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A complex system creates a “whole that is larger than the sum of its parts,”
by coordinating many interacting simpler component processes. Yet, each of these
processes is difficult to decipher as their visible signatures are only seen in a syntactic
background, devoid of the context. Examples of such visible datasets are time-course
description of gene-expression abundance levels, neural spike-trains, or click-streams
for web pages. It has now become rather effortless to collect voluminous datasets of
this nature; but how can we make sense of them and draw significant conclusions?
For instance, in the case of time-course gene-expression datasets, rather than following
small sets of known genes, can we develop a holistic approach that provides a view of
the entire system as it evolves through time?

We have developed GOALIE (Gene-Ontology for Algorithmic Logic and Invariant
Extraction) - a systems biology application that presents global and dynamic per-
spectives (e.g., invariants) inferred collectively over a gene-expression dataset. Such
perspectives are important in order to obtain a process-level understanding of the
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underlying cellular machinery; especially how cells react, respond, and recover from
environmental changes. GOALIE uncovers formal temporal logic models of biological
processes by redescribing time course microarray data into the vocabulary of biological
processes and then piecing these redescriptions together into a Kripke structure. In
such a model, possible worlds encode transcriptional states and are connected to future
possible worlds by state transitions. An HKM (Hidden Kripke Model) constructed in
this manner then supports various query, inference, and comparative assessment tasks,
besides providing descriptive process-level summaries. The formal basis for GOALIE is
a multi-attribute information bottleneck (IB) formulation, where we aim to retain the
most relevant information about states and their transitions while at the same time
compressing the number of syntactic signatures used for representing the data. We
describe the mathematical formulation, software implementation, and a case study of
the yeast (S. cerevisiae) cell cycle.

1.1 The problem of microarray analysis

Microarrays, which allow the measurement of expression levels for tens of thou-
sands of genes at a time, are a useful technique for gathering biological data, but
it can be difficult to make sense of the results they produce. Experiments can
be repeated with varying conditions (such as starvation, heat shock, etc.) and
with each microarray having upwards of 10,000 probes, and many time course
experiments having over 10 time points, there is a vast amount of data being
generated. One frequent method used to deal with this is to cluster[1] the data
into groups that have similar properties. There are two common ways of doing
this clustering: by expression patterns over the entire dataset, which fails to take
into account variations of the data over time; and by function - using a known
ontology of biological processes, which fails to find unknown groupings. What is
needed is a method of modeling the data based on both biological function and
temporal evolution and a way to relate it to other experiments.

1.2 Computation

Our computational methods are based on a temporal redescription, which takes
genes and translates them into a controlled vocabulary, and then stitches those
translations together to form a picture of the biological system as it evolves over
time. To facilitate the construction of our model of the dataset, we begin by
breaking the data into small overlapping (or non-overlapping) windows of time.
Each window contains all of the genes in the data set, but with only their ex-
pression values for a specific interval of time. The initial cluster analysis, using
the numerical gene expression data, is done on these windows, rather than the
entire dataset. By doing this “windowing,” we have simplified each computa-
tional step while also allowing for the fact that groups of genes may briefly act
together but diverge across the whole dataset. Using this windowed approach
we can make inferences such as “process A and process B act together beginning
in hours 1-2 and continuing through hours 2-4. They are then joined by process
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C during hours 4-6.” Each cluster in each window of time is first redescribed
into the vocabulary of biological processes, and then we redescribe the clusters
again: in relation to each other. That is, we connect clusters across time win-
dows by tracking their describing terms. The connection relationships can be
both one-to-many and many-to-one, as their meaning is that the terms in the
connection persist from the source cluster to the destination cluster. A more
rigorous algorithm for constructing these clusters and cluster-connections has
been developed using a generalization of Shannon-Kolmogorovs rate-distortion
theory, called “information bottleneck approach:” in this setting, the redescrip-
tion is simply viewed as a lossy-compression of all the temporal observations by
a simpler finite automaton that introduces minimal distortion in terms of the
known ontologies. This generalized algorithm appears elsewhere [2].

The basis for the computations we perform is the use of temporal logic in
the form of a Kripke structure. Here, this is a directed graph (often acyclic,
DAG), defined by its vertices, edges, and properties (V , E, P ). Generalization
to probabilistic versions of Kripke structures can be achieved by assigning proba-
bilities of transitions to the edges. The vertices represent the reachable states of
the system (clusters), edges are transitions between states (cluster connections
across time windows), and properties (GO Categories) are used to annotate the
states in which they are true. Terms within the Gene Ontology (GO)[4] have
their own hierarchical structure, which is also incorporated into the model. In
the case of our yeast (S. cerevisiae) data, describing terms would include “cell
cycle”, and more specifically “M phase” and “G1/S transition of mitotic cell
cycle.”

1.2.1 Computation in detail: HKM and IB

This section explains in detail, the methods used in GOALIE to derive a Kripke
model in the form of a DAG from a given time series data set.

The Information Bottleneck Principle

The Information Bottleneck principle[14] is an information theoretic approach
to clustering. Suppose each instance xi of a random variable X is associated
with an instance yi of another random variable Y , and we desire a clustered
representation T of X which preserves as much information about the relevant
variable Y as possible. Typically X represents the features of the objects to
be compressed and Y represents some relevant information about their classes.
According to the IB principle the clustering scheme T is chosen to minimize the
functional

Lmin = I(T ; X) − βI(T ; Y ) (1.1)

where I(T ; X) represents the mutual information between T and X , I(T ; X) =
∑

t,x log
p(t,x)

p(t)p(x) , and β is the Lagrange parameter that controls the tradeoff

between compression and preservation of relevant information. Lower values of
β give more importance to compression while higher values give more importance
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to preserving relevant information. We can try to maximize the functional L in
equation 1.2.1 as follows

Lmax = I(T ; Y ) − β−1I(T ; X) (1.2)

This equation provides a metric to evaluate different clustering schemes of X .
The key steps in GOALIE are

1. Partitioning the given time series data into windows.

2. Clustering expression data in each window.

3. Connecting the clusters in neighboring windows.

Clustering within a window

Let G represent the random variable corresponding to the expression vectors in
a given window W . Each expression vector gi is an instantiation of G. Still
et al.[12] show that k-means clustering algorithm can be derived from the in-
formation bottleneck method. Following equation 1.2.1, the IB formulation of
k-means clustering C is as follows

Lmax = I(C; G) − β−1I(C; i) (1.3)

The clustering C compresses the data indices i while preserving similarity in
expression space G.

Choosing the partitioning of windows

There are many ways to define an objective criterion for achieving a partitioning
of the windows. One approach is as follows. For a given time series data set, we
identify a tiling (overlapping or non-overlapping) of windows such that when each
window is re-stated in terms of clusters, the cluster identities in one window are
informative of cluster identities in the neighboring window. The sum of mutual
information across all windows along with a penalty for overlaps can then be
used to define the IB functional at this stage.

Connecting the clusters in neighboring windows

Given the set of windows that span across all the time points in the data set, our
next task is to connect the clusters in neighboring windows to track the temporal
relationships in the data. In each window we find the GO ids enriched using
the Fisher-Exact test with Benjamini-Hochberg (or with an empirical Bayesian
approach) correction. Two clusters Ci and Cj are said to be θ - equivalent if
the Jaccards coefficient between the sets of GO ids enriched in Ci and Cj is
≥ θ. With these connections between the clusters, we can introduce a directed
graph G = (C, E) whose vertices C are the clusters and an edge from cluster
Ci to Cj exists if they are in neighboring windows and the Jaccards coefficient
of the GO ids in the clusters is at least θ. See [6] for additional details of the
window-partitioning and neighbor-connecting algorithms.
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Figure 1.1: Diagram of GOALIE’s output of the yeast cell cycle

Figure 1.2: GOALIE output of the HKM as a graph of clusters
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1.3 Causal Connections

Equipped with an HKM, as created by the methods described earlier, one could
not only investigate what standard temporal logic invariants (e.g., reachability,
safety, etc.) hold, but also seek out complex causal relationships that are not
completely explicit. When interpreted in the context of gene expressions, causal
relationships can refer to sets of processes, or genes, modulating one another to
establish certain patterns of regulation. Attempts to determine these causal rela-
tionships using standard statistical approach have proven difficult[10], however,
since we can reframe the problem in terms of model checking and use the pre-
existing framework along with philosophical ideas of probabilistic causality[13],
we have been able to infer these causal relationships from the HKM. The algo-
rithm for this performs two key steps: namely, generate and represent causal
relationships as a set of logical formulas; next, using multiple hypotheses test-
ing, determine a subset of formulas satisfied by the model with a reasonably high
confidence. We build our formulas from the representation of the following types
of causes: prima facie (possible causes) - these cause raises the probability of the
effect, spurious causes - those which seem to raise the probability of an effect
but whose relationship may be explained by other factors, and genuine causes
(non-spurious prima facie causes). This step results in three sets of temporal
logical formulas (in PCTL), relating causes to their effects (which themselves
may be logical formulas). See [7] for further details.

1.4 Software and Results

The main output of the software is a representation of the HKM as a directed
graph. The graph presents clusters and their connections and allows exploration
of the genes and terms comprising each. Integrated links to websites such as
Entrez[3] and the Affymetrix database allow further study of the probes. We
present a validation process for GOALIE that was tested primarily using the
yeast (S. cerevisiae) cell cycle dataset collected by Spellman et al.[9]. There are
three components to the Spellman yeast cell cycle data, following the yeast’s
behavior with α-factor, cdc15 and elutriation. This paper describes a case study
using the alpha factor dataset. Further discussion of the visualization and soft-
ware facilities in GOALIE is the subject of a forthcoming paper.

1.4.1 Cluster Graph

We began with time course gene expression data for 6178 genes at 18 time points.
After filtering out genes with missing expression data, we ended up with 4489
genes left. The resulting data was partitioned into 5 time windows, with all but
the last window having an overlap of two time points. Each window was divided
into 15 clusters, yielding a total of 75 clusters. These clusters formed the initial
input to GOALIE. They were re-described using the Fisher-Exact test with
Benjamini-Hochberg correction and a p-value of 0.05. The redescription across
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time windows was computed with a Jacquard’s coefficient θ = 0.8. Using the
notation W :C to denote cluster number C in window W , we describe a sampling
of our results, as seen in figure 1.1.

1:4 to 2:15 and 2:3 DNA replication initiation as well as DNA replication
checkpoint are initially up regulated, consistent with the S phase of the cell cycle.
1:4 then splits into two clusters, with opposite regulation patterns. In cluster
2:15, notice that the processes labeling the S portion of 1:4 are down regulated,
while cytokinesis, meiotic G2/M1 transition and mitotic metaphase/anaphase
transition are up regulated in 2:3.

3:1 At this time, genes from 2:15 and 2:3 which had been regulated separately
converge, as G2 continues and processes associated with repairs are up regulated.
As in the first window, this cluster again splits into two groups.

4:5 Cell organization and biogenesis, cell morphogenesis checkpoint, cytoki-
nesis and postreplication repair are all up-regulated, signaling the beginning of
the M phase. Genes from his cluster divide into oppositely regulated groups in
the last window

4:11 Also part of M phase, but more sharply regulated, Bud site selection
and chromosome condensation are first high and then go down in window 4.
This cluster then separates into two groups, which overlap with genes from 4:5.

5:9 and 5:15 As The Mphase ends and G1 begins, 5:9 contains down regulated
processes such as post replication repair and mismatch repair. In 5:14, there is
a positive regulation of the exit from mitosis, AMP biosynthesis and aspartate
biosynthesis as the cell readies for the G1 phase.

1.5 Conclusion and future directions

Many complex systems, whether natural or engineered, are amenable to
GOALIEs semantic analysis within the kinds of logical frameworks it creates.
Through the examples used here, such a logical framework has been seen to
provide a new way of reasoning about complex biological systems as well as
the interface that makes this information accessible to scientists. In the future,
GOALIE is planned to provide support for other ontologies and controlled vo-
cabularies, such as MeSH [8] and KEGG[5]. There are also several interesting
technical questions to be answered: How does one select the optimal size of the
Kripke model, mostly determined by window size and number of clusters[11],
as those choices can strongly affect the rate (data-compression), distortion, and
hence, the fidelity of the resulting models. Additionally, GOALIE will need to
continually evolve to interface with the users from other fields through transpar-
ent representations such as the Gantt charts, which minimize the information
loss and provide more background information on the genetic basis for the dis-
played terms. There is also the matter of determining the optimal window size
and number of clusters[11], as those choices can strongly affect the resulting
models. Additionally, we are continuing development on the Gantt charts, to
minimize the information loss and provide more background on the genetic basis
for the displayed terms.
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