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ABSTRACT: Physical mapping plays an im-
portant role in genomics as it provides an initial
draft blueprint, whose details are gradually filled
in through the processes of sequence assembly, se-
quence validation and sequence finishing. Fur-
thermore, many recently discovered physical map-
ping methods (e.g., optical mapping, array map-
ping and happy mapping) have reduced cost of
operation through automation of the underlying
high-throughput processes, and by sacrificing some
resolution (i.e., density of the physical markers).
Nonetheless, these maps still possess enough details
and resolution to discern polymorphisms in the pop-
ulation, understand haplotype differences and pin-
point chromosomal aberrations.

Optical mapping is a single molecule based phys-
ical mapping technology, which creates an ordered
restriction map by enumerating the locations of oc-
currences of a specific “restriction pattern” along
a genome. Thus, by locating the same patterns in
the sequence reads or contigs, optical maps can de-
tect errors in sequence assembly, and determine the
phases (i.e., chromosomal location and orientation)
of any set of sequence contigs. Since the input ge-
nomic data that can be collected from a single DNA
molecule by the best chemical and optical meth-
ods (such as those used in Optical Mapping) are
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badly corrupted by many poorly understood noise
processes, this type of technology derives its utility
through powerful probabilistic modeling used in ex-
periment design and Bayesian algorithms that can
recover from errors by using redundant data. In
this way, optical mapping with Gentig, a powerful
statistical map-assembly algorithm invented and im-
plemented by the authors, has proven instrumen-
tal in completing many microbial genomic maps (E.
coli, Y. pestis, P. falciparum, D. radiodurans, R.
sphaeroides, etc.) as well as clone maps (DAZ lo-
cus of Y chromosome).

Thus, optical mapping owes its existence to these
probabilistic analyses and accompanying statistical
algorithms. This paper discusses these underlying
models. In particular, we study several simple mod-
els for optical mapping and explore their power and
limitations when applied to the construction of maps
of genomes or clones (e.g., lambdas, cosmids, BACs
and YACs). We provide precise lower and upper
bounds on the number of clone molecules needed to
create the correct map of a clone. As an example,
our probabilistic analysis shows that as the number
of clone molecules (i.e., coverage) is increased in the
optical mapping data, the probability of successful
computation of the map jumps from 0 to 1 for fairly
small number of molecules (for typical values of the
parameters, the transition point is around a few hun-
dred).
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1 Some Preliminary Remarks

Optical Mapping [AMS97, Ana+97b, AnMS99, AsMS99,
Cai+98, Mishra03, Sam+95] is an approach that gener-
ates an ordered restriction map of a DNA molecule (e.g., a
genome [Jing+99, Lai+99, Lim+01, lin+99, Zhou+02] or a
clone [Cai+98, Giacalone+00, Sam+95, Skiadas+99]). The
resulting restriction map is represented as an ordered enu-
meration of the restriction sites along with the estimated
lengths of the restriction fragments between consecutive re-
striction sites and various related statistics. These statistics
accurately model the errors in estimating the restriction frag-
ment lengths as well as the errors due to unrepresented and
misrepresented restriction sites in the map. These physi-
cal maps have found applications in improving the accuracy
and algorithmic efficiency of sequence assembly, validating
assembled sequences, characterizing gaps in the assembly
and identifying candidates for finishing steps in a sequencing
project. Also, because of its inherent simplicity and scala-
bility as well as its reliance on single molecules, optical map-
ping also provides a fast method for moderate resolution
karyotyping and haplotyping.

The physico-chemical approach underlying optical map-
ping is based on immobilizing long single DNA molecules on
an open glass surface, digesting the molecules on the sur-
face and visualizing the gaps created by restriction activities
using fluorescence microscopy. Thus the resulting image, in
the absence of any error, would produce an ordered sequence
of restriction fragments, whose masses can be measured via
relative fluorescence intensity and interpreted as fragment
lengths in base pairs. The corrupting effects of many in-
dependent sources of errors affect the accuracy of an op-
tical map created from one single DNA molecule, and can
only be tamed by combining the optical maps of many sin-
gle molecules covering completely or partially the same ge-
nomic region and by incorporating accurate statistical mod-
els of the error sources. To a rough approximation, the
insurmountable obstacles in the chemistry is circumvented
by cleverly exploiting the statistical properties of the sys-
tem through a “0-1 Law” in the parameter space. This law
plays a crucial role at the heart of the entire optical map-
ping technology and is likely to reappear in other contexts
as well, e.g., array-mapping, single-molecule sequencing and
haplotyping. In this paper, we focus on one such law in the
context of mapping clones and we hint at how these results
are generalized to genomic mapping.

The main error sources limiting the accuracy of an opti-
cal map are due to either incorrect identification of restric-
tion sites or incorrect estimation of the restriction fragment
lengths. Since these error sources interact in a complex

manner and involve resolution of the microscopy, imaging
and illumination systems, surface conditions, image process-
ing algorithm, digestion rate of the restriction enzyme and
intensity distribution along the DNA molecule, statistical
Bayesian approaches are used to construct a consensus map
from large number of imperfect maps of single molecules. In
the Bayesian approach, the main ingredients are as follows:
(1) A model of the map of restriction sites (Hypothesis , H)
and (2) A conditional probability distribution function for
the single molecule map data given the hypothesis (Condi-
tional pdf , f(D|H)). The conditional pdf models the restric-
tion fragment sizing error in terms of a Gaussian distribu-
tion, the missing restriction site event (due to partial diges-
tion) as a Bernoulli trial and the appearance of false restric-
tion sites as a Poisson process. Using the Bayes’ formula,

the posterior conditional pdf f(H |D) = f(D|H)
f(H)

f(D)
is

computed and provides the means for searching for the best
hypothetical model given the set of single molecule experi-
mental data. Since the underlying hypothesis space is high
dimensional and the distributions are multi-modal, a näıve
computational search must be avoided. An efficient imple-
mentation involves approximating the modes of the posterior
distribution of the parameters and accurate local search im-
plemented using dynamic programming [AMS97, AnMS99].
The correctness of the constructed map depends crucially
on the choice of the experimental parameters (e.g., sizing
error, digestion rate, number of molecules). Thus, the feasi-
bility of the entire method can be ensured only by a proper
experimental design.

This paper studies several simple models for optical map-
ping and explores their power and limitations when applied
to the construction of maps of clones (e.g., lambdas, cos-
mids, BACs and YACs), by providing precise lower and up-
per bounds on the number of clone molecules needed to cre-
ate the correct map of the clone. Our probabilistic analysis
proves the existence of a 0-1 laws in the number of molecules.

The paper is organized as follows: In section 2, we formu-
late the problem; in sections 3, 4 and 5, we successively intro-
duce and analyze the effects of various error sources: namely,
partial digestion error, misorientation error and quantization
error, respectively. We use probabilistic methods to provide
upper and lower bounds on the choices of parameters that
would ensure correct result with high probability. In section
6, we study the effect of sizing error and its interaction with
discretization. The analysis indicates that for a reasonable
choice of sizing error, the algorithms based on discretization
are unlikely to work correctly with any reasonable probabil-
ity.
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2 Problem Formulation

The underlying bio-chemical problem concerns with the con-
struction of an ordered restriction map of a clone (a piece
of DNA of length L, where L is measured in base-pairs bps,
Kb = 103bp or Mb = 106bp). Typical values of L are 2–
20Kb (lambda’s), 20–45Kb (cosmids) 150–200Kb (BAC’S)
and ≈ 1Mb (YAC’S). For our mathematical analysis, we
will often assume that L takes some fixed value which can
be arbitrarily large. These clones are sequences of length L
over the alphabet { a, t, c, g }. Certain short subsequences
(typically of length 6, e.g., ggatcc) can be recognized by
a restriction enzyme (e.g., BamH I), and location of these
restriction sites

0 < H1 < H2 < · · · < Hk < L

in the clone is the ordered restriction map of the clone with
respect to the given enzyme.

Let hi = Hi/L be a real number. Then the normalized or-
dered restriction map of the clone with respect to the enzyme
is

0 < h1 < h2 < · · · < hk < 1,

where each hi assumes some real value in the open unit in-
terval (0, 1).

Note that in the absence of any additional distinguishing
characteristic of the clone (e.g., identification of 3’ end or
5’ end), we could have also taken the following as another
normalized ordered restriction map of the same clone with
respect to the same enzyme:

0 < hR
k < · · · < hR

2 < hR
1 < 1,

where hR
i = 1 − hi. Note that the normalized ordered re-

striction map is unique up to reversal in the absence of any
additional distinguishing characteristic, and is unique if we
know the orientation.

3 False Negative Errors: Partial

Digestion

Let us postulate an experiment, where the desired normal-
ized ordered restriction map is observed, subject to partial
digestion error and where any particular restriction site is
observed with some probability p ≤ 1. We assume no other
error sources for now; thus no other spurious sites (false
restriction cuts) are included in the observation and the ob-
served restriction map appears in the correct orientation.

Thus the result of the experiment is an ordered sequence
of sites (normalized)

0 < s1 < s2 < · · · < sl < 1,

where for each si, there is an hj in the true map, such that
si = hj . By assumption, for each hj the probability

Pr [ there exists some si s.t. hj = si] = p.

Let us also assume that the experiment is repeated n times
resulting in n observed restriction maps. Assume that the
true restriction map is unknown and is to be constructed
from these n observations. A straight forward algorithm
for doing this would be to simply take the union of all the
observed restriction sites, and output this result in sorted
order.

We claim that if n ≥
(

ln k + c

p

)

then the result of the

preceding algorithm is almost surely correct. Here c is a
constant to be determined later. Note that the probability
that a cut site hj appears in at least one observation is 1 −
(1 − p)n ≥ 1 − e−c/k. Thus the probability that all k true
cut sites show up in the final map is given by (1−e−c/k)k >

e−e−c

+ o(1).

On the other hand, if n <

(

ln k

p(1 + p)

)

(k ≥ 1 and 0 < p <

0.69) then there is a high probability that the amount of data
is insufficient to recover the correct map. Note again that
given a true cut site hj the probability that this cut is never
observed in any of the n observations is simply (1 − p)n >
e−pn(1+p) > e− ln k = 1/k. Thus, with this value of n, the
probability that we can recover all the true cut sites is simply

bounded from above by

(

1 − 1

k

)k

≤ 1

e
< 1

2 .

In summary: Let ǫ be a positive constant and c ≥ ln(1/ǫ).

Then for n ≥
(

ln k + c

p

)

, with probability at least (1 −
ǫ), the correct ordered restriction map can be computed in
O(nk) time.

When n <

(

ln k

p(1 + p)

)

(k ≥ 1 and 0 < p < 0.69), there is

a probability greater than half that no algorithm can com-
pute the correct ordered restriction map.

Note, however, that since the value of k and p are not
known a priori, it is impossible to use this result in a mean-
ingful way in designing an experiment (i.e., in choosing n).
The algorithm itself does not use the parameters k or p; only
its success probability is determined by these parameters for
a fixed set of input data.
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4 Misorientation Errors

Next, let us postulate a modified experiment, where the de-
sired normalized ordered restriction map is observed, subject
to partial digestion error as well as error due to misorien-
tation. Thus the result of the experiment is an ordered se-
quence of sites

0 < s1 < s2 < · · · < sl < 1,

where either the sequence or its reversal

0 < sR
l < sR

l−1 < · · · < sR
1 < 1,

could be assumed to be derived from the true normalized
ordered restriction map

0 < h1 < h2 < · · · < hk < 1,

after partial digestion. By assumption, for each hj and for
each observation, the probability

Pr
[

there exists some si s.t. hj = si or hj = sR
i

]

= p

models the partial digestion.
Assumption: For the time being, we assume that the true
normalized ordered restriction map has no symmetric site,
i.e.,

∀i ∀j 6=i hi 6= hR
j .

Let us also assume that the experiment is repeated n times
resulting in n observed restriction maps whose orientations
may be misspecified.

An algorithm to reconstruct the true map may proceed in
two phases: In the first phase, all the molecules are folded
by the mid-point, thus creating “folded-maps,” in which the
orientation of the molecule is no longer an issue. The indi-
vidual “folded-maps” are combined to compute a “consensus
folded-map.” In the second phase, the “consensus folded-
map” is unfolded back to create the restriction map where
each individual site is assigned to either left half or right
half, by examining the relative locations of pairs of restric-
tion sites found in the original data (assuming that enough
such information is available).

4.1 Phase 1:

Define a function

f : (0, 1) → (0,
1

2
)

: x 7→
{

x if x ∈ (0, 1
2 );

xR if x ∈ (1
2 , 1).

In phase 1, our goal is to construct the set

{f(h1), f(h2), . . . , f(hk)},

which can be easily accomplished by considering the sets

{f(si1), f(si2), . . . , f(sili)}, i = 1, . . . , n.

and proceeding in a manner similar to the one outlined in
the preceding section. Using the arguments given earlier, we
see that we will succeed in this phase with probability e−e−c

,

if n ≥
(

ln k + c

p

)

.

4.2 Phase 2:

While one cannot recreate the map directly from the result of
the phase 1, one can invert f correctly, if each computed site
is further augmented with a sign value (∈ {+1,−1}), where
+1 denotes that the site belongs to the left half [(0, 1

2 )] and
−1 denotes that the site belongs to the right half [(1

2 , 1)].
Thus, we may define

f̂ : (0,
1

2
) × {+1,−1} → (0, 1)

: (f(hj), Sgn ) 7→
{

f(hj) if Sgn = +1;
f(hj)

R if Sgn = −1.

We can assign the sign values correctly as follows: Define
a graph G = (V, E), where V = {f(h1), f(h2), . . ., f(hk)}
and e = [f(ha), f(hb)] ∈ E if and only if

∃si,a,si,b
f(si,a) = f(ha) and f(si,b) = f(hb), for some i.

Furthermore, label e with +1 if for some i, either si,a and
si,b ∈ (0, 1

2 ) or si,a and si,b ∈ (1
2 , 1) (both sites belong to the

same half ); and with −1 if for some i, either si,a ∈ (0, 1
2 )

and si,b ∈ (1
2 , 1) or si,a ∈ (1

2 , 1) and si,b ∈ (0, 1
2 ) (two sites

belong to different halves). In other words,

Sgn (e) = Sgn [(
1

2
− si,a)(

1

2
− si,b)].

It is trivial to see that if the graph is connected then one
can compute the correct vertex labels by first labeling an
arbitrary vertex +1 (say, f(hj)) and then labeling the re-
maining vertices by following the edge labels during a graph-
search process. Thus if f(hi) and f(hj) are path connected
by a simple path e1, e2, . . ., em then

Sgn (f(hi)) = Sgn (e1) · Sgn (e2) · · · Sgn (em)Sgn (f(hj)).

Next we compute an upper bound on the number of ob-
servations necessary for G to be connected. Let

n ≥
(

2 lnk + 8c

p2

)

.
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Let Sh1 denote the set of observations with a cut site match-
ing f(h1). The number of such observations, |Sh1 |, follows a
Binomial distribution ∼ S(n, p).

Pr

[

S(n, p) ≤
(

ln k + c

p

)]

≤ Pr [S(n, p) ≤ (1 − ǫ0)np] , ǫ0 ≥ 1

2

≤ e−np/8 < e−c.

A cut corresponding to every f(hi) [2 ≤ i ≤ k] occurs in an

observation in Sh1 , when |Sh1 | >
ln k + c

p
, with probability

(1 − (1 − p)|Sh1
|)k−1 ≈ e−ke

−p|Sh1
|
≥ e−e−c

.

Thus G is connected with a probability > (1− e−c)e−e−c

as
[f(h1), f(hi)] appears in G for all 2 ≤ i ≤ k.

Summarizing: Let ǫ be a positive constant and c ≥ ln(2/ǫ).
Then for

n ≥ max

[

ln k + c

p
,
2 ln k + 8c

p2

]

,

with a probability at least (1 − ǫ), the correct ordered re-
striction map can be computed in O(nk2) time. Also, see
Appendix A1, for a slightly better bound when p = O(1/k).

4.3 Optical Cuts

Next we shall consider the situation where we have addi-
tional spurious cuts (optical cuts) that do not correspond to
any restriction sites. A sound probabilistic model for these
spurious cuts can be given in terms of a Poisson process with
parameters λf (thus the expected number of false cuts per
molecule is λf ). Hence, for any small region [x, x+ δx] in an
observation,

Pr [# false cuts ∈ [x, x + δx] = 1] = λf δx,

Pr [# false cuts ∈ [x, x + δx] ≥ 2] = o(δx).

The probability that an observation contains exactly f

spurious cuts is given by: e−λf

λf
f

f !
. Typical observed val-

ues for λf are about 0.2 for Lambda clones, 0.5 for cosmids
and 1.0 for BAC’s. Thus, we expect roughly 1 false cut per
100Kb.

Under this model, it is fairly trivial to see that the false
cuts pose no serious problem. Our algorithm can be modified
in a straight forward manner where Phase 1 computation
needs to be somewhat more robust.

In phase 1, our goal is to construct the set

{f(h1), f(h2), . . . , f(hk)}.

This is accomplished by considering the observation-based
sets

{f(si1), f(si2), . . . , f(sili)}, i = 1, . . . , n.

and including only those f(sij)’s that occur at least twice
in the combined observations. In other words, if there exists
an i1 6= i2 such that if

∃j1,j2 f(si1,j1) = f(si2,j2) = x,

then include x in the output set.

Assume that n ≥
(

2(ln k + c)

p

)

, (with c > 1.26). Then if

hi is a true cut site, the probability that f(hi) is not included
in the output is

(1 − p)n + np(1 − p)n−1 ≤ (1 + p(n − 1))e−p(n−1)

≤ e−p(n−1)/2 =

(

e−c

k

)

.

Proceeding as before the probability that all k true sites will
be included is thus bounded from below by e−e−c

, Also, by
the assumption regarding the distribution of spurious cuts,
we see that the probability that a spurious cut is included
in the final set is zero.

4.4 Symmetric Cuts

Next, assume that the true ordered restriction map consists
of k asymmetric cuts and m symmetric cuts. Thus the total
number of cuts is k + 2m. Note that a cut hi is a symmetric
cut, if both hi and hR

i are true cuts. Additionally, we assume
that the observations are subject to the partial digestion er-
rors, misorientation errors, spurious cut errors (determined
by a Poisson process) and symmetric cuts.

In this case, we proceed as before with phase 1 from
the preceding subsection, and again assuming that n ≥
(

2(ln k + c)

p

)

, we will almost surely (with probability no

smaller than e−e−c

) construct a set

{f(h1), f(h2), . . . , f(hk), f(hk+1), . . . , f(hk+m)}.

Note that the 2m symmetric sites yield m values in the folded
structure when f is applied.

However, before proceeding to phase 2, we will remove
those f(hj)’s from the preceding set that correspond to sym-
metric cuts. A simple approach we can take is to check each
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observation for the existence of symmetric cuts at positions
s and sR, where f(s) = f(sR) = f(hj).

We claim that if n ≥
(

lnm + c

p2

)

then the preceding steps

correctly detect the symmetric cuts with probability greater
than e−e−c

. Note that assuming hj to be a symmetric true
cut, the probability that the above test fails in any particu-
lar observation is (1 − p2) and thus the probability that the
symmetric cut hj goes undetected in any of the n indepen-
dent observations is (1− p2)n. Thus the probability that all
m symmetric true cut sites are detected in the final map is
given by [1 − (1 − p2)n]m > e−e−c

.

Again, by the assumption regarding the distribution of
spurious cuts, we see that the probability that a spurious
cut is included or symmetric cut is missed in the final set is
zero.

At the end of this step, we are left with a set containing
only asymmetric cuts

{f(h1), f(h2), . . . , f(hk)}.

At this point, we simply proceed with the phase 2 mutatis
mutandis and claim results similar to the ones derived ear-
lier.

4.5 Summary

Consider an ordered restriction map with k + 2m restric-
tion sites, of which m are symmetric cuts. Assume that
the postulated experiment observes these maps, with each
observation suffering from partial digestion error (p ≤ 1),
misorientation error, spurious cuts (determined by a Pois-
son process with parameter λf ), but no sizing error.

Theorem 4.1 Let ǫ be a positive constant and c ≥ ln(5/ǫ).
Then for

n ≥ max

[

2(ln(k + m) + c)

p
,
2 lnk + 8c

p2
,
lnm + c

p2

]

,

there is a probability of at least (1−ǫ) that the correct ordered
restriction map can be computed in O(n(L + k2 + m)) time.

When

n <
ln(k + m)

p(1 + p)
,

(0 < p < 0.69), there is a probability greater than half that no
algorithm can compute the correct ordered restriction map.
2

5 Discretization

Next, we consider the effect of discretizing the map data by
dividing it uniformly into several intervals of equal sizes.
The main argument in favor of discretizing the data has
been to accommodate the sizing errors that make the cut
locations deviate from their true location. The main source
for the sizing error has been the nonuniform attachment of
the flurochromes that are necessary to visualize the DNA.
We will study the effect of sizing error on discretization in a
later section.

Let us assume that the clone DNA that we wish to analyze
is of length L bps. Let ∆ represent a small subinterval and
δ = ∆/L. Thus the unit length is partitioned into M =
1/δ = L/∆ consecutive subintervals. One assumes that it is
not possible to distinguish the restriction cuts and spurious
cuts in each of these subintervals. Thus, we need to ensure
that δ is significantly small so that no more than one true
restriction cut location belongs to a subinterval. We now
write r = λfδ = ∆λf/L to denote the probability that we
shall observe one spurious cut in a subinterval. Note that
the probability that we shall observe f spurious cuts in any
observation is given by

(

M

f

)

(r)f (1 − r)M−f , where r =
λf

M
=

λf∆

L
.

Thus in the limit as M → ∞ and r → 0,

lim
M→∞

(

M

f

)

(λf/M)f (1 − λf/M)M−f = e−λf
λf

f

f !
,

the analysis given earlier holds true. Furthermore, if we are
simply interested in the effect of finite M (and nonzero r),
we are still able to prove that for realistic values of r < p/27
the earlier bounds still hold. Thus, it suffices to ensure that
λf/M < p/27, or M > 27λf/p—for instance, M could be
270 and satisfy the inequality as long as λf < 1.0 and p >
0.1. (See appendix A2.)

Typical values for various clones may be as follows: for
lambdas, M can range from 200 to 2, 000 and r ≈ 10−3–
10−4; for cosmids, M is 2, 000–4, 000 and r ≈ 10−4; for BACs
M ≈ 15, 000 and r ≈ 10−4. In general, even for significantly
smaller (but still realistic) values of M , r ≪ p.

5.1 Limit on M

It is worth noting that the discretization process makes it
possible for spurious cuts to introduce a “wrong” cut site
into final map. For instance, if each of the n observations
contains a spurious cut in the same subinterval, then no
algorithm can distinguish this spurious cut from a true cut
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(independent of digestion rate). Thus the probability that
none of the M subintervals has a spurious cut in each of the
n observations is given by

(1 − rn)M .

Now if we assume that n < ln M
ln(1/r) , then the above probabil-

ity is bounded from above by

(1 − rn)M < (1 − rln M/ ln(1/r))M

<

(

1 − 1

M

)M

≤ 1

e
<

1

2
.

Hence we must further guarantee that

n >
ln(L/∆)

ln(1/r)
=

ln(M)

ln(M/λf )
,

since otherwise there is a probability of half or more that the
computed map will be wrong.

6 Sizing Errors

Next, suppose we model the sizing error and analyze its ef-
fect. Before doing so, we need to derive some inequalities
relating the size of the discretized subinterval (∆) to several
other external parameters. In particular, in order to infer the
map correctly with probability greater than 1/

√
2, we must

guarantee that ∆ ≤
(

2

(k − 1)pE

)

, where k is the number

of cuts and pE denotes the probability that the restriction
enzyme cuts at a site.

Assume that ∆ >

(

2

(k − 1)pE

)

. Let l denote the length

of the smallest restriction fragment (piece of the molecule
between two consecutive restriction sites). Note that the
fragment lengths are distributed as pEe−pEx, and the prob-
ability that a fragment is of length ≥ ∆/3 is

∫ ∞

∆/3

pEe−pEx dx = e−pE∆/3.

Thus the probability that the smallest of all (k−1) fragments
is no smaller than ∆/3, is

e−(k−1)pE∆/3 < e−2/3.

Thus the probability that the smallest fragment is of length
≤ ∆/3 and that both ends of the fragment belong to the
same subinterval is bounded by

(

1 − e−2/3
)

(1 − 1/3) > 1 − 1√
2
.

However, note that for a BAC clone, this implies that the
largest value we may choose for ∆ ≤ 200bp (requiring M to
be about 750).

Next assume that a true cut site at location h actually ap-
pears as a Gaussian distribution ∼ N(h, σ). Again, consid-
ering the complementary requirement to the one mentioned
earlier, we must ensure that the observed cuts correspond-
ing to the same true cut (at location hi) belong to the same
subinterval with high probability. As a result, we may re-
quire that

∀1≤i≤k ∃1≤j≤M hi ∈ (j∆ + σ, (j + 1)∆ − σ),

with high probability (say, ≥ 1/
√

2). Thus, we require that

[

1 − 2σ

∆

]k

≈ e−2kσ/∆ ≥ 1√
2
.

In other words, we require that 2kσ/∆ ≤ ln 2/2, and

σ ≤ ln 2

4k
∆ ≤

(

ln 2

2k(k − 1)pE

)

.

A simple calculation for the BAC example reveals that
in order to guarantee the above inequality we need that
σ ≤ 0.89bp. Thus for all practical purposes, in order for
the discretized algorithm to work with any degree of cor-
rectness, we must require the observation to be free of sizing
error. As a result, one can explain why several algorithms
devised to work with dicretization failed, while purely con-
tinuous versions (or some combination) have done well.

7 Experimental Verification

This section compares the performance of a program based
on the maximum likelihood approach to map-computation
(described in [AMS97]) with the theoretical bounds in the
previous sections. At the time of this writing, AMS algo-
rithm [AMS97] still remains the only algorithm that has
worked successfully on raw experimental data, without ac-
cess to any extraneous parameters or the final answer. In
each case, when the computed map was verified with data
(from sequence and gel data) derived independently and sub-
sequent to the experiment, the algorithm was found to be
remarkably successful.

For all the experiments described in this section, random
data were generated using the data models of the previ-
ous sections. For each data model and assumed number of
data molecules, we generated 20 random data samples and
counted the fraction of these samples for which the max-
imum likelihood program computed the correct map. For
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Figure 1: Experimental Results: #Cuts, k = 37, σ =
1.5bp, p = 0.1
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Figure 2: Experimental Results: #Cuts, k = 37, σ =
1.5bp, p = 0.2

each data model the number of data molecules is varied to
obtain the fraction of cases solved correctly as a function
of the number of data molecules. We show that in each
case there is a fairly sharp transition from not being able
to solve any of the 20 samples to being able to solve all 20
samples. Moreover this transition point lies within the the-
oretical bounds computed in the previous sections. Finally
we examine the performance of the maximum likelihood pro-
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Figure 3: Experimental Results: #Cuts, k = 37, λf = 1,
p = 0.1
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Figure 4: Experimental Results: #Cuts, k = 20, σ =
1.5bp, p = 0.1

gram for the case where there is significant sizing error. In
this case the discrete methods described previously fail to
work altogether, whereas the maximum likelihood method
continues to work, albeit requiring a larger number of data
molecules as the sizing error increases.

The maximum likelihood approach described in [AMS97]
is based on a continuous (non-discrete) modeling of the data.
The modeling of sizing error in the model results in a sin-
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Figure 5: Experimental Results: #Cuts, k = 20, σ =
1.5bp, p = 0.2
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Figure 6: Experimental Results: #Cuts, k = 10, σ =
1.5bp, p = 0.1

gularity in the probability density when the sizing error is
zero. Therefore this case was approximated by assuming a
small sizing error of 10−5 of the total molecule size, σ =
1.5bp. Each data model is specified by providing the num-
ber (k) and value of the actual cut locations, the sizing error
in the form of a standard deviation (σ), a digest rate (p)
and a false cut rate (λf ). For each model, random data is
generated with the help of a random number generator in
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Figure 7: Experimental Results: #Cuts, k = 10, σ =
1.5bp, p = 0.2
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Figure 8: Experimental Results: #Cuts, k = 5, σ =
1.5bp, p = 0.1

a straight forward fashion: For each of the actual cuts, we
draw a random number uniformly from [0,1], and if this value
is below p, the cut is assumed to be present. We then draw
another random number from the standard Gaussian distri-
bution to determine the location of the cut, thus modeling
the effect of sizing error. Next, false cuts are added by first
drawing a random sample from a Poisson distribution with
mean λf to determine the number of false cuts, and then
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Figure 9: Experimental Results: #Cuts, k = 5, σ =
1.5bp, p = 0.2
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Figure 10: Experimental Results: #Cuts, k = 2, σ =
1.5bp, p = 0.1

drawing the required number of random samples uniformly
over [0,1] to get the false cut locations. This step results in
the generation of one in-silico “molecule.” This process is
repeated to get the required number of molecules to make
up one data set. This data set is then input as raw data to
our maximum likelihood program, and the resulting map is
scored a success if the number of cuts is correct, and the lo-
cation of each cut is within one standard deviation (σ) of the
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Figure 11: Experimental Results: #Cuts, k = 2, σ =
1.5bp, p = 0.2

500 1000 1500 2000
#Obsns

(#cuts =2, SD =750bp)

0.2

0.4

0.6

0.8

1

Prob

500 1000 1500 2000
#Obsns

(#cuts =2, SD =1.5Kb)

0.2

0.4

0.6

0.8

1

Prob

500 1000 1500 2000
#Obsns

(#cuts =2, SD =150bp)

0.2

0.4

0.6

0.8

1

Prob

500 1000 1500 2000
#Obsns

(#cuts =2, SD =300bp)

0.2

0.4

0.6

0.8

1

Prob

Figure 12: Experimental Results: #Cuts, k = 2, λf = 1,
p = 0.1

correct location. (Note that σ is the standard deviation for
the cuts of one sample molecule: the map computed by the
AMS algorithm typically has a sizing error much less than
that since the data from all molecules are averaged). This
process is repeated for a total of 20 samples and the fraction
of times the program succeeds is recorded against the data
sample parameters (k, σ, p, λf , number of molecules). The
whole process (i.e., the one generating 20 samples) was re-
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Figure 13: Experimental Results: #Cuts, k = 1, σ =
1.5bp, p = 0.1
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Figure 14: Experimental Results: #Cuts, k = 1, σ =
1.5bp, p = 0.2

peated for different values of the parameters. The number of
cuts was varied using the values k = 0, 1, 2, 5, 10, 20 and 37.
The values of p tested were p=0.10 and p=0.20. The values
of λf tested were λf=0 (no false cuts) and λf=1,2 and 4.
For most experiments we selected σ = 1.5bp to approximate
no sizing error, but for a small number of experiments with
k = 2 and 37 we also tested σ= 150bp, 300bp, 750bp and
1.5Kb. Most experiments were repeated with the number
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Figure 15: Experimental Results: #Cuts, k = 0

of molecules set at 10, 20, 30, 40, 50, 70, 100, 200, 500 and
1000, and in a few instances 2000 or 5000.

The results are summarized in a series of graphs showing
the success rate (out of 20 samples) as a function of the
number of molecules used. The graph in Figure 1 shows the
case for k = 37 and λf = 0, 1, 2 and 4, which corresponds
to the case analyzed in Section 4. We see that for p = 0.10
and λf = 1 a sharp transition occurs when the number of
molecules increases from 30 to 50. At 70 or more molecules
the AMS algorithm never (out of 20 experiments) fails to find
the correct map, whereas for 20 or less molecules it invariably
fails to find the correct map. For p = 0.20 (Figure 2), the
transition (from probability of near 0 to near 1) occurs at a
lower value of around 20–30 molecules. Compare this with
the theoretical bounds on the number of molecules required
from section 4 of between 30 and 100 (lower bound and upper
bound respectively).

When the number of (true) cuts in the molecules is
changed to k = 20, 10, 5 and 2, similar graphs are obtained:
Figures 4 and 5 show the results for the case k = 20; Fig-
ures 6 and 7, for the case k = 10; Figures 8 and 9, for the
case k = 5; Figures 10 and 11, for the case k = 2; Fig-
ures 13 and 14, for the case k = 1 and Figure 15, for k = 0.
The main trend is an increase in the number of molecules
required as k is reduced down to k = 2: for instance, with
k = 2 and p = 0.1, 500 molecules are required to find the
correct map in every case (λf = 0, 1, 2 and 4), in contrast
to just 200 for k = 37. This observation agrees with the
theory from sections 4 and 5 which shows that the bounds
increase slowly as k is decreased. However, the case k = 1,
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#Cuts, k Digest rate, pc λf = 0 λf = 1 λf = 2 λf = 4

37 0.1 50 100 200 200
0.2 40 70 70 70

20 0.1 100 100 200 200
0.2 30 70 70 70

10 0.1 100 200 200 200
0.2 50 70 70 70

5 0.1 100 200 200 200
0.2 50 100 100 100

2 0.1 500 500 500 500
0.2 100 200 200 200

1 0.1 70 200 200 200
0.2 30 200 200 200

0 — 1 500 — —

Table 1: Summary of Experimental Results. Number of
molecules necessary as functions of the parameters: #Cuts,
k ∈ {0..37}, Digest rate p ∈ {0.1, 0.2} and λf ∈ {0, 1, 2, 4}.

Figures 13 and 14, show that fewer molecules are required:
e.g., with p = 0.1 and λf = 1, 200 molecules are sufficient to
find the correct map. The reason is that orientation is less
of a problem with only 1 cut.

Figure 3 shows what happens with k = 37 when the sizing
error is increased to 150bp, 300bp, 750bp and 1.5Kb, respec-
tively. With p = 0.10 and λf = 1, the number of molecules
required to find the correct map in every case increases from
200 to about 5000 as the sizing error increases. Figure 12
shows what happens at k = 2 when sizing error is increased
similarly. In this case the number of molecules increases from
an already larger value, but more slowly: it increases from
500 to 2000. While we do not have any theoretical bounds
for this case, the intuition is that while it is harder to get
the correct orientation with k = 2 than with k = 37, it is
less likely that neighboring cuts will be confused with each
other due to sizing errors when k = 2 than when k = 37.

8 Discussion: Genomic Mapping

The strategies for genome-wide genotype or haplotype map-
ping using single molecule optical maps are similar in spirit
to the approaches for clone mapping, described in this pa-
per; but there are also several differences in the details of the
implementation as new and powerful heuristics need to be
incorporated in order to tame the computational complexity
of searching over the hypotheses space. The details of the
algorithm can be found elsewhere [AnMS99]. We summa-
rize below a 0-1 law applicable to the experiment design in
this genomic-mapping setting; the derivation of the following
result is in [AM01].

Consider an optical mapping experiment for genome-wide

shotgun mapping for a genome of size G and involving M
molecules each of length Ld. Thus the coverage is MLd/G.
Let the a fragment of true size X have a measured size
∼ N (X, σ2X). Let the average true fragment size be L,
and the digestion rate of the restriction enzyme be p. Thus
the average relative sizing error R = σ

√

p/L and the aver-
age size of aligned fragments will be L/p2. As usual, let θ
represent the minimum “overlap threshold.” Hence the ex-
pected number of aligned fragments in a valid overlap is at
least n = θLdp

2/L. Let d = 1/p, the inverse of the digest
rate. Feasible experimental parameters are those that result
in an acceptable (e.g. ≤ 10−3) False Positive rate FPT :

FPT ≈ 2M2

( ⌈2nd + 2⌉
⌊2n(d − 1)⌋

)

(R
√

πe
8 )n

√
nπ

e
2(d−1)nR√

2π

To achieve acceptable false positive rate, one needs to
choose an acceptable value for the experimental parameters:
p, σ, Ld and coverage. FPT exhibits a sharp phase tran-
sition in the space of experimental parameters. Thus the
success of a mapping project depends extremely critically
on a prudent combination of experimental errors (digestion
rate, sizing), sample size (molecule length and number of
molecules) and problem size (genome length). Relative siz-
ing error can be lowered simply by increasing L with a choice
of rarer-cutting enzyme and digestion rate can be improved
by better chemistry.

As an example, for a human genome of size G = 3, 300Mb
and a desired coverage of 6×, consider the following experi-
ment. Assume a typical value of molecule length Ld = 2Mb.
If the enzyme of choice is pac I, the average true frag-
ment length is about 25Kb. Assume a minimum overlap1

of θ = 30%. Assume that the sizing error for a fragment of
30kb is about 3.0kb, and hence σ2 = 0.3kb. With a digest
rate of p = 82% we get an unacceptable FPT ≈ 0.0362.
However just increasing p to 86% results in an acceptable
FPT ≈ 0.0009. Alternately, reducing average sizing error
from 3.0kb to 2.4kb while keeping p = 82% also produces an
acceptable FPT ≈ 0.0007.
Acknowledgment. Our thanks go to Naomi Silver, Rohit
Parikh, Raghu Varadhan, Joel Spencer, Alan Frieze, Sylvain
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A1. Bound for section 4.2

Assume the same notation as in section §4.2: We can provide
a somewhat better bound when p is small, i.e., p ≈ 1/k.

Let α be a function of p and k:

α ≡ 1−(1−p)k−kp(1−p)k−1 ≥ 1−(1+p(k−1))e−p(k−1),

and let

n ≥
(

k2

2α

)

ln

(

k

k − ln k − c

)

, where k − ln k > c.

Construct a random subgraph GR = (V, ER) of G as follows:
For any given observation with two or more cuts choose one
edge at random from all the possible edges that the observa-
tion contributes to G. Discard those observations with fewer
than two cuts. Thus with every observation, when we add
an edge we do so uniformly randomly and independent of
all the other edges chosen in GR. Note that the probabil-
ity that an observation has two or more cuts is α and the
probability that an edge is added to GR in an observation is
2α/k(k − 1) > 2α/k2.

For any pair [f(hi), f(hj)], the probability that this edge
does not occur in GR is less than

(

1 − 2α

k2

)n

≤ e−2αn/k2 ≤ 1 − ln k + c

k
,
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and thus the “edge-probability,” pe (the probability that this
edge occurs in GR) is

pe ≥
(

ln k + c

k

)

.

Thus by the well-known result on the connectivity in random

graphs [Spe87], we see that with pe ≥
(

ln k + c

k

)

,

lim
k→∞

Pr [Gk,pe
is connected] = e−e−c

.

Note that

α ≥ min

[

4

5
,
p2(k − 1)2

16

]

and if k ≫ c then

ln

(

k

k − ln k − c

)

≤ (1 + o(1))

(

ln k + c

k

)

.

Thus it suffices for our purpose to choose

n ≥ max

[(

5 + o(1)

8

)

k(ln k + c),
8 + o(1)

p2

ln k + c

k

]

.

Theorem 8.1 Let ǫ be a positive constant and c ≥ ln(2/ǫ).
Then for

n ≥ max

[

ln k + c

p
,

(

5 + o(1)

8

)

k(ln k + c),

(

8 + o(1)

p2

)

ln k + c

k

]

,

with a probability at least 1−ǫ, the correct ordered restriction
map can be computed in O(nk2) time. 2

Furthermore, we conclude that, for p ≥ 1/k, n =
O(k log k) observations suffice to find the true map without
any other prior knowledge of p.

A2. Discretization

As before, let us assume that the clone DNA is of length
L bps. Let ∆ represent a small subinterval and δ = ∆/L.
Thus the unit length is partitioned into M = 1/δ = L/∆
consecutive subintervals. We write r = λfδ = ∆λf/L to
denote the probability that we shall observe one spurious
cut in a subinterval.

Typical values for various clones may be as follows: for
lambdas, M can range from 200 to 2, 000 and r ≈ 10−3–
10−4; for cosmids, M is 2, 000–4, 000 and r ≈ 10−4; for BACs
M ≈ 15, 000 and r ≈ 10−4. In general, even for significantly
smaller (but still realistic) values of M , r ≪ p.

Bounds

We write p̂ = p + r − pr to denote the probability that a
subinterval contains a true or spurious cut site. We will use
the following simplifying assumption:

27r < p.

More precisely, p̂/6r > 2e − 1.
We summarize the bounds as follows:

Theorem 8.2 Let ǫ be a positive constant and c ≥ ln(5/ǫ).
Then for

n ≥ 9

p
max

[

ln(k + m) + c,
2(lnk + c)

p
,
lnm + c

p
,

(ln(L/2∆− k − m) + c)

]

,

(L > 2∆ and r < p/27), the probability that the correct
ordered restriction map can be computed in O(n(L+k2+m))
time is at least 1 − ǫ. 2

We will now introduce two parameters ǫ1 = p̂/6r and ǫ0,
and guarantee that ǫ1 > 2e − 1 and ǫ0 ≥ 1/2. Furthermore,
we have

(1 + ǫ1) < p̂/4r.

Phase 1 a

In phase 1 a, our goal is to construct the set

{f(h1), f(h2), . . . , f(hk+m)},

by considering the observation-based sets

{f(si1), f(si2), . . . , f(sili)}, i = 1, . . . , n.

and including only those f(sij)’s that occur in significantly
large numbers of times, determined by a threshold Th1. Sup-
pose that a location f(h) corresponds to a true location,
then the number of f(sij)’s equal to f(h) must follow a Bi-
nomial distribution ∼ S(n, p̂), if it is an asymmetric cut
and ∼ S(n, 2p̂), if it is a symmetric cut. If on the other
hand, f(h) does not correspond to any true location, then
the number of f(sij)’s equal to this f(h) must follow a Bi-
nomial distribution ∼ S(n, 2r).

If we set the threshold at

Th1 = (1 + ǫ1)2nr <

(

p̂

4r

)

2nr <
np̂

2
.

then Th1 = (1 − ǫ0)np̂, where ǫ0 ≥ 1
2 .
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By assumption (statement of the theorem above),

n >
8

p̂
max [ln(k + m) + c, ln(M/2 − k − m) + c] .

Thus (using the Chernoff bound [ASE92])

Pr

[

S(n, p̂) ≤ (1 − ǫ0)np̂

]

≤ e−(ǫ20/2)np̂

< e−np̂/8 <
e−c

k + m
.

Thus the probability that all the correct cuts appear in
the computed set is bounded from below by e−e−c

.
Again, using the Chernoff bound [ASE92] in the other

direction, we get

Pr

[

S(n, 2r) ≥ (1 + ǫ1)2nr

]

≤ 2−(1+ǫ1)2nr < 2−(p̂/6r)2nr

≤ e−((ln 2)/3)np̂

< e−np̂/8 <
e−c

M/2 − k − m
.

Thus the probability that no spurious cut appears in the
computed set > e−e−c

.

Phase 1 b

In phase 1 b, our goal is to construct the set of asymmetric
cuts

{f(h1), f(h2), . . . , f(hk)},

by eliminating the symmetric cuts. Suppose that a loca-
tion f(h) corresponds to a symmetric true cut site, then the
number of times an observation has sites at s′ = f(h) and
s′′ = f(h)R must follow a Binomial distribution ∼ S(n, p̂2).
If on the other hand, f(h) is not a symmetric site, then the
corresponding number must follow a Binomial distribution
∼ S(n, p̂r).

If we set the threshold at

Th2 = (1 + ǫ1)np̂r <

(

p̂

4r

)

np̂r <
np̂2

2
.

then Th2 = (1 − ǫ0)np̂2, where ǫ0 ≥ 1
2 .

By assumption (statement of the theorem above),

n >
1

p̂2
max

[

8(lnm + c),

(

6

ln 2

)

(ln k + c)

]

.

Thus (using the Chernoff bound [ASE92])

Pr

[

S(n, p̂2) ≤ (1 − ǫ0)np̂2

]

≤ e−(ǫ20/2)np̂2

< e−np̂2/8 <
e−c

m
.

Thus the probability that all the symmetric cuts are cor-
rectly classified is bounded from below by e−e−c

.
Again, using the Chernoff bound [ASE92] in the other

direction, we get

Pr

[

S(n, p̂r) ≥ (1 + ǫ1)np̂r

]

≤ 2−(1+ǫ1)np̂r < 2−(p̂/6r)np̂r

≤ e−((ln 2)/6)np̂2

<
e−c

k
.

Thus the probability that no symmetric cut is misclassified
is bounded from below by e−e−c

.

Phase 2

The proof proceeds in a manner similar to the one given for
the non-discretized case. In phase 2, our goal is to assign
consistent sign labels to the asymmetric cuts

{f(h1), f(h2), . . . , f(hk)},

so that the final map can be constructed correctly with high
probability.

Let Sh1 denote the set of observations containing a cut
site matching f(h1), and St

h1
denote the set containing a

true cut site matching f(h1). Note that |Sh1 | ≥ |St
h1
| and

|St
h1
| follows a Binomial distribution ∼ S(n, p). Using the

Chernoff bound, we have

Pr

[

S(n, p) <
9

p
(ln k + c)

]

< e−np/8 < e−c.

Let n1 be the number cut sites matching h1. Thus

n1 ≥ 8(p̂ + r)

p̂2 + r2
(ln k + c) =

8

β+
(ln k + c),

with a probability > 1 − e−c. Here β+ ≡ (p̂2 + r2)/(p̂ + r).
Consider a potential edge [f(h1), f(hi)]. Let ni denote

the number of times two cut sites matching f(h1) and f(hi),
respectively, appear in the same half [either in (0, 1/2) or in
(1/2, 1)] in an observation in Sh1 . If the correct edge labeling
is +1 then ni has a Binomial distribution ∼ S(n1, β+), where
β+ ≡ (p̂2 + r2)/(p̂ + r). If on the other hand, the correct
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edge labeling is −1 then ni has a Binomial distribution ∼
S(n1, β−), where β− ≡ (2p̂r)/(p̂ + r)).

Set the threshold at

Th3 = (1 + ǫ1)n1β− <

(

p̂

4r

)

n1β−

<
n1p̂

2

2(p̂ + r)
≤ n1β+

2
.

Thus Th3 = (1 − ǫ0)n1β+, where ǫ0 ≥ 1
2 .

Thus (using the Chernoff bound [ASE92])

Pr

[

S(n1, β+) ≤ (1 − ǫ0)n1β+

]

≤ e−(ǫ20/2)n1β+ < e−n1β+/8 <
e−c

k
.

Again, using the Chernoff bound [ASE92] in the other
direction, we get

Pr

[

S(n1, β−) ≥ (1 + ǫ1)n1β−

]

≤ 2−(1+ǫ1)n1β− < 2−(1+p̂/6r)n1β−

≤ e−((ln 2)/3)n1β+ <
e−c

k
.

Thus it follows that the probability that all the edges re-
ceive the correct edge labeling is > (1 − e−c)e−e−c

. This
concludes the proof.


