definition of the set of possible costs of a therapy, we
can compare different therapies with respect to their costs.

Definition 5.4. A cost vector x ∈ Rn Pareto-dominates another vector
x′ ∈ Rn, in symbols x ≺ x′, iff for each 1 ≤ ` ≤ n we have x` ≤ x′` and for some
1 ≤ ` ≤ n we have x` < x′`.
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A therapy π Pareto-dominates a therapy π′ in a CHA H if for each
x ∈ c(π,H) and x′ ∈ c(π′, H) we have x ≺ x′. The set of candidate therapies
for H is

Θ(H) = {π |π is not Pareto-dominated in H} .

Note. For the special case of 1-dimensional costs (or if there is a function to
aggregate cost vectors into single numbers), the set of candidate therapies is the
set of therapies whose best-case cost is not higher than some other therapy’s
worst-case cost.

This definition of a set of candidate therapies is a very conservative one, in
that it includes any therapy that is not overtly worse than some other therapy.
There are different possibilities for defining the set of candidate therapies, or
for pruning the set further. Examples of such strategies for pruning the set
further include maximin, i.e., choosing those strategies that lead to the best
worst-case outcome, or maximax, i.e., choosing those strategies that lead to the
best best-case outcome. However, making these decisions depends on the risk
attitude of patient and doctor which may not be fully formalizable. Therefore
we include all the potentially relevant therapies in the set of candidate therapies.

In order to be clinically applicable, a hallmark model may need to be per-
sonalized for any given patient or cancer type. Richer models in the future will
necessitate more personalization. This personalization will result in families of
hallmark automata, with different sets of candidate therapies. While we will not
give full details here, we want to describe one possible application for such richer
models.

For families of hallmark automata, we can ask whether there are any universal
therapies for all of the included automata. Such therapies can result in faster
and cheaper treatments.

To be able to apply therapies across different automata, their domain must
be the same. This can be achieved, for example, by considering CHAs that
contain the same set of hallmarks, and therapies that either depend only on the
current state, or that have the set of all sequences of states as domain. The
following definition applies to therapies on such unified domains.

Definition 5.5. Given a family H of hallmark automata, the set of (universal)
candidate therapies for H is

Θ(H) =
⋂
H∈H

Θ(H) .

A set θ of therapies covers H if

θ ∩Θ(H) 6= ∅ for all H ∈ H .

Note that if Θ(H) 6= ∅ then for each π ∈ Θ(H), {π} covers H.
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5.2 Temporally extended goals: CTL

We have seen in the previous section that therapies can be compared according
to their costs. Thus, the problem of finding the right therapy can be viewed as
an optimization problem. It can, however, be necessary to have more detailed
control over the therapeutic objectives. Simple reachability properties can be
used as goals, such as “metastasis will never be reached”. For more expressivity
we can use Computation Tree Logic (CTL) [11] to specify goals.

Example 5.6. The goal AG¬M says that metastasis is never reached. Another
possible goal could be

AG(Ang→ AG¬EvAp) .

This means that whenever sustained angiogenesis is acquired, then at no point
in the future the capability of evading apoptosis will be obtained.

One may be interested in checking properties of the CHA itself, without
application of a therapy. This can be done using CTL model checking (see,
e.g., [12]). CTL properties can also be checked on the possible executions of a
given pair of therapy and hallmark automaton. Supervisory control for finite
automata with CTL goals is known to be EXPTIME-complete, and controller
synthesis algorithms exist [28].

The above representation of a cancer hallmark automaton is intuitive, but
its simplicity also has some shortcomings. First, the above formalism does not
include timing. Some transitions could be very short while others may take
many years. A second limitation is that it does not model uncertainty about
the current state. Typically, a clinician cannot know exactly how far progressed
a cancer is, and must design therapies taking this uncertainty into account.
Moreover, a clinician may decide to perform a test to reduce uncertainty. Third,
cancer cannot be treated without considering the rest of the body. For example,
it may be possible to prevent a cancer from evolving to metastasis but at the
same time causing the liver to enter a highly toxic state.

We will address these issues in the remainder of this paper. In the next
section we introduce timed CHAs, subsequently we incorporate tests and belief
sets into the framework in Section 7, and finally we introduce an exemplary liver
model and the concept of a product automaton in Section 8.

6 Timed CHAs

The framework we built so far is somewhat idealized in that transitions occur
spontaneously and drugs can switch off transitions completely. More realistically,
transitions would take certain durations of time, and drugs can slow down (or
stop) the transition process. For example, in pancreatic cancer, it takes about a
year for K-ras mutations in a cell to lead to neoplasms (so-called PanINs) [26].
To model durations, we will now add a notion of time to our CHA framework.
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Figure 2: A simple timed hallmark automaton, using one clock (not named
explicitly). The edges are labeled with the minimum times needed to make the
respective transitions. In the two states that lead up to Angiogenesis, Avastin
can be given to slow down the progress by a half. Those states are labeled with
invariants, and depending on the precise timing, these invariants can force the
system back to Normal before the transition to Angiogenesis is possible.

We start with the assumption that the acquisition of a hallmark requires
a certain minimum amount of time. We do not specify exactly how that time
is determined, but it could be the stopping time of a stochastic process such
as randomizing over a set of driver mutations (see Section 4), or some value
obtained from clinical data. Only after that time a given transition will be
possible, and as mentioned, drugs can be used to prolong this time.

Further, we allow states to have invariants, specifying the maximum time
that the system can remain in the respective state. For example, a tumor may
only be able to remain in a state of unbounded growth without angiogenesis for
a certain number of months.

Figure 2 shows the automaton from Figure 1 with timing information added,
illustrating this intuition. We formalize the extension in the following.

We assume a finite set X of real-valued variables called clocks, over which
the set of constraints C(X) is generated according to the grammar

φ ::= x ≥ k | φ ∧ φ ,

where k ∈ N and x ∈ X. A valuation of the variables in X is a mapping
val : X → R≥0. We denote the null valuation x 7→ 0 by 0. By val |= φ we denote
that val satisfies φ.

Definition 6.1. A timed CHA is a tuple H = (V,E, v0, `, ρ) where

• V is a set of states, corresponding to hallmarks,

• E ⊆ V × C(X) × V is a set of directed edges each labeled with a clock
constraint,

• v0 ∈ V is the initial state,

• ` : V ×X → N is a partial function specifying the time limit (if any) for
each clock that the system can remain in a given state (this is also called
the invariant), and
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• ρ : V × D × X → R≥0 yields a function specifying how a given drug
influences the clocks at a given state.

Intuitively, at a given state v, the drug d slows down or speeds up the clock
x as specified by the factor ρ(v, d, x). If the factor is 1 the drug has no effect
on that clock, and if it is 0 it effectively stops the clock from progressing. If
several drugs have an effect on a clock, their factors are multiplied. We extend ρ
to cocktails by setting ρ(v, C, x) =

∏
d∈C ρ(v, d, x) for any cocktail C 6= ∅, and

ρ(w, ∅, x) = 1.
A directed edge (v, φ, v′) represents a transition from v to v′ that can take

place once the time constraint φ is satisfied.
We assume that for each state v that has a time limit for a clock x, there is

an outgoing edge (v, φ, v′) such that val |= φ for all val with val(x) = `(v, x).5

This edge specifies the behavior of the system if the respective clock reaches its
time limit.

The cost functions in the context of timed CHAs are the same as those for
the untimed version, but with a timed interpretation: c(v) is the cost of staying
at state v per time unit (days/weeks/months/years), and c(C) is the cost of
administering a drug cocktail C per time unit.

We next see how to adapt the definitions related to runs of a CHA to the
timed version, starting with the notion of a timed state.

Definition 6.2. A timed state of a timed CHA (V,E) is a tuple (v, val) ∈
V × RX , where v is a hallmark state and val a clock valuation. There are two
types of transitions between timed states:

1. Delay transitions, in symbols (v, val)
δ,C−−→ (v, val′), where

• δ ∈ R>0 represents the (real) time delay,

• C denotes the cocktail active during that time,

• val′(x) = val(x) + δρ(v, C, x) for all x, and

• val′(x) ≤ `(v, x) for all x with `(v, x) defined.

2. State transitions, in symbols (v, val)→ (v′, 0), where

• there is an edge (v, φ, v′) ∈ E with val |= φ

Note that whenever a state transition takes place, the clocks are reset. This
is to simplify our presentation and could be replaced by explicit clock resets as
common in the literature.

This setup includes the special case where there is one clock unaffected by any
drug, representing real time. Invariants over that clock can be used to specify,
for example, how many months the tumor can remain in a certain hallmark
state.

5Note that this requires val |= φ even for valuations that exceed some other clock’s invariant;
however, this does not have an effect since we only allow ≥ constraints on the edges.
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This timed setup can also emulate the concept of edges labeled with drugs
that inhibit them. This can be achieved as follows: Suppose we want to model
an edge between two states v, v′ that can be inhibited by a drug d. Then we
can introduce a clock variable xd,v′ with ρ(v, d, xd,v′) = 0, and add a constraint
xd,v′ ≥ z to the edge between v and v′, for some z > 0. As long as drug d is
given before the constraint is satisfied, the transition will be inhibited. However,
once the constraint is satisfied, the tumor has advanced too far and it is no
longer possible to inhibit the transition.

A run in the case of a timed CHA H is a non-Zeno6 sequence of delay
and state transitions. Similar as before, let Runs((v, val), H) denote the set of
runs that start in (v, val). We write Runs(H) for the set Runs((v0, 0), H), and
Runs f((v, val), H) for the set of finite runs from Runs((v, val), H).

Definition 6.3. A therapy is a function π : Runs f(H) → 2D. A possible
execution of π in H is a run

S = (v0, 0)(v1, val1)(v2, val2) . . .

such that for all i with delay transitions (vi, vali)
δ,C−−→ (vi+1, vali+1),7 for

every 0 ≤ δ′ < δ

π((v0, 0) . . . (vi, vali)(vi, vali + δ′ρ(vi, C))) = C ,

where ρ(vi, C) denotes the partial evaluation of ρ, i.e., the function x 7→
ρ(vi, C, x).

This last condition ensures that the therapy does not change during a
transition, or, put differently, that a change in therapy is always reflected by
starting a new transition.

For any finite run r ∈ Runs f(H), we denote its duration as

τ(r) =
∑

0≤j<len(r)

{
δ if rj

δ,C−−→ rj+1 for some δ, C

0 otherwise,

where len(r) denotes the length of the state sequence in r and ri its initial
segment of length i.

Definition 6.4. Given a CHA H and a possible execution S of a therapy π,
the cost of S given π with discount factor 0 < d ≤ 1 is

c(S, π,H) =
∑
i≥0

1

d

(
e−dτ(Si) − e−dτ(Si+1)

)
(c(vi) + c(π(Si)))

(as before, by Si we denote the initial segment of S up to step i). This simple
discounting function does not necessarily capture a real patient’s preferences, but

6That is, not containing an infinite chain of timed transitions with convergent total duration.
7Note that vi = vi+1.
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Figure 3: A simple hallmark automaton with test observations o1, . . . , o4.

any convergent function will work in its stead. We will consider more realistic
functions in the future, which can potentially be designed on a case-by-case basis
depending on the patient’s valuation.

The set of possible costs of π in a timed CHA H is the set of costs of possible
executions of π,

c(π,H) = {c(S, π,H) | S is possible execution of π in H} .

The notions of Pareto dominance and universal therapies carry over from
untimed CHAs.

6.1 Timed CTL

We can extend the CTL goals of the previous section to include time [1]. For
example, the goal AG≤20¬M says that metastasis is not reached within 20 time
units (e.g., 20 years). This kind of goal represents the approach of turning cancer
into a chronic disease, rather than trying to cure it completely. For example,
the above formula may be appropriate for a patient of sixty years of age, who
may then be able to get a less strenuous therapy, while for a younger patient
the time requirements may be more extensive.

Out of all the therapies satisfying a CTL goal, the best ones may be chosen
either by a separate cost optimization, or by incorporating cost requirements
into the formulas using a weighted version of CTL [7].

7 Partial observability and tests

So far, we assumed perfect information about the state of the system. In reality
however, a clinician will only have partial observations of the tumor’s internal
state. To reduce uncertainty about the current state of the cancer progression,
tests can be performed. In this section, we extend our formal framework to
include partial observability and tests, both for untimed and timed CHAs.
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7.1 Tests in untimed CHAs

We view tests as functions mapping states to observations.8 See Figure 3 for
an example of such a test with 4 possible observations. When the test yields
observation o2, we know that the system is in a state prior to acquiring sustained
angiogenesis, and that we can give a VEGF-inhibitor such as Avastin to inhibit
the progression to a hallmark promoting construction of new blood vessels to the
tumor. A more fine-grained test, or another test with intersecting observations,
would have to be performed to determine the state more precisely, e.g., whether
it is in the upper or in the lower branch of the automaton, and thus whether
other potential drugs should be preferred.

Formally, for a CHA (V,E) we assume a set T of tests and a set O of
observations. Each test t ∈ T is a function t : V → O, inducing a partition
on the set of states. When performing test t while the system is in state v, the
resulting observation allows the conclusion that the system is in one of the states
in the equivalence class of v with respect to that partition.

We now extend the notion of therapy to include tests. We assume that tests
only acquire information, without affecting the state of the system. That is,

given a test t and a state v the system can only transition to v itself: v
t−→ v.

We can keep track of the information that results from tests by adding belief
sets to runs. A belief set is a subset of states that the system may be in at a
given moment. We augment states with belief sets to obtain belief states.

Definition 7.1. A belief state of a CHA (V,E) is a tuple (v, b), where

• v ∈ V a state,

• b ⊆ V with v ∈ b is a belief set.9

There is a transition from belief state (v, b) to (v′, b′) under a ∈ 2D ∪ T if

• v a−→ v′ and

• b′ =

{
[b] C−→ if a = C ∈ 2D

{v′ ∈ b | t(v′) = t(v)} if a = t ∈ T

where [X]R denotes the image of set X under relation R, i.e., [X]R = {x′ |
(x, x′) ∈ R with x ∈ X}.

In symbols, we write (v, b)
a−→ (v′, b′). In addition to an initial state v0, we

now also have an initial belief set b0. So a CHA is now a tuple (V,E, v0, b0), and

8The test we describe here are deterministic, i.e., for any given state, a certain test always
leads to the same observation. In the literature, non-deterministic tests are common, where
a test may lead to one of a set of possible observations. Our framework can be extended in
the same way, but from the biological perspective, that would mean that there are different
mechanistic causes for the system being in that state. In that case, we recommend refining the
model to have different states representing these different causes.

9Note that belief states correspond to pointed models in epistemic logic, in the sense that
they consist of a set of possible states with a distinguished actual one.
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a run of a CHA H is now a sequence of transitions over belief states. As before,
Runs((v, b), H) denotes the set of runs that start in (v, b). We write Runs(H)
for Runs((v0, b0), H), and by Runs f((v, b), H) we denote the set of finite runs
from Runs((v, b), H).

We now extend the notions of therapies and their execution to include tests
and belief sets.

Definition 7.2. A therapy is a function π : Runs f(H) → 2D ∪ T . It is
uniform if it only depends on the belief sets.10 We only consider uniform
therapies, without explicitly mentioning it.

A possible execution of π in H starting with (v0, b0) is a run

S = (v0, b0)(v1, b1)(v2, b2) . . . ,

such that for each i ≥ 0, (vi, bi)
π(Si)−−−→ (vi+1, bi+1).

We also extend the definition of costs, using c : T → Rn≥0 to specify costs of
tests. The definition of cost of an execution then is the same as in Definition 5.3,
and we can proceed with the notion of possible costs.

Definition 7.3. The set of possible costs of π for a CHA H is

c(π,H) = {c(S, π,H) | S is a possible execution of π in H

starting with (v, b0) for any v ∈ b0}.

The remaining notions such as Pareto dominance, candidate therapies, and
universal therapies remain unchanged.

7.2 Epistemic and Temporally extended goals

Given that we now have a framework that captures not only the actual behavior
of the system but also the observer’s (e.g., oncologist’s) information about it,
we need to reflect this additional aspect in the formal language that defines
goals. This can be done by adding an epistemic modality K to the logic, which
intuitively means “it is known that”.

Instead of the previously mentioned goal AG¬M, we can now express that it
is known that metastasis is never reached by stating KAG¬M.

Another, somewhat more complex, goal is

AG
(
Ang→

(
(¬M ∧ AX¬M)UKAng

))
which intuitively says that whenever the tumor acquires angiogenesis, this will be
known (strictly) before the tumor reaches metastasis.11 Any such goal formula
should implicitly be put inside an enclosing K operator to ensure that it holds
in all starting states initially considered possible.

10More precisely, if for any two runs r = (v0, b0)(v1, b1) . . . (vk, bk) and r′ =
(v′0, b0)(v′1, b1) . . . (v′k, bk) which agree on their belief sets, we have π(r) = π(r′).

11More precisely, the statement is that at any point in the future where Ang holds, M will
not hold at the current or the next step until Ang is known (where Ang is the Angiogenesis
hallmark and M the Metastasis hallmark).
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7.3 Tests in timed CHAs

Analogously to untimed CHAs, we also extend the timed CHA framework to
include belief sets and tests. A belief set b now is not just a set of states v,
but a set of timed states (v, val). A belief state is a tuple (v, val, b) such that
(v, val) ∈ b. As before, we assume some initial belief set b0 that is used when no
other belief set is given.

Before we generalize the notions of transitions and executions of a therapy
we need to introduce a new relation. It addresses the following issue: With full
observability, we can identify the individual delay or state transitions; however,
with partial observability, a sequence of several transitions might look like just
one transition to the outside observer. We denote such multi-step transitions

using
δ,C
9 9 K, which relates any two states that are related by any number of

transitions under C taking a total time of δ. Formally, for two timed states

(v, val) and (v′, val′), we have (v, val)
δ,C
9 9 K (v′, val′) if there exists a sequence

S = (v, val)(v1, val1) . . . (vk, valk)(v′, val′)

of state or delay transitions under C, with τ(S) = δ. (Recall that τ(S) denotes
the total duration of execution S.)

Definition 7.4. In timed CHAs with partial observability, there are three types
of transitions between belief states:

1. Delay transitions, in symbols (v, val, b)
δ,C−−→ (v, val′, b′), where

• (v, val)
δ,C−−→ (v, val′) and

• b′ = [b] δ,C
9 9 K

2. State transitions, in symbols (v, val, b)→ (v′, 0, b′), where

• (v, val)→ (v′, 0) and

• b′ = [b] 0,C

9 9 K
, that is, all state transitions under C

3. Test transitions, in symbols (v, val, b)
t−→ (v, val, b′), where

• b′ = {(v′, val′) ∈ b | v′ ∈ t(v)}.

Note that tests in this formulation only give information about the current
state, and not about the current clock values. If deemed biologically plausible,
this can be extended appropriately.

Note also that test transitions are assumed to be instantaneous. We make
this assumption because receiving the result of a test usually takes hours or days,
whereas tumors usually progress on a larger time scale (months or years).

As before, a run of a timed CHA H with tests is a non-Zeno sequence of
delay, state and test transitions.
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Definition 7.5. A therapy is a function π : Runs f(H) → 2D ∪ T . Again, a
therapy is uniform if it only depends on the belief sets, and we only consider
uniform therapies, without explicitly mentioning it. A possible execution of
π in H is a run

S = (v0, 0, b0)(v1, val1, b1)(v2, val2, b2) . . .

such that

• for all i with delay transition (vi, vali, bi)
δ,C−−→ (vi+1, vali+1, bi+1) and for

every 0 ≤ δ′ < δ,

π((v0, 0, b0) . . . (vi, vali, bi)(vi, vali + δ′ρ(vi, C), [bi] δ′,C
999K

)) = C ,

where ρ(vi, C) denotes the partial evaluation of ρ, i.e., the function x 7→
ρ(vi, C, x), and

• for all i with test transition (vi, vali, bi)
t−→ (vi+1, vali+1, bi+1),

π((v0, 0, b0) . . . (vi, vali, bi)) = t .

The definition of costs is analogous to Definition 6.4, except that tests have
to be treated separately since they take no time (and would thus add no costs).
The formula can straightforwardly be modified to count the costs of tests at
some constant rate (still discounting the future).

Again, the notions of cost of executions, Pareto dominance, universal ther-
apies, non-Zeno-ness and null therapies are the same or very similar as with
untimed CHAs.

7.4 Therapies as conditional plans

In this section, we show how a therapy can be interpreted as a conditional plan
instead of a function from runs to actions. Intuitively, a conditional therapy
plan is a sequence of therapeutic actions, which branches after each test action
into distinct sub-cases according to the possible observations of the test. We
give the formal translation of a therapy π into a conditional plan πc below.

Before we proceed, we note that, due to uniformity, a therapy can be regarded
as a function assigning actions to sequences of belief sets (rather than executions).
We write bS for the sequence of belief sets in S. When S is clear from the context,
we drop the subscript and simply write b. By b ◦ b we denote the sequence b
with belief set b appended.

Definition 7.6. Given a sequence of belief sets b = b0 . . . bn, a time τ and a
therapy π we define a conditional plan πc as follows:

• If π(b) = C ∈ 2D, then

πc(b, τ, π) = (C, τ);πc(b ◦ [bn] δ,C
9 9 K

, τ + δ, π) ,

where δ is the minimum value such that
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– π(b ◦ [bn] δ,C
9 9 K

) 6= C, and

– π(b ◦ [bn] δ′,C
999K

) = C for all δ′ such that 0 ≤ δ′ < δ.

• If π(b) = t ∈ T with possible observations o1, . . . , ok, then

πc(b, τ, π) = (t, τ); case

 o1 : πc(b ◦ (bn ∩O1), τ, π)

. . .

ok : πc(b ◦ (bn ∩Ok), τ, π)

where Oi = {(v, val) ∈ V × RX≥0 | t(v) = oi}, and the case statement has
the intuitive meaning, as explained below.

Given the initial belief set b0, the conditional plan that corresponds to the
therapy π is defined as πc(b0, 0, π).

The intuition behind this translation is as follows. Since a therapy only
depends on the sequence of belief sets, and the evolution of belief sets under any
cocktail C is predetermined, we can compute when the therapy will change. For
example, starting at the initial belief set b0 with initial cocktail C, the therapy
changes at the smallest δ such that π([b0] δ,C

9 9 K
) = C ′ for some C ′ 6= C. The new

belief set at this moment is b1 = [b0] δ,C
9 9 K

, and the conditional plan up to this

point is (C, 0); (C ′, δ). We can continue this procedure with the sequence b0b1.
When a test is performed, the next move depends on the observation oi, which
is reflected in the branching case statement. The execution of such a therapy
plan would then continue at the branch labeled with the observation.

8 Liver and Product Automata

In a patient, cancer itself is not the only system of relevance. Other systems
interact with the tumor’s development, and especially during a therapeutic
intervention, they need to be monitored. For example, the immune system and
its role throughout carcinogenesis are receiving more and more attention [14],
and the liver needs to be monitored to avoid damage due to excess toxicity.

In principle, other subsystems of an organism could be modeled as hybrid
automata in the same way as our CHA, which could then be composed to an
overall model for which therapies with goals spanning all subsystems could be
generated. We postpone a discussion of the general framework and sketch here
only a simple toxicity-based liver model that can be “attached” to a CHA. It has
only one clock, modeling one type of toxicity level, and a very simple discrete
dynamics governed by a sequence of thresholds. Simple as it is, this kind of
model can still capture effects that are discussed in the literature, such as the
dynamics of the toxicity level in the liver caused by Taxol [40], a drug used in
breast cancer treatment.

Definition 8.1. A liver automaton is a tuple L = (W,F,w0, `, ρ), where
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• W is a set of states,

• F ⊆W ×W is a set of directed edges,

• ` : W → R gives the toxicity threshold for each state, and

• ρ : W ×D → R≥1 gives the toxicity factor for each pair of state and drug.

For simplicity, we restrict attention to linear liver automata, i.e., each state
has at most one successor. For this reason, we do not need explicit constraints
on the edges and can instead assume that a state’s outgoing edge is enabled
exactly when its toxicity threshold is reached.

We can then define the overall toxicity factor of a given cocktail in a given
state as a function ρ : W × 2D → R as follows:

ρ(w,C) =

{∏
d∈C ρ(w, d) if C 6= ∅
−1 if C = ∅

Note that ρ(w, ∅) = −1, while for any C 6= ∅, we have ρ(w,C) ≥ 1. That is, we
assume that drugs cumulatively increase the toxicity level, and that the liver
regenerates only when no drugs are given. The model can easily be extended
to include some drugs that have no effect on the liver, or to allow for other
interactions between cocktails.

Definition 8.2. A timed state of a timed liver automaton L = (W,F,w0, `, ρ)
is a tuple (w, c), where w ∈ W is a current state and c ∈ R is a current clock
value for w.

There are three types of transitions between timed states in a liver automaton:

1. Delay transitions, in symbols (w, c)
δ,C−−→ (w, c′), where

• δ ∈ R>0 represents the (real) time delay,

• C denotes the cocktail active during that time,

• c′ =

{
max{0, c+ δρ(w,C)} if w = w0, and

c+ δρ(w,C) otherwise

• −1 ≤ c′ ≤ `(w).

2. State transitions, in symbols (w, c)→ (w′, 0), where

• c = `(w),

• (w,w′) ∈ F .

3. Regenerating transitions, in symbols (w,−1)→ (w′, c′), where

• c′ = 0,

• (w′, w) ∈ F .
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The exact thresholds for regenerating transitions can be modeled in more
detail where required.

A liver automaton can be combined with a CHA using parallel composition
as usual in automata theory [19]. We can then formulate combined goals about
a CHA and the liver. For example, a goal might be to avoid a high level of
toxicity (T5) in a somewhat advanced stage of the progression (Ang):

AG(Ang→ ¬T5) .

9 Algorithms

Our focus in this paper has been on motivating and establishing a formalism
that captures the biology behind cancer progression models. The technical and
algorithmic properties of that formalism are rather involved, so we here focus on
a brief initial assessment and provide a roadmap for the future.

Controller synthesis is hard even for untimed systems (e.g., EXPTIME-
complete when using CTL goal specifications [28]), so high complexity classes
are to be expected in our richer framework as well.

The controller synthesis problem for hybrid automata has been studied in
the literature, however, often restricted to fully observable automata and to
achieving safety properties. Such properties form a sub-class of what can be
expressed in richer temporal logics such as CTL in that they only talk about
avoiding certain bad states at all times. Such safety properties is relevant for
CHAs, because goals such as “metastasis will never be reached” can be expressed.
In the following, we will discuss how existing algorithms can be built on and
adapted to handle CHAs, which differ somewhat from standard hybrid automata.

From timed CHAs to hybrid automata In the hybrid automata literature,
the rates of the clocks are constant at any given state,12 and what is controllable
are (some of) the transitions between states. In our framework, in contrast, the
rates of the clocks is what can be affected by control actions (drugs), while the
transitions (tumor progression) cannot be directly manipulated. However, this
difference is mainly conceptual, and we can translate CHAs to standard hybrid
automata as follows, thus transferring existing results naturally.

Given a set of drugs D and a CHA with states V , we construct a hybrid
automaton H in the following way: For each state v ∈ V and each cocktail
C ∈ 2D, H contains a state vC with the same clock invariants as v. For any
edge between two states v, v′ ∈ V , H contains an uncontrollable edge between
vC and v′C , for each cocktail C, with the same clock constraints and resets as on
the CHA edge. In addition to the uncontrollable edges, there are controllable
directed edges from vC to vC′ for each v, C, and C ′. These edges represent
changes of therapies, and have no clock constraints or resets. At a state vC ,
the rate of each clock x ∈ X is fixed, given by ρ(v, C, x). The clock rates can
be learned from patient data or mechanistically built on stochastic diffusion

12One exception are so-called differential games [32], which we plan to explore in the future.
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equations (SDEs) based on Fisher’s theorem, as motivated in Section 4. The
precise methods will be discussed in a future paper.

This translation yields a hybrid automaton of size exponential in the number
of drugs, but linear in the number of CHA states.

Undecidability of rectangular hybrid automata control It can be seen
that the resulting hybrid automata are related to an important subclass of
“simple” hybrid automata called rectangular hybrid automata, whose clocks’
rates are defined using only upper and lower bounds.13 Rectangular hybrid
automata are an important subclass of hybrid automata because they have nice
computational properties (e.g., decidability). For example, see [22], where the
control problem for a rectangular game and an LTL formula is shown to be
EXPTIME-complete in the size of the game. However, this complexity holds only
for those automata that satisfy initialization, meaning that whenever a transition
changes the activity of a variable, the value of the variable is reinitialized. In
fact, for rectangular hybrid automata without initialization, even the reachability
problem is undecidable [21]. Unfortunately, our CHA is not initialized, as we
keep the clock values along controllable (drug) transitions while changing the
rates of the clocks. We plan to further investigate the exact relationship between
CHAs and rectangular hybrid automata in our future work, especially the case
where clocks can be linked to clinical tests, or discretized and/or upper-bounded,
as would be the case in all realistic applications.

Decidability of discrete-time CHA control The simplest way around the
undecidability of the hybrid automata control problem is to allow for control
moves (in our case, therapeutic interventions) only at discrete instants of time.
Henzinger and Kopke [20] give an exponential-time algorithm for discrete-time
safety control of rectangular hybrid automata with bounded and non-decreasing
variables. They also show the problem to be EXPTIME-hard and discrete-time
verification (CTL model checking) of rectangular hybrid automata to be solvable
in PSPACE.

Even though our definition of timed CHAs does not require clocks to be
bounded, such a restriction would not impose a severe limitation. By bounding
the clocks by some value that even the healthiest patient will never reach, we
can thus aim for decidability without forfeiting any meaningful therapy. The
algorithms from [20] do not directly apply to CHAs as their framework requires all
discrete transitions to be controllable, whereas our cancer progression transitions
are uncontrollable. We plan to extend the algorithms from [20] to CHAs.

Note that even with discrete-time control, the decidability results described
earlier no longer apply as we depart from rectangular hybrid automata. For
example, in triangular automata (where clock constraints may be triangular
predicates), even the safety verification problem is undecidable [20].

13In fact, they are in an even simpler class called singular hybrid automata, but rectangular
automata are more extensively studied in the literature.
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Initialized approximations of CHAs Another way of ensuring decidability
is by modelling the “belief automaton” explicitly, so that instead of controlling
the underlying cancer progression model, control occurs only on the belief level.
The modified CHA can be implemented by assuming that tests not only give
information about the current state of the system, but also give some bound on
how long the system has already been in this state. That is, at a given state, a
test has a discrete number of possible outputs. Now, if we require that every
control action (change of cocktail) is preceded by a test action, all clocks can
be set to the constants given by the test result and we obtain an initialized
automaton.

The resulting automaton is still a rectangular hybrid automaton and hence
algorithms from [21] generalize to the new model. In particular, the problem of
safety control becomes decidable. In a sequel we will discuss the details of this
approach.

Future work By expanding on these algorithmic considerations we will obtain
a full treatment of the controller synthesis problem for both fully and partially
observable CHAs. We can then specify goals formulated in CTL and the
extensions mentioned in this paper, and also include cost optimization. Further
issues include the characterization of universal therapies, that is, general therapies
which “work well” for a whole class of patients or cancers (represented as
parametrized CHAs).

10 Conclusions

This paper establishes a general formalism for describing cancer hallmarks and
their dynamics, without relying on any detailed mechanistic model of cancer
pathways (which can be included independently). Our goal was to design a
conceptually clear framework based on realistic biological foundations.

We discuss below how our framework can be used, as is, to model phenomena
beyond what we discussed so far, briefly illustrating two important cases. Then,
we point out the limitations of the current paper and give a list of topics that
we plan to approach next.

10.1 Modeling heterogeneity and anti-hallmarks

Heterogeneous tumors So far we have modeled states of a CHA as repre-
senting the unique dominant phenotype of the tumor cell population. However,
most forms of cancer are not likely to be monoclonal, i.e., consist of only one
population in which the clonal expansions postulated by Hanahan and Weinberg
take place, but rather involve several sub-populations of tumor cells [34], each
with a distinct dominant phenotype [16, 23]. In order to model this heterogene-
ity, we can simply think of a CHA state as representing a vector of dominant
phenotypes, one for each sub-population. One or several components of such
a vector may differ from one state to the next, corresponding to a change of

27



Normal . . . Hallmark 1

Anti-Hallmark

Hallmark 2 . . .
x := 0
y := 0

x ≥ 4

y ≥ 6

x ≤ 4, y ≤ 6
ρ(d, y) = 2

Figure 4: Illustrating how to model an anti-hallmark using two clocks x and y
and a drug d that speeds up clock y at Hallmark 1 by a factor of 2.

the dominant phenotype in the corresponding sub-population(s) during the
respective transition; or the length of the vector may change, corresponding to
new distinct sub-populations emerging or existing sub-populations dying out.
The arguments for our fundamental assumptions in Section 4 still apply, and it
is not necessary to extend our formal CHA framework, since we view states as
abstract entities without making any formal assumptions about their structure.
This approach is, however, rather crude in modeling tumor heterogeneity, and
does not straightforwardly accommodate, for example, information about tumor
geometry or a model of the resulting spatial effects.

Anti-hallmarks Instead of trying to slow down cancer progression, there has
recently been growing interest in approaches to speed up the process to a degree
which will make the tumor inviable and “push it over the edge” towards collapse.
We refer to such inviable states as anti-hallmarks. They can be modeled by
putting constraints on the transitions leading to them that will never be satisfied,
unless a drug is given which speeds up a certain clock. For example, consider
the CHA in Figure 4. At Hallmark 1, without interference (both clocks increase
with rate 1), the transition to Hallmark 2 will be taken after 4 time units. A
drug that speeds up clock y by a factor of 2 will instead push the tumor to
the Anti-Hallmark state, if given starting at most 1 time unit after entering
Hallmark 1.

10.2 Future Work

Building on our conceptual foundation, we plan to address several important
issues next.

Algorithmic issues We have only taken a preliminary look at algorithmic
issues in Section 9, and plan to shift our focus to the algorithmic side of verifying
cancer hallmark automata, automatically generating therapies, finding promising
drug targets, etc.

Compositional models We illustrated the idea of compositional models
comprising relevant subsystem of a tumor’s host organism using a simple liver
model in Section 8, and noted that its further generalization is likely to be
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straightforward. Thus, we have omitted a full treatment of product automata,
as well as additional complexities, e.g., various issues related to cellular stress,
heterotypic interactions and metabolic processes involved in bio-energetics and
bio-synthesis. These will be addressed in the future.

Model extraction Finally, we omitted a description of the methodologies
needed for extracting cancer hallmarks and their temporal progression models
from data or mechanistic pathway and population models. Currently, there is
no consensus that the cancer hallmarks described in the literature constitute a
complete list, nor is there a clear understanding (either phenomenologically or
mechanistically) of their precise discrete dynamics. We also believe that spatial
structure (geometry, growth curve, spatial distribution of heterogeneity, etc.) as
well as motility (self-seeding, circulating tumor cells) may hold additional and
important clues that can be easily incorporated into our therapy design [13, 36].
Therefore, we plan to extract models from spatio-temporal data, for example,
data obtained from detailed simulations, or gene expression and imaging data
from patients or mouse models. We plan to use statistical inference algorithms
for model extraction in order to reconstruct temporal (or spatio-temporal)
phenomenological models of cancer-related processes from such data.

GOALIE [41] is a recent system that has been used to reconstruct yeast
metabolic and cell cycles from similar kinds of data, however, it only discovers a
single path of behavior and it requires temporally annotated input data. Much
of the patient data available (e.g., TCGA14) does not have sufficient temporal
information, which therefore has to be inferred separately.

There exist algorithms that combine the temporal reconstruction with infer-
ence of trees of possible copy number event sequences in cancer [15, 42], yielding
structures very similar to our CHAs. Since the time of writing of those works,
more advanced technologies have been developed, so it will be necessary to adjust
those models to handle the more fine-grained information available nowadays.
We are also working on adapting specialized algorithms [27, 5] for separating
relevant from irrelevant events, in order to refine the pre-processing steps of the
progression reconstruction algorithms.
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