
Translating Time-course Gene Expression
Profiles into Semi-Algebraic Hybrid Automata

via Dimensionality Reduction ?

A. Casagrande1,2, K. Casey4, R. Falchi3, C. Piazza1, B. Ruperti3,
G. Vizzotto3, and B. Mishra4,5

1 Dept. of Math. and Computer Science, University of Udine, Udine, Italy
2 Institute of Applied Genomics, Udine, Italy

3 Dept. of Crop Science and Agricultural Engineering
4 Courant Institute of Mathematical Science, NYU, New York, U.S.A.
5 NYU School of Medicine, 550 First Avenue, New York, 10016 U.S.A.

{casa,piazza}@dimi.uniud.it, {rachele.falchi,ruperti,vizzotto}@uniud.it,
{mishra,kjc261}@nyu.edu

Abstract. Biotechnological innovations that allow one to sample gene
expression (e.g. gene-expression arrays or real-time Polymerase Chain
Reaction (PCR)), have made it possible to measure the gene expres-
sion levels of a biological system with varying degree of accuracy, cost
and speed. By repeating the measurement steps at different sampling
rates during the system evolution, one can both infer relations among
the genes (e.g., with clustering techniques), as well as define a dynamic
model of the underlying biological system. When a very large number
of genes and measurements are involved, they raise several difficult al-
gorithmic questions, as accurate model-building, checking and inference
tasks are simply beyond the skills of any human expert for all but a few
trivial examples. Hence, the automation of the required analysis task is
currently viewed as a critical milestone, necessary for the development
of systems biology. Semi-algebraic hybrid automata have already been
proposed as a modeling formalism for biological systems (see, e.g., [17,
6]), and have demonstrated their abilities to handle complex biochemical
pathways. Unfortunately, a suitable algorithmic program aimed at the
construction of hybrid automata from biological measurement data still
remains remote. This paper addresses this challenge with an automatic
procedure to build semi-algebraic hybrid automata from gene-expression
profile sequences. In order to reduce the size of the resulting automata
and to minimize their analysis computational complexity, our approach
exploits various dimensionality reduction techniques, i.e., correlation co-
efficients and rate distortion clustering, applied simultaneously to genes
and to measurements. The paper concludes with several interesting ex-
perimental results, all aimed at the study of peach fruit.

? This work is developed within the framework of the HYCON Network of Excellence,
contract number FP6-IST-511368 and partially supported by the projects PRIN
2005 2005015491 and PRIN 2004 2004079422 004 (Role of sugar signalling in peach
fruit quality development) and by the regional project BioCheck. B.M. has been
supported by funding from two NSF ITR grants and one NSF EMT grant.

1 Introduction

It is often said that progress in science is characterized by successive steps of
measurement, arithmetization, algorithmization, and algebraization—each step
representing in a succinct manner the intuitions collected in the earlier step. In
biology, various breakthrough in biotechnology, e.g., sequencing, DNA synthe-
sis, DNA amplification with PCR, high-throughput measurement of DNA/RNA
abundance through real time PCR [5, 10, 14], SAGE or microarrays [18, 12], etc.,
have made it possible to obtain a numerical picture of the transcriptomic state
of a cell at a certain instant and under certain conditions. Equipped with such
a collection of numerical pictures of these states, one may organize them into
a state-diagram for further statistical and algorithmic study of the dynamics
implied by the state-transitions (see, e.g., [3, 9, 16, 4]). Computational systems
biology has come to represent the many varied efforts within this framework,
and yet, it shies away from the final step of the algebraization of biology. It may
even not be clear what such a final step would entail.

Here, we propose a framework for the algebraization of biology, by examin-
ing the question of translating time-course data of numerical biological measure-
ments into the well-studied structures of semi-algebraic hybrid automata [17,
7, 6]. We concede that this is a first step in this direction, and would require
much additional collaboration with biologists, algebraists and computer scien-
tists to establish its final theoretical foundation. In particular, we believe that
this new field will need to borrow many ideas originally developed in the con-
text of rate-distortion theory in communication engineering, where the notion
of lossy-compression was rigorously studied by Shannon and Kolmogorov [19].

This paper highlights many such connections and provides several heuristic
algorithms that can be used for practical data analysis. It concludes with a dis-
cussion of the possible future paths of the emerging area of “Algebraic Biology.”

1.1 Semi-Algebraic Hybrid Automata

The notion of Hybrid Automata was first introduced [1] as a model and specifi-
cation language for systems with both continuous and discrete dynamics, i.e., for
systems consisting of a discrete program within a continuously changing envi-
ronment. The simplest class of such models studied in computer science was the
class of timed-automata to model asynchronous systems with many local clocks
evolving at different but constant rates, while the system made discrete state
transitions according to the local time. Subsequently, the field has seen many
interesting and nontrivial generalizations (see, e.g., [2, 15, 7]). Here, we focus on
one that is motivated by our interest in modeling biochemical processes.

First we introduce some notations and conventions. Capital letters Zm, Z ′m,
where m ∈ IN, denote variables ranging over IR. Analogously, Z denotes the
vector of variables 〈Z1, . . . , Zk〉 and Z ′ denotes the vector 〈Z ′1, . . . , Z ′k〉; and Zn

denotes the vector 〈Zn
1 , . . . , Zn

k 〉. The temporal variables T and T ′ model time
and range over IR+. We use the small letters p, q, r, s, . . . to denote k-dimensional
vectors of real numbers. Occasionally, we will use the notation ϕ[X1, . . . , Xm] to

stress the fact that the set of free variables of the first-order formula ϕ, denoted
by Free(ϕ), is included in the set of variables {X1, . . ., Xm}. By extension, if
{X1, . . ., Xn} is a set of variable vectors, ϕ[X1, . . ., Xn] indicates that the free
variables of ϕ are included in the set of components of X1, . . ., Xn. Moreover,
given a formula ϕ[X1, . . ., Xi, . . ., Xn] and a vector p of the same dimension
as the variable vector Xi, the formula obtained by component-wise substitution
of Xi with p is denoted by ϕ[X1, . . ., Xi−1, p, Xi+1, . . ., Xn]. If in ϕ the free
variables are just the components of Xi, we can compute the truth value of ϕ[p].

We are now ready to formally introduce semi-algebraic hybrid automata al-
ready presented in [17] and further studied in [7, 6]. For each node of a graph, we
have an invariant condition and a dynamic law. This dynamic law may depend
on the initial conditions, i.e., on the values of the continuous variables at the
beginning of the evolution in the state. The jumps from one discrete state to
another are regulated by the activation and reset conditions. All these conditions
are defined through first-order formulæ over the reals, i.e., over the first-order
language of (IR, 0, 1, +,×, =, >).

Definition 1 ((Semi-Algebraic) Hybrid Automata - Syntax). A hybrid
automaton H = (Z, Z ′, V, E, Inv, F , Act, Reset) of dimension k consists of
the following components:

1. Z = 〈Z1, . . ., Zk〉 and Z ′ = 〈Z ′1, . . ., Z ′k〉 are two vectors of variables ranging
over the reals IR;

2. 〈V, E〉 is a directed graph; the objects, v ∈ V, are called locations;
3. Each vertex v ∈ V is labeled by the formulæ Inv(v)[Z] and Dyn(v)[Z, Z ′, T];
4. Each edge e ∈ E is labeled by the formulæ Act(e)[Z] and Reset(e)[Z,Z ′].

We say that H is semi-algebraic if the constraints Inv, Dyn, Act, and Reset are
first-order formulæ over the reals (i.e., over (IR, 0, 1, +,×,=, >)).

The semantics of hybrid automata is given in terms of continuous and discrete
transitions.

Definition 2 (Hybrid Automata - Semantics). A state ` of H is a pair
〈v, r〉, where v ∈ V is a location and r = 〈r1, . . . , rk〉 ∈ IRk is an assignment of
values for the variables of Z. A state 〈v, r〉 is said to be admissible if Inv(v)[r]
is true.
The continuous reachability transition relations t−→C , where t > 0 is the transi-
tion elapsed time, between admissible states is defined as follows:

〈v, r〉 t−→C 〈v, s〉 ⇐⇒ The equation s = fv(r, t) holds, and for each
t′ ∈ [0, t] the formula Inv(v)[fv(r, t′)] is true.

The discrete reachability transition relation →D between admissible states is
defined as follows:

〈v, r〉 →D 〈u, s〉 ⇐⇒ The relation 〈v, u〉 ∈ E holds, and the formulæ
Act(〈v, u〉)[r] and Reset(〈v, u〉)[r, s] are true.

Building upon continuous and discrete transitions, we can introduce the no-
tions of trace and reachability. A trace is a sequence of continuous and discrete

transitions. A point s is reachable from a point r, if there is a trace from r and
to s. We use ` → `′ to denote that either `

t−→C `′, for some t, or ` →D `′.

Definition 3 (Hybrid Automata - Reachability). Let I be either N or an
initial interval of N. A trace of H is a sequence `0, `1, . . . , `i, with i ∈ I, of
admissible states such that `i−1 → `i holds for each i ∈ I with i > 0 and
continuous and discrete transitions are alternating. Such a trace is also denoted
by (`i)i∈I . A point r ∈ IRk reaches a point s ∈ IRk (in time t), if there exists
a trace `0, . . . , `n of H such that `0 = 〈v, r〉 and `n = 〈u, s〉, for some v, u ∈ V
(and t is the sum of the elapsed continuous transition times).

In [17] we defined first-order formulæ over the reals which allow one to study
the reachability problem over semi-algebraic hybrid automata. The problem is
undecidable in the general case, since it is necessary to consider an infinite num-
ber of formulæ. However, in [7, 6] we introduced two classes of semi-algebraic
automata over which we demonstrated the decidability of the reachability prob-
lem showing that it is sufficient to consider a finite number of formulæ. Moreover,
we showed that this decidability result for the reachability problem is also the
basis for the decidability of model checking with other more complex temporal
logic formulæ, which can be used to analyze biochemical pathways.

However, this earlier work was based on the assumption that the hybrid
automaton model was available and accurately captured the dynamics of the
underlying biochemical system. Its means of construction, however, were left
unspecified. Construction of such models from experimental time-course data is
the subject of this paper. Specifically, this paper deals with a suitable approach
for identifying a semi-algebraic hybrid automaton representation of a biochem-
ical dynamic system, where the biochemical system is initially represented as a
matrix of gene expression data sampled at many discrete time instants.

2 From Time-courses to Semi-Algebraic Automata

We would like to capture the activity of a biological system using the formalism
of hybrid automata. Specifically, we aim to represent the concerted activity of
an organism’s gene expression and regulation using the discrete and continuous
dynamics of semi-algebraic hybrid automata as defined above.

One of the main problems that arises when hybrid automata are used to
represent biological systems is that each component (e.g. gene) is modeled with
a continuous variable. As a consequence the resulting automaton has a high
computational complexity. In particular, when first-order formulæ are used to
study reachability, the number of variables occurring in the formulæ are multiples
of the number of continuous variables of the automaton (see, e.g., [7]). Thus, we
would like to reduce the complexity of the system under study by grouping
genes that have similar dynamics together and then considering this compressed
representation when building our automata. Of course, there will be some loss
of information when one clusters the data in such a way, as such, it is important
to handle any data compression in a responsible manner.

When we define an automaton to represent a biological system, another dif-
ficulty consists in the identification of the locations. If the system is represented
as a system of differential equations, then we can immediately define a trivial
automaton having just one location whose dynamical law is an algebraic approx-
imation of the solutions to the differential equations. However, this dynamical
law could be very complex, and it may be convenient to split the single location
into multiple locations in order to get simpler dynamical laws. In our case, the
system is represented as a set of time series data that captures the temporal evo-
lution of the genes’ expression. One would like to find points in time at which
elements in the data substantially change their behavior and then consider loca-
tions that correspond to the intervals of time between these critical time points.
That is, we would like a temporal partition of the time series such that the data
is broken into a number of disjoint temporal windows, each of which represents
some coordinated biological activity, and the boundaries of which correspond to
significant reorganization of gene expression. One could then identify locations
with individual temporal windows, thus building an automata whose discrete
transitions correspond to significant organizational events in the system’s gene
regulation, and whose continuous dynamics correspond to periods of concerted
co-expression. The construction of such an automata requires a long preprocess-
ing or clustering phase which results in an automaton with a number of locations
proportional to the number of distinct temporal windows.

The two problems stated above are both related to the creation of a compact
or compressed representation of the biological system. On the one hand, group-
ing like genes together and considering the collective continuous dynamics of
clusters of co-expressed genes allows one to reduce the complexity of the result-
ing automata by simplifying the dynamical laws. On the other hand, generating
temporal windows allows one to reduce the number of locations from the order
of the number of time points down to the order of the number of time windows.
These considerations are directly related to compressing the original time series
data both in the number of genes and in the number of experiments, and a vari-
ety of bi-clustering techniques have been explored for this purpose [16]. We will
discuss two methods: one directly exploiting correlation among gene expressions
and consecutive time points (through Principal Component Analysis, or PCA),
and the other method emphasizing “lossy compression” of hybrid automata by
building on rate distortion theory and graph search; these approaches show how
one can ultimately go from clustered data of reduced dimension to a “reasonably
faithful” hybrid automata model. First however, we step through a number of
intuitively simple, but successively more complex, examples of representations
of our time series data using hybrid automata. Next, we introduce several key
ideas from information theory as well as our clustering algorithm. Finally, we
will present a hybrid automata constructed from our time series that represents
a significantly compressed version of the original data.

Let M be an m × n matrix of biological time series data, where G1,. . . ,
Gn are the genes under consideration and D1, . . . , Dm are the dates that the
samples were captured on. We can define a semi-algebraic hybrid automaton

H representing M in various ways; we illustrate them in ascending order of
complexity, beginning with a couple of trivial examples.

The most simple way to construct a hybrid automata from our time series
data is to have a single location and a continuous representation of each gene’s
expression profile. Thus, for our our m×n matrix of expression values, we have n
polynomials, where each of the n genes is represented by a polynomial of degree
m (i.e. the number of time points). In this way we completely capture all of the
information in our expression matrix without loss, in fact we can reconstruct
our matrix of expression measurements exactly from this representation. Note
that in this case we get an automaton without edges, since there is only a single
location. Thus, there are no guard or reset conditions. This construction is close
to the classical approach of using one system differential equations.

Rather than having a single location with polynomial representations of de-
gree m for each gene, we could instead have m locations, one for each time point,
and each of these could have linear dynamics for each gene. Clearly this is also
completely equivalent to our original data and represents it without loss, in fact
the representation can be seen as a simple distribution of the rows of our ex-
pression data across the m locations. In this case the discrete graph underlying
the automaton is simply a chain and the automaton is linear.

The two examples above either use completely continuous or completely dis-
crete representations of the dynamics, and are incapable of taking advantage of
the hybrid nature of the dynamics, where it exists. Thus, one may be able to avoid
automata of prohibitive complexity, by using a representation that reduces the
dimensionality of the underlying data and yields automata with fewer locations
and simpler dynamical laws. We can progress toward this goal by considering
coordinated genes within suitably sized (initially, uniform length) windows of
time and by letting the number of locations in our automata equal the number
of windows under consideration. Next, we describe such an example with uni-
formly sized time windows; a version with nonuniform adaptively sized windows
will be discussed below.

– the continuous variables are G = 〈G1,. . . ,Gn〉 and G′ = 〈G′1, . . . , G′n〉;
– the directed graph 〈V, E〉 has L = dm

h e locations v1, . . . , vL and its edges are
defined as E = {〈vi, vi+1〉 | 1 ≤ i < L};

– for each vi ∈ V and each ei = 〈vi, vi+1〉 ∈ E we have: Inv(vi)[G] def= true;
Dyn(vi)[G,G′, T] = ∧n

j=1G
′
j = p(i,j)(T), where p(i,j) is the polynomial of

degree at most h connecting the values of Gj at Dh∗(i−1)+1, . . . , Dh∗i+1;
Act(ei)[G,G′] = ∧n

j=1Gj = g(i,j), where g(i,j) is the expression level of Gj at
Dh∗i+1; Reset(ei)[G,G′] = ∧n

j=1G
′
j = Gj is the identity.

In the activation conditions we have implicitly assumed that the biological sys-
tem has no memory. In fact, the activation considers only the final values of a
state and not the trajectory which leads to these values. More sophisticated con-
straints are necessary to model systems with memory. The proposed automaton
has a number of locations which depends on the number of dates and on the
degree of the dynamical laws, and a number of variables which is proportional to

the number of genes under consideration. Again, the discrete graph underlying
the automaton is simply a chain, but the automaton is not linear.

Example 1. Let us consider three genes G1, G2, and G3 for which we have mea-
sured the following expression levels:

D 0 1 2
G1 0.25 0.20 0.42
G2 0.49 0.41 0.80
G3 0.10 0.20 0.30

In Figure 1, we depict the hybrid automaton, built by applying the näıve meth-
ods, described above, with h = 1 and without time windows. The dynamics are
written inside the locations, while the resets and activations are represented on
the edges. The incoming edge on the left provides the initialization conditions
which can be used to obtain the trace which corresponds to the expression levels
measured in the matrix.

G′1 = −0.05T + G1

∧
G′2 = −0.08T + G2

∧
G′3 = 0.10T + G3

G1 = 0.20 ∧G2 = 0.41∧
G3 = 0.20

G′1 = G1 ∧G′2 = G2∧
G′3 = G3

G′1 = −0.22T + G1

∧
G′2 = 0.39T + G2

∧
G′3 = 0.10T + G3

v1 v2

G1 = 0.25
∧

G2 = 0.49
∧

G3 = 0.10

Fig. 1. The automaton of Example 1

Notice, that the fact that we are using only polynomial constraint is not too re-
strictive since: non-polynomial functions can be approximated with polynomials;
polynomials can always interpolate finite sets of data.

In the following sections, we will explore methods to improve the automaton
construction discussed above, by exploiting correlations, performing dimension-
ality reduction via correlation coefficients, Principal Component Analysis (PCA)
[13], information theory [19], and exploiting clustering techniques [11].

2.1 Reductions via Correlations on Genes

Given a gene expression level matrix M having m rows corresponding to the
dates and n columns corresponding to the genes we can interpret each column
of M as a random variable and compute the correlation coefficients between pairs
of genes. As a result we get an n×n symmetric matrix Corr, such that Corr[i, j]
is the correlation between Gi and Gj ranging in the interval [−1, 1]. We can now
use the absolute values of the elements of Corr as similarity measures (or equiv-
alently set the distance between Gi and Gj to d(Gi, Gj) = 1−|Corr[i, j]|). These
similarity measures can be used to to cluster the genes. There are different clus-
tering techniques which can be used (see, e.g., [11, 9]) leading to different results.

However, we do not use clustering techniques to infer properties of the biologi-
cal system under investigation, but only to build a compact hybrid automaton
representing it. The analysis of the automaton will then help us to understand
the system behaviors. Another possibility is that of clustering the genes using
PCA, i.e., using their correlation coefficients with respect to the new coordinate
system. In both cases we obtain classes of (highly correlated) genes.

In each class of correlated genes we can choose a representative gene which
is closer to all of the elements of the class and construct a hybrid automaton
whose continuous variables are only the representative genes. The values of the
non-representative genes can be approximated at any time from the representa-
tive ones exploiting their linear relationships. Alternatively, we could compute a
cluster average as a continuous variable of a new fictitious representative gene,
and use it to approximate the behavior of the non-representative genes, encoded
through linear relationships. For the sake of simplicity, we focus on the former
representation, here, and relegate the more complex treatment to the full paper.

Example 2. Let us consider the genes G1, G2, and G3 of Example 1. The cor-
relation coefficient of G1 and G2 is 0.99, while G3 is less correlated both with
G1 and G2 (0.74 and 0.75, respectively). If we apply hierarchical clustering on
correlations we obtain a class with G1 and G2 together and another class con-
taining G3 only. Applying a clustering based on PCA in this case we obtain the
same result. Hence, we can construct a hybrid automaton which has only G1

and G3 as continuous variables, i.e., the automaton of Figure 1 with G2 deleted,
and at any time we can infer the value of G2 from G1 (G2 ≈ 2 ∗G1).

2.2 Reductions via Correlations on Dates

We would next like to exploit dates-correlations to cluster dates, yielding better
adaptive time windows for the construction of our automaton . However, if we
analyze what happens if we transpose our gene expression matrix M , i.e., we
consider the dates as random variables, and compute the correlation coefficients,
we notice that this not only provides a better time segmentation, but also, a
compact symbolic representation of the transcriptomic dynamics of genes.

Considering the dates as random variables means that each observation rep-
resents the values of a gene at each date. We have to imagine a coordinate system
in which each axis corresponds to a date. In this system we can plot a point for
each gene: the coordinates of this point are the expression levels of the gene at
the different dates. When two dates are highly linearly correlated it is sufficient
to know the expression levels of the genes at the first data to approximate the
levels at the second one. If more than two dates are highly correlated, then the
levels at one of them are sufficient to reconstruct the levels at all the other dates.
In particular, if the random variables (dates) Di, . . . , Di+r are highly correlated,

then we can relate them through a linear system of the form

Ĝ(Di) = f0(q)
Ĝ(Di+1) = f1(q)
. . .

Ĝ(Di+r) = fr(q)

(1)

where Ĝ is a symbolic variable gene expression, q is a parameter and the fj ’s
are linear function in q. If we know that the expression level of the gene Gj at
Di+s is gs,j , then we can use it to determine the corresponding value of q, i.e.,
qs,j = f−1

s (gs,j). Now by substituting the qs,j to q in the equation corresponding
to the date Du, we can approximate the expression level gu,j of Gj at Di+u, i.e.,
gu,j ≈ fu(qs,j).

Since we are not only interested in the expression levels at the measured
data, but we would like to reconstruct all the genes time evolution, we can apply
interpolation techniques to obtain a dynamical law. To keep the presentation
simple we discuss here the case of linear interpolation (see [3] for more sophisti-
cated interpolation methods). We have that the expression level of the gene Gj

at time t, where Di+a ≤ t ≤ Di+a+1, for some a ∈ [0, r−1] can be approximated
with:

fi+a+1(qs,j)− fi+a(qs,j)
Di+a+1 −Di+a

(t−Di+a) + fi+a(qs,j) (2)

Hence, we can construct our hybrid automaton by using a single location for
dates which are highly correlated and in these locations the dynamical laws are
the same for all the genes and are given by system (1) together with expression
(2). This means that our automata will now have a single Ĝ variable able to rep-
resent all the genes. In the case in which there are blocks of non consecutive dates
which are correlated we can still use one location for all of them and introduce
a loop in the discrete topology of the automaton. In order to simplify the nota-
tion we present only the definition for the case of adjacent correlated dates (the
general case is presented in Example 3). Let M be a gene expression matrix of
dimension m×n. Let us assume that we cluster the dates exploiting their corre-
lation coefficients as follows: Cl1 = {D1, . . . , Dd1}, Cl2 = {Dd1+1, . . . , Dd2}, . . . ,
and Clcl = {Dd(cl−1)+1, . . . , Dm}. The dates reduced automaton H representing
M is HD(M) = (G, G′, V, E , Inv , F , Act , Reset), where:

– G = 〈Ĝ〉 and G′ = 〈Ĝ′〉;
– 〈V, E〉 has cl locations v1, . . . , vcl and E = {〈vi, vi+1〉 | 1 ≤ i < cl};
– for each vi corresponding to Cli = {Da, . . . , Db}, where for each a ≤ c ≤ b it

holds Ĝ(Dc) = fc(q) and for each ei = 〈vi, vi+1〉 we have: Inv(vi)[Ĝ] = true,
Act(ei)[Ĝ] = ∨n

j=1Ĝ = M [b, j], Reset(ei)[Ĝ, Ĝ′] = ∨n
j=1(Ĝ = M [b, j] ∧ Ĝ′ =

M [b + 1, j]), and

Dyn(vi)[Ĝ, Ĝ′, T] =
∨

a≤c<b(Dc −Da ≤ T ≤ Dc+1 −Da∧
Ĝ′ = fc+1(f

−1
a (bG))−fc(f

−1
a (bG))

Dc+1−Dc
T + fc(f−1

a (Ĝ)))

In the above automaton we have reduced the states from m to cl without in-
creasing the complexity of the involved formulæ. Notice that since the f ’s are
linear, their inverses, f−1’s, are still linear and the automaton is semi-algebraic.
Moreover, it is important to notice that inside each state/location the continuous
dynamics of the genes are all regulated by a single law. In fact, what changes
from one gene to another is only the value of Ĝ. This drastically reduces the
complexity of the analysis in many cases. Imagine for instance that we wish to
check the following property: Each time a gene reaches an expression level lower
than low it never increases again enough to reach the expression level low′. In
each state vi we can check this property at the same time for all the genes. We
only have to write a first-order formula representing the values of Ĝ which vio-
late the property, and then check that all the initialization values of the genes
that are outside of this set. In this sense we can say that the reduction based on
dates correlation reduce both the number of states and of variables, which were
our main objectives.

Due to the non-determinism introduced in the discrete jumps the date re-
duced automaton H correctly approximates the behaviors observed in M only,
provided that in M there is not a date in which two genes have the same value.
This assumption is not restrictive in the real cases.

Example 3. Let us consider the following transposed gene matrix:

D 0 1 2 3 4 5 6
G1 1 2 3 4 8 4 5
G2 2 3 4 1 2 3 4
G3 3 4 5 3 6 1 2

This is a toy example in which we have a perfect correlation on the dates 0, 1,
2, 5, and 6 and a perfect correlation on the dates 3 and 4. The automaton we
can build generalizing the technique to use also clusters of non adjacent dates
is depicted in Figure 2. We label each edge only with the reset constraint, since
the activation one can be reconstructed from it.

Ĝ′ = T + Ĝ Ĝ′ = ĜT + Ĝ

(
Ĝ′ = 4 ∧ Ĝ = 3

)
∨

(
Ĝ′ = 1 ∧ Ĝ = 4

)
∨

(
Ĝ′ = 3 ∧ Ĝ = 5

)

(
Ĝ′ = 4 ∧ Ĝ = 8

)
∨

(
Ĝ′ = 3 ∧ Ĝ = 2

)
∨

(
Ĝ′ = 1 ∧ Ĝ = 6

)

Ĝ = 1
∨

Ĝ = 2
∨

Ĝ = 3

v1 v2

Fig. 2. The automaton of Example 3

3 Rate Distortion Theory and Extensions

In the above discussion we considered various ways of reducing the dimension-
ality of the data and deriving an automaton that captured the dynamics of this
new compressed data set. As stated above, this can take the form of clustering
the genes and subsequently using one gene from each cluster to approximate the
others, or of considering windows of time to reduce both the number of locations
and the number of variables in our hybrid automata. Finally, one could also re-
duce the complexity of the model used to represent the continuous dynamics, for
example, one could use lower order polynomials or splines rather than polyno-
mials of high degree. Each of these methods of simplifying our hybrid automata
results in a distortion or disagreement between our model and the raw data.
For instance, clustering forces us to live with discrepancies between the approxi-
mated profiles and the actual data vectors. What we really desire is a formalism
to represent such distortions precisely, allowing us to specify an objective func-
tion that we can minimize, thus obtaining an optimal partition of our data and a
low complexity automaton. We look to information theory for such a formalism
and find it in the rate distortion theory of Shannon and Kolmogorov [8].

In rate distortion theory, one desires a compressed representation Z of a ran-
dom variable X that minimizes some measure of distortion between the data
elements x ∈ X and their prototypes z ∈ Z. Taking I(Z; X), the mutual in-
formation between Z and X, to be a measure of the compactness or degree of
compression of the new representation, and defining a distortion measure d(x, z)
that measures distance between cluster prototypes and data elements, one can
frame the problem as a trade-off between compression and average distortion.
The main idea is that one balances the desire to achieve a compressed descrip-
tion of the data with the precision of the clustering, as measured by the average
distortion, and finds the appropriate balance that maintains enough information
while eliminating noise and inessential details.

In rate distortion theory, this trade-off is characterized mathematically as an
optimization problem: Fmin = I(Z; X) + β〈d(x, z)〉, where average distortion is
defined as 〈d(x, z)〉 =

∑
x,z p(x)p(z|x)d(x, z) and is simply the weighted sum of

the distortions between the data elements and their prototypes. More recently,
Slonim et al. [20] have discussed a modification to rate distortion clustering for
which only relations between data elements are used in the distortion function,
rather than explicit mention of cluster prototypes. We have used a similar ap-
proach as a component in our graph search based approach to the time course
segmentation problem.

Moving beyond classical rate distortion theory, we will need to generalize the
problem further. In this generalized picture, we are presented with a family of
time-course data all sampled from the same dynamical system; for example, k
matrices of dimension m×n. These matrices may be thought of as describing es-
sentially the same dynamics, but corrupted by measurement noise, or affected by
unmodeled/unmodelable environmental conditions. We may wish to introduce a
notion of “distorted bisimulation”, generalizing the idea of classical bisimulation,
by allowing for certain constraints on allowable bisimulation. In this setting, it

makes perfect sense to ask for a minimal complexity hybrid-automata represen-
tation of the datasets, subject to a constrained “distorted bisimulation”.

This general notion will be explored in more detail in the full paper, but here,
we focus on the most immediate problem of compressing (with loss) a given time-
course data set by means of a semi-algebraic hybrid automaton. Returning to our
earlier discussion, in the specialized setting, we note that the functional above
captures the compression-precision trade-off inherent in the clustering problem
and when combined with a shortest path graph search algorithm (as described
below), it allows one to use an iterative method to find a numerical solution to the
time course segmentation problem. The trade-off is controlled by the Lagrange
parameter β that mitigates the trade-off between compression and preservation
of relevant information, as β becomes large we focus on precision, as β tends to
zero we focus more on compression. Setting the clustering problem up in this way
allows us to find both an optimal windowing of our data, and optimal clusters of
genes within the windows. From this compressed representation, we can create
a hybrid automaton having minimal disagreement with the original data.

3.1 Reductions via Rate Distortion

We would like to cluster our data in both the genes and in time, that is, we
would like a procedure that yields windows in time and that captures intervals
of concerted gene activity in which the genes are clustered into a small number
of groups of co-expressed elements. From such a compressed representation, we
can produce an automaton whose number of locations is the number of time
windows, and for which the dynamical laws are less complex because we derive
our continuous dynamics from the clustered data rather than from individual
genes. We briefly discuss a method that performs this type of compression.

Let D = {D1, D2, . . . , Dm} be the time points at which a given system is
sampled, and lmin and lmax be the minimum and maximum window lengths
respectively. For each time point Da ∈ D, we define a candidate set of windows
starting from Da as SDa = {W b

a |lmin ≤ Db−Da ≤ lmax}, where W b
a is the time

window containing the dates Da, Da+1, . . . , Db. Each of these windows may then
be clustered and labeled with a score based on its length and the cost associated
with the clustering functional defined in (3). Following scoring, we formulate the
problem of finding the lowest cost windowing of our time series in terms of a
graph search problem and use a shortest path algorithm to generate the final set
of (non-overlapping) time windows that fully cover the original series.

To score the windows, we use a variant of rate distortion clustering, using
a distortion function defined between pairs of data elements. We aim to maxi-
mize compression (by minimizing the mutual information between the clusters
and data elements), while at the same time forcing our clusters to have minimal
distortion (as described in [20]). We perform rudimentary model selection by
iterating over the number of clusters while optimizing (line search) over beta.
This procedure, while somewhat expensive, results in a fairly complete sampling
of the rate-distortion curves. Essentially, we trace the various solutions for dif-
ferent model sizes while tuning β, and choose the simplest model that achieves

minimal cost in the target functional. In this way we obtain for each window
a score that is the minimum cost in terms of model size and model fit, based
on the trade-off between compression and precision. This method is computa-
tionally expensive and run times can be substantial, for this reason we have
developed an implementation that can take advantage of parallel hardware.

Once the scores are generated, we pose the problem of finding the lowest
cost tiling of the time series as a graph search problem. We consider a graph
G = (V, E) for which the vertices are time points V = {D1, D2, . . . , Dm}, and the
edges represent windows with associated scores. Each edge eab ∈ E represents
the corresponding window W b

a from time point Da to time point Db, and has
an initially infinite positive cost. The edges are labeled with the costs for the
windows they represent, each edge eab gets assigned a cost (Fab ∗ length) where
Fab is the minimum cost found by the clustering procedure and length is the
length of the window (b − a). Our original problem of segmenting the time
series into an optimal sequence of windows can now be formulated as finding the
minimal cost path from the vertex D1 to the vertex Dm. The vertices on the path
with minimal cost represent the points at which our optimal windows begin and
end. We use a shortest path algorithm and generate a windowing that segments
our original time series data into a sequence of optimal windows which perform
maximal compression in terms of the clustering cost functional. We are now in
a position to sketch one possible way to construct hybrid automata that have
a compact representation in time and that reflect clusters with respect to gene
expression. Further, we construct our models to have minimal distortion with
respect to the original data. We accomplish this by clustering using the method
just discussed and then building an automata with the same number of locations
as windows and simplified dynamical laws constructed from the clustered genes.

Hence, for each cluster we can choose a representative gene which minimizes
the distance to all of the other genes in the cluster and construct a hybrid au-
tomaton whose continuous variables correspond to those of the representative
genes. Further, our time windows naturally provide a means to simplify the dy-
namics of our model by exploiting correlations in time. Our graph based approach
allows for a convenient method of locating repeated segments in the data that
are correlated, i.e., loops in our automata can be readily located. We will provide
a complete characterization of this construction in the forthcoming paper, but
note that our clustering procedure provides a method to optimally partition the
data such that minimum distortion hybrid automata may be constructed.

4 Experimental Results and Conclusions

We now apply the techniques presented in previous sections to build a simple
model of the metabolism of peach fruit. We measured the expression profiles
of two classes of genes, ARF and RAB, along a period of 42 days, starting
72 days after flowering and sampling the genes every week. Gene expressions
profiles were collected using real time PCR [5, 10, 14]. In particular, we consid-
ered 13 and 20 genes for the ARF and RAB families, respectively. Each sample

consists in the average of 3 measurements normalized with respects to Ubiq-
uitin Conjugating Enzyme level. We analyze the data appling the techniques
described in Sections 2.1 and 2.2. A hierachical clustering based on the function
d(X, Y) = (1− |Corr(X, Y)|) for ARF genes is reported in Figure 3. We choose
as distance between two clusters, C1 and C2, the minimum distance between
X ∈ C1 and Y ∈ C2. The label of the circle shaped nodes represent the distance
between subgraphs. Requiring a correlation of at least 70% we obtained 3 and
5 gene clusters for ARF and RAB, respectively. Applying the clustering on the

Fig. 3. The cluster hierachy of the ARF gene correlations.

date correlations we noticed a higher correlation: requiring a correlation of at
least 98% we obtained 1 date cluster for ARF genes, while requiring a correla-
tion of at least 93% for RAB genes, we got 2 date clusters. Hence, in the case of
RAB genes we can built an automaton having just 2 discrete locations and the
variables Ĝ, Ĝ′ and T which represent the evolution along 7 dates of 20 genes.

In conclusion, we emphasize that we have only established the preliminary
foundations of a theory, aiming at the questions of how experimental data col-
lected in biology may be treated rigorously within a semi-algebraic hybrid au-
tomata framework. We have hinted at its deep connection to dimensionality
reduction and classical rate-distortion theory, but have relegated its complete
treatment to the full paper. However, once such a framework has been cre-
ated, it opens the field to many new questions. Namely, the following: How does
one compare the dynamics of several closely related systems, e.g., a wild-type,
mutant and a double-mutant? Can one factor the dynamics so that the final
automaton may be viewed as product of several component automata, where
most of the component modules remain unchanged over evolutionary time? How
can the interaction between two or more biological systems (e.g., host-pathogen,
host-vector-parasite, or an ecology) be modeled as products of hybrid automata
constructed from different datasets?

References

1. R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho. Hybrid Automata: An
Algorithmic Approach to the Specification and Verification of Hybrid Systems. In
R. L. Grossman, A. Nerode, A. P. Ravn, and H. Richel, editors, Hybrid Systems,
LNCS, pages 209–229. Springer, 1992.

2. H. Anai. Algebraic Approach to Analysis of Discrete-Time Polynomial Systems.
In European Control Conference (ECC’99), 1999.

3. Z. Bar-Joseph, G. Gerber, D. K. Gifford, T. S. Jaakkola, and I. Simon. A New
Approach to Analyzing Gene Expression Time Series Data. In Proc. of Int. Con-
ference on Computational biology (RECOMB’02), pages 39–48. ACM Press, 2002.

4. Ziv Bar-Joseph. Analyzing time series gene expression data. Bioinformatics,
20(16):2493–2503, 2004.

5. S. A. Bustin. Absolute quantification of mRNA using real-time reverse transcrip-
tion polymerase chain reaction assays. Journal of Mol. Endoc., 25:169–193, 2000.

6. A. Casagrande, V. Mysore, C. Piazza, and B. Mishra. Independent dynamics
hybrid automata in systems biology. In Proc. of the First International Conference
on Algebraic Biology (AB’05), pages 61–73. Universal Academy Press, Inc., 2005.

7. A. Casagrande, C. Piazza, and B. Mishra. Semi-Algebraic Constant Reset Hybrid
Automata - SACoRe. In Proc. of Conference on Decision and Control (CDC’05),
pages 678–683. IEEE Computer Society Press, 2005.

8. T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-
Interscience, New York, NY, USA, 1991.

9. S. Datta and S. Datta. Comparisons and validation of statistical clustering tech-
niques for microarray gene expression data. Bioinformatics, 19(4):459–466, 2003.

10. C. Gachon, A. Mingam, and B. Charrier. Real-time PCR: what relevance to plant
studies? Journal of Experimental Botany, 55(402):1445–1454, 2004.

11. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Comput.
Surv., 31(3):264–323, 1999.

12. R. Jekins and S. Pennington. Arrays for protein expression profiling: towards a
viable alternative to two-dimensional gel electrophoresis? Prot., 1(1):13–29, 2001.

13. I. T. Jolliffe. Principal component analysis. Series in statistics. Springer, 1986.
14. M. Kubista, J. M. Andrade, M. Bengtsson, A. Forootan, J. Jonák, K. Lind, R. Sin-

delka, R. Sjöback, B. Sjögreen, L. Strömbom, A. St̊ahlberg, and N. Zoric. The
real-time polymerase chain reaction. Mol. Aspects of Medicine, 27:95–125, 2006.

15. G. Lafferriere, G. J. Pappas, and S. Sastry. O-minimal Hybrid Systems. Mathe-
matics of Control, Signals, and Systems, 13:1–21, 2000.

16. S. Madeira and A. Oliveira. Biclustering algorithms for biological data analysis: a
survey. IEEE/ACM Trans. on Comp. Biology and Bioinformatics, 1:24–45, 2004.

17. C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, and B. Mishra. Al-
gorithmic algebraic model checking i: The case of biochemical systems and their
reachability analysis. In K. Etessami and S. K. Rajamani, editors, Proc. of Int.
Conference on Computer Aided Verification (CAV’05), volume 3576 of LNCS.
Springer, 2005.

18. M. Schena, D. Shalon, R.W. Davis, and Brown P.O. Quantitative monitor-
ing of gene expression patterns with a complementary dna microarray. Science,
270(5235):467–70, 1995.

19. C. E. Shannon. A Mathematical Theory of Communication. The Bell System
Technical Journal, 27:379–423, 1948.

20. N. Slonim, G. S. Atwal, G. Tkacik, and W. Bialek. Information-based clustering.
Proc Natl Acad Sci USA, 2005.

