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Abstract

GOALIE is a Common Lisp application that redescribes numerical gene expression value measurements
into formal temporal logic models of biological processes. It finds extensive uses in the analysis of
microarray and other high-throughput biological datasets. GOALIE incorporates several statistical,
logical, and ontological modules, connected together through an architecture that exploits various fea-
tures of several Common Lisp libraries in order to smoothly integrate with popular bioinformatics for-
mats and databases—the most notable example being the Gene Ontology (GO) and the GO database
[GO, GODb].

1 Introduction

GOALIE is a novel computational approach and software system that uncovers formal temporal logic
models of biological processes from time course microarray datasets. GOALIE ‘redescribes’ numerical data
into the vocabulary of biological processes and then pieces together these redescriptions into a Kripke-
structure model, where possible worlds encode transcriptional states, connect by transition relations to
future possible worlds, and derive labeling with propositions corresponding to an ontology. Such a model,
once constructed by GOALIE, supports various query, inference, and comparative assessment tasks, in
addition to presenting descriptive process-level summaries.

In more details, GOALIE takes as inputs numerical measurements from time-course microarray ex-
periments, and begins by clustering overlapping (possibly weighted) time-windows of the dataset. These
“timed” clusters constitute the skeleton of a Kripke Model, which, in the process of being unveiled by the
redescription algorithm, gets decorated with suitable controlled vocabulary terms – e.g. Gene Ontology
(GO) terms - thus giving descriptive meaning to the numerical measurements of the mRNA abundance
present in the cell. The outcome is a graph of temporally related terms—the resulting Kripke structure—
which can be “read” directly by a biologist. In the case of the GO, the terms used are those pertaining
to the biological processes ontology. As such, to the biologists, they convey important information about
the temporal evolution of various processes in the biological system.

Implementing this application in Common Lisp considerably sped up the construction of those software
components which deal with the manipulation of temporal logic formulæ (which constitute a sub-language).

∗This work was supported by grants from NSF’s ITR and NGS programs, Defense Advanced Research Projects Agency’s
(DARPA) BioCOMP program, and the US air force (AFRL).
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The numerical procedures involved in the computation of the various statistical parameters (Jaccard ’s coef-
ficients, p-values and Fisher Exact Test measuring the goodness of the result of set-theoretical operations)
also benefited from the concurrent use of different compilers to track down possible inefficiencies.

1.1 Motivating Example

Fig. 1 depicts the well-known state diagram representing the regulation of cell cycle in budding yeast. The
M (mitosis) phase is closely followed by cytokinesis and the G1 phase (gap 1), during which the cell grows
but does not replicate its DNA. There is next a phase of synthesis (S), i.e., DNA replication, followed by
G2 (gap 2). Relative to each other, the gaps constitute the most time in the cell cycle. Since entry to S is
carefully controlled, we have broken down G1 into an early-mid part (G1 (I)) during which the cell grows
in size and a later part (G1 (II)) beyond which the cell is committed to undergoing one full cycle. G1 (II)
effectively acts as a checkpoint to ensure sufficient availability of nutrients, polypeptide mating factors,
and significant growth in cell size. If these conditions are not met, then the cell enters a quiescent phase
(G0) and might attempt to continue the cell cycle at a later stage.

A formal way to reason about such dynamical systems is to encode their properties in the vernacular of
temporal logic. Temporal logics are traditionally defined in terms of Kripke structures (V, E, Π) [CGP99].
Here (V, E) is a directed graph having the reachable states of the system as vertices and state transitions
of the system as edges.

Given a formal Kripke structure, we can reason about its properties, perform symbolic model checking,
and answer queries about pathways. For instance, if we consider the additional propositions q meaning
‘cytokinesis takes place’, r meaning ‘DNA replication takes place,’ and s meaning ‘cell is in quiescence,’
we can pose the question ‘Beginning from when q is true, is there a way to reach a state where r is true,
without passing through a state where p is true?’ (the answer is ‘no’). As another example, ‘Beginning
from when q is true, is there a way to reach a state where r is true without visiting any state where s is
true?’ (the answer is ‘yes’). As is evident, Kripke structures constitute a powerful mechanism to reason
about temporal characteristics of biological systems.

Upon a Kripke structure we can also impose a procedure for labeling the possible worlds with more
complex temporal formulæ by appropriately combining other temporal sub-formulæ that have been shown
valid inductively. One can then reduce these models to more comprehensible structures by projection and
collapsing operations, while maintaining bisimulation equivalence [CGP99]. Because time has a specific
topological interpretation, one can easily mix descriptions of fast operations with slow operations while
focusing only on the major biological events and their temporal order. Most importantly, one can query this
model to see if a particular biological property holds; one can examine a counter-example to a postulated
query when it is falsified; or one may ask for hypothetical properties when certain new properties are
speculated to hold true. For instance, by observing carcinoma and sarcoma cancer cells co-cultivated,
we may summarize a property such as ‘certain processes in sarcoma cells are not activated until certain
extra-cellular factors in carcinoma cells are made available.’

1.2 Related Work

We primarily survey related work under two themes, namely analyzing microarray datasets and formal
models of biological systems. The literature on interpreting data from large-scale microarray experiments
is vast. Classical unsupervised learning techniques identify gene clusters of coordinated activity, which
researchers often supplement with post-analysis of upstream regulatory elements or functional enrichment
analysis. In some cases, special emphasis has been placed on clustering time course datasets [BJ04] or on
reconciling multiple ways of characterizing datasets [RKM+04]. Researchers have since begun integrat-
ing microarray information with other sources of data, primarily to elucidate transcriptional regulatory
programs [SSR+03] or to obtain network models of gene regulation [YIJ04]. This thread of data-driven
research continues unabated, as more and more experimental data is made available online and researchers
find new ways to integrate diverse sources of evidence.
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Figure 1: Cell cycle regulation in S. cerevisiae., depicting M, G1 (early-mid and late parts), G0, S, and G2 stages.

At the other end of the spectrum, researchers begin with a process-level view of biological processes and
aim to support query, inference, and simulationtasks. Baral et al. [BCT+04] present a knowledge-based
logic and reasoning system for signaling systems. Classical mathematical biologists build ODE mod-
els or hybrid system models of well-studied regulatory, metabolic, and signaling pathways [APUM03],
thus offering a dynamicalsystems perspective on the functioning of molecular machinery. There are
even projects that emphasize temporal logic and qualitative models of biological systems and path-
ways [BdJGP03, CRCD+04, RSS01] but they typically concentrate on reasoning and model checking
with a given model, and not model inference. The few works that do focus on model inference and
model estimation (e.g., [ASR97, Wig03]) do so at the level of kinetic parameters and rate constants for
biochemical pathways, far removed from the abstract forms of representation we are considering here.

We hence posit that in spite of important and impressive progress, existing methods do very little
to close the disconnect between experimental results and the biological insights concealed in the data.
The approach presented here borrows several conceptual frameworks from our prior work in redescription
mining [RKM+04] and model checking algorithms [APUM03], but also deviates significantly by getting
closer to biological insights in the form of temporal invariants. This helps overcome both the inability of
traditional data mining methods to express their results at the level of relationships between biological
processes and the inadequacies of current simulation-based methods to exploit the wealth of data arising
from high-throughput sources.

2 Architecture, Implementation, and Methods

The internal architecture of GOALIE is depicted in Figure 2. GOALIE relies on a few basic building blocks
to perform its functions. It contains an interface to the GO database, a small library to manipulate a
traditional temporal logic language with an S-expression syntax, and a small library of statistical functions
for the computation of statistical significance, e.g., p-values and Fisher Exact Test.

The input of GOALIE is a set of “cluster files” in a simple comma separated values (CSV) format.
GOALIE does not compute the clusters by itself1. From these files the “gene accessions” are associated
to the corresponding terms by accessing an instance of the MySQL-based GO database. All the data is
loaded and represented internally as a set of hash-tables indexing both gene accessions and GO terms,
which are INTERNed as symbols in a separate CL package. The data is loaded into the internal hash-tables
in a lazy fashion. Once loaded, the data is ready to be manipulated by GOALIE redescription algorithms.

1A Common Lisp library of well-known clustering algorithms – k-means, hierarchical, self-organizing-maps, etc. – would
be welcome.
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Figure 2: GOALIE Software Architecture.

The graphical user interface presents the user with a summary view of the relationships among the
clusters, and allows the user to access the AmiGO web-interface and the Entrez portal.

2.1 GOALIE operations

Given a time course microarray dataset, we begin by a traditional cluster analysis performed on over-
lapping time windows across the dataset. These clusters essentially constitute the states of the Kripke
structure. Each cluster, in each time window, is then redescribed as a conjunction of (many) GO biological
process categories. Labels so obtained can be interpreted propositionally as ‘genes involved in process p

behave concertedly in this state,’ or even ‘process p persists in this state,’ depending on the specific label.
The descriptions of GO categories, so obtained, are then related across time points using a redescription
across time windows. At this stage, we allow one-to-many (‘scatter’) as well as many-to-one (‘gather’)
redescriptions. Combinations of these multiple-window trends are finally summarized into a Kripke struc-
ture, yielding important insight about the global transcriptional activity. We hasten to add that what
follows is undoubtedly only one way to organize the computational pipeline, and other possibilities to
configure each stage might readily suggest themselves to the reader.

2.1.1 Initialization and Labeling

Given an m × n gene expression dataset D with m genes whose values have been sampled (uniformly
or non-uniformly) at n time instants (t1 < t2 < · · · < tn), we aim to exploit the locality inherent in
biological processes by first examining correlations among genes over short windows of time. Specifically,
we organize the time interval into k overlapping windows:

[T ′

1, T1], where T ′

1 = t1;

[T ′

k, Tk], where Tk = tn.
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Notice that each time window [T ′

i , Ti] induces a submatrix Di of the original dataset with m genes and
(n − k) time points. The task of mining Kripke structures is then decomposed into clustering each
Di, 1 ≤ i ≤ k (yielding the states of the Kripke structure), imposing a labeling function on these states,
and tracking these assignments across states in neighboring windows, to identify the state transitions.
We employ a k-means algorithm for clustering and combine a Fisher exact test [BS04, ZFW+03] with
an empirical Bayes approach to yield a probabilistic labeling algorithm. Given a cluster Ci,j (one of the
clusters of Di and a sample over Xi; note that the cluster number j is arbitrary) and a GO descriptor Gg ,
we first construct the contingency table comprising the four disjoint sets: Ci,j ∩Gg , Ci,j −Gg , Gg −Ci,j ,
and G − Ci,j − Gg , where G is the set of all m genes. Equipped with these sets, we can determine a
p-value for how accurately the GO term can be used as a label for that cluster. Once the labels for a
possible cluster have been ordered by their p-values, an empirical Bayes approach [CLC00] can be used
to retain only those labels that satisfy an appropriate false discovery rule, e.g., the Benjamini-Hochberg
test. At this point, we have effectively imposed the labeling function Π on clusters; if we view the clusters
as transcription states, then given any state s and any proposition p, we already know whether p ∈ Π(s)
or ¬p ∈ Π(s) ≡ p 6∈ Π(s).

2.1.2 Chasing Clusters across Time Windows

Our next step is to ‘chase’ these propositions across time windows. Essentially, we are performing re-
description again, but this time helping connect states defined over one time window to states defined
in a neighboring time window. For a value 0 ≤ θ ≤ 1, we say that two clusters Ci,j and Ci′,j′ in time
windows i and i′ are θ-equivalent if the Jaccard’s coefficient between Ci,j and Ci′ ,j′ is ≥ θ. The Jaccard’s
coefficient J (X, Y ) betwen two sets X and Y is defined by:

|X ∩ Y |

|X ∪ Y |

i.e., the ratio of the size of the intersection to the size of their union. The Jaccard’s coefficient is 1 if the
sets are identical (i.e., the clusters are perfectly redescribable) and 0 if the sets are disjoint. Here, we
qualify the cardinalities and memberships of the clusters not as sets of genes contained but as sets of GO
labels assigned. Let l′ be the smallest index of the time window such that for an appropriately chosen θ,
clusters in time windows 1, 2, . . ., are θ-equivalent to clusters in time windows l′, l′ + 1, . . ., respectively.
With these definitions, one can introduce a directed graph G = (V, E), whose vertices are the clusters,
connected by directed edges going from vertex Ci,j to Ci′,j′ if and only if i′ − i ≡ 0 mod (l′ − 1) and the
Jaccard’s coefficient between Ci,j and Ci′,j′ is at least θ.

2.1.3 Inferring Temporal Relationships

Once the vertices of G are labeled by propositions from a universe of discourse, we can view these labeled
graphs as Kripke structures, whose vertices are the possible worlds and whose edges are temporal tran-
sitions between possible worlds. Since the atomic propositions are chosen from a controlled vocabulary,
we can combine these propositions to create formulæ in a propositional temporal logic (CTL) to describe
the complex dynamic interactions among the genes. In this case, the truth properties of more complex
temporal formula can be computed inductively by the rules shown in Table 1. We will sometimes allow this
graph to be manipulated by graph rewriting rules that will allow projection and collapsing, by allowing
clusters along certain directed paths to be combined into bigger clusters or near-by clusters within a time-
window to be combined (e.g., if Ci,j and Ci,j′ have Jaccard’s > θ, they may be replaced by a new cluster
Ci,j ∪ Ci,j′ ). However, these rewrite rules must be further constrained so that certain ‘bisimulation-like’
relations hold between uncollapsed and collapsed graphs. These and other such enhancements to the basic
algorithm will be discussed in future versions of this work.

The overall architecture of GOALIE is that of a system that must generate and maintain a large set of
relationships among several sets. The relationships are uniformly organized in a directed acyclic graph. In
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(EP "sister chromatid cohesion" :UNTIL (AND "G2 phase" "G2 specific transcription"))

(EVENTUALLY (EP (AND "G2 phase" "G2 specific transcription")

:UNTIL "G2/M specific transcription"))

Figure 3: GOALIE has all the pre-processed information available to automatically generate these two temporal
logic formulæ. The first one states that there exists a directed path (the EP operator) connecting a sequence of
clusters in successive time windows such that the GO category ‘sister chromatid cohesion’ holds until the cell
enters G2 phase. The second formula states, albeit obviously, the following: “the cell, after dwelling in G2 phase,
enters M phase.” Although this is a well-known feature of the cell cycle, it is interesting as it derives automatically
from numerical expression matrices and a static ontological annotation.

particular, the generation algorithms must use appropriate heuristics to tame the complexities inherent in
the management of large sets of well-formed logical formulæ. A simple counting argument on the structure
of CTL formulæ shows that the number of formulæ grows double-exponentially as a function of depth

d, with a lower-bound of Ω
(

22
d

)

– too large to consider even for small values of d. Fortunately, this

asymptotic worst-case complexity does not pose a serious problem in realistic biological examples, as most
of these formulæ are not significant and are pruned out.

GOALIE relies on a number of public domain tools in its functionality. The GO database [GOda] is
an important resource about GO terms and their relationships. The GoMiner [ZFW+03] software is used
to produce ‘gene accession’-to-GO associations. We also employed the K-means algorithm of the Genesis
system [SQT02] to produce the initial clustering of each time window.

2.2 Generation of Temporal Descriptions

The time-windowed cluster graph G is internally augmented with a set of chain-info data structures that
keep track of “extent” over time of union-sets of GO categories. This internal data structure allows for a
relatively efficient construction of moderately complex CTL formulæ over G. The overall complexity of
the näıve construction process is exponential in the number of time windows. However, the largest dataset
we have seen so far (the P. falciparum dataset) has only 48 time points, which can be subdivided in less
than 10 windows, thus limiting the combinatorial explosion of the problem.

As a simple example (not yet integrated in the visualization tool), the system can find all the con-
nections, which exhibit a constant set of GO categories. These paths indicate that certain GO categories
persist throughout the time course measurements. Incidentally, this case holds only when biological pro-

cesses GO categories2 are considered.
Another example of the formulæ generation capabilities of the system involves how we can build an

“until” CTL formulæ by analyzing the connections between clusters. These formulæ are of the form:
some GO categories remain active, until some other GO categories become active. Since we have been
considering the biological processes hierarchy so far, we can rephrase the CTL “until” formulæ as some

process persists in the cell until some other process is activated.

In reference to the upcoming example in Section 3 and to Fig. 5, example temporal logic formulæ
generated by GOALIE are shown and explained in Fig. 3. Although we have not encountered this diffi-
culty yet, larger data sets might cause GOALIE to generate many more formulæ, which would necessitate
heuristics to constrain the number of generated formulæ. Criteria such as novelty, as studied in the data
mining community, can be used to filter formulæ that may suggest new interpretations of the data and of
the processes involved.

Finally, GOALIE can easily incorporate more traditional query based model checking technology [APP+03,
APUM03] that can be used by a biologist to formulate natural language or CTL queries about the temporal

2Recall that the GO ontology is subdivided into three broad categories: biological processes, cellular components, and
cellular function.
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evolution of the system.

3 Analysis Examples

GOALIE has been tested on the well known yeast (S. cerevisiae) cell cycle dataset of Spellman et al.,
[SSZ+98], a host-pathogen interaction dataset of Staphylococcus enterotoxin B (SEB) infection of human
kidney cells3, and the P. falciparum datasets described by Bozdech et. al. [BLP+03].

As an example, we show an analysis produced by GOALIE (see Figure 4). First, consider the connection
between time course window 2 to time course window 3: connection 2:4 to 3:2, and concentrate on
Cluster 2:4 in the second time-course window. There are two connections worth following to time-course
window 3: one to Cluster 3:2 and one to Cluster 3:4. Consider the first one to Cluster 3:2. We note
that GO category “regulation of S phase of mitotic cell cycle” (GO:0007090) is maintained across the
connection, while the category “positive regulation of sister chromatid cohesion” (GO:0045876) becomes
inactive.

Next, we may consider the connection between time course window 3 to time course window 4, connec-
tion 3:2 to 4:4, observed in the analysis of the Spellman’s yeast cell-cycle dataset (the notation: ‘L : N ,’
with L and N positive integers, denotes cluster N in time course window L.) The connection shows how G2
phase in cell-cycle gets initiated: as we enter Cluster 4:4, the GO categories “G2 phase of mitotic cell cycle”
(GO:0000085), “G2-specific transcription in mitotic cell cycle” (GO:0000116), “microtubule/chromatin in-
teraction” (GO:008546), and “attachment of spindle microtubules to kinetochore” (GO:008608) become
active.

Following the chains downward, eventually we find connections that exhibit the expected transition
from G2 to M phases, e.g., in transition from Time Course Window 7 to Time Course Window 8, Con-
nection 7:11 to 8:12.

Going back to the transition between Time Course Window 2 to Time Course Window 3 we can follow
another set of connections. The initial connection between Cluster 2:4 and Cluster 3:4 is relevant because
of the presence of the “positive regulation of sister chromatid cohesion” (GO:0045876) GO category.
Following down one level we find the connection between Cluster 3:4 to Cluster 4:4 with GO categories “loss
of chromatine silencing” (GO:0006345), “attachment of spindle microtubules to kinetochore” (GO:008608),
“microtubule/chromatin interaction” (GO:008546) staying active between the levels, while “G2 phase of
mitotic cell cycle” (GO:0000085), “G2-specific transcription in mitotic cell cycle” (GO:0000116) become
active in Cluster 4:4 (as expected). When we summarize these directed paths, we discover a scatter-gather
behavior (see Fig. 5). The genes participating in this phenomenon appear to move from cluster to cluster,
only to end up ultimately behaving in a coordinated manner, after certain key events occur in the cell
cycle.

4 Ongoing and Future Work

At this time there are many open problems in GOALIE that need a careful and in-depth examination: for
instance, we have not provided any optimizing rule for choosing the window size or number of clusters,
while recognizing that such choices do affect the model inferred and the invariants discovered. We are
currently casting GOALIE’s algorithms in the context of information bottleneck theory [FMST01] in order
to find clusterings that are both descriptive in terms of GO process ontology terms [SK02] and that are
indicative of connections to clusters in neighboring time windows. Second, we will need to incorporate
known regulatory relationships among proteins, microRNAs, and genes to arrive at such models. We
will need to understand how to introduce modes other than time: e.g., spatial variation, variations in

3Work in progress in collaboration with Dr. Jett’s laboratory at Walter Reed Army Institute of Research. Unpublished
results.
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Figure 4: A screenshot of the GOALIE tool. The left part of the tool depicts the various time slices utilized in
the study. The top right part depicts a snapshot of interactive exploration using redescriptions. The bottom right
part identifies propositions that remain true when going from a source cluster to a destination cluster, as well as
the propositions that become true, and those that cease to be true. Notice that Cluster 7 in the first window has
been ‘chased’ to yield a chain through successive time windows (Clusters 7, 4, 4, 11, and 12 respectively). The
links between clusters are labeled with the cardinality of GO terms in common. For instance, the first edge in this
chain involves two common GO terms, the second involves three common GO terms, and so on.

temperature, nutrients, light and ambient stresses, and more generally, any arbitrary partial order space
of control variables. Finally, we must investigate possible multi-modal logics that can express invariants
in such rich spaces.

Availability: GOALIE has been built on top of LispWorks (LispWorks Ltd. Cambridge, UK) and runs
on Windows XP, Linux and MacOS X platforms. It is currently available on request from the authors
under the DARPA Open Source License terms.
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