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Abstract

This paper describes a set of novel tools for analyzing trajecto-

ries of bio-chemical pathways, where these trajectories are ob-

tained either through in silico simulations or through in vitro or

in vivo time-course data. In particular, we describe two inter-

esting tools—NYU BioSim and NYU BioWave, within a more gen-

eral Simpathica system—that store, analyze and group time-series

representations of bio-chemical trajectories by using a multi-

resolution time-frequency analysis for optimal basis selection. We

illustrate, by examples, how it can be used to understand the be-

havior of a family of artificial biological circuits. We also show

how these tools interact with a model-checking system to present

qualitative distinctions among the groups within the family of bi-

ological circuits or among the different multi-modal behaviors of

a single pathway.

1 Some Preliminary Remarks

Understanding biology by modeling cellular processes and
genome evolution has emerged as a challenging new area:
“systems biology.” Sitting at the interface of mathematics
and biology, this subject aims to address many questions
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requiring consilience of elegant ideas and concepts from ap-
plied mathematics, theoretical computer science, logic and
physical modeling. The impulse has come from better under-
standing of processes involved at molecular level, technology
at meso- and nano-scale, ability to perform high through-put
experiments and vast amount of genomic and proteomic data
that can now be generated and made publicly available for
processing. In response to these challenges, a group of sci-
entists and mathematicians belonging to NYU/Courant
Bioinformatics Group has concentrated its collective at-
tention on these questions.

An accelerating impulse to this group’s work was pro-
vided by the DARPA’s BioCOMP/BIOSPICE project in-
volving several external investigators as well. As a part of
this research effort, we have been creating computational
tools (e.g., Simpathica, NYU BioSim, NYU BioWave and XS-
System—subject of this paper), integrating these tools with
the other tools in the larger effort (www.biospice.org), and
participating in the design of the systems, languages and ex-
periments involved in this effort.

The group focuses on four areas of research. (a) Biochem-
ical Process Theory, (b) Evolutionary Processes, Genomes
and Pathway Models, (c) Advanced Tool Architectures and
(d) Experimental Research. The main emphasis is naturally
placed on providing biologists and biotechnologists with the
capability to analyze large and complex biological systems
and devise intelligent experiments without being forced to
deal with the mathematical details and complexity of the
system. NYU/Courant Bioinformatics Group has de-
veloped and implemented a computational system, Simpath-

ica, which allows users to construct and rigorously analyze
models of biochemical pathways composed out of a set of
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basic reactions—such as reversible reaction, synthesis, degra-
dation, reaction modulated by enzymes and coenzymes, mul-
timerization, etc. Because of the fundamental nature of
these basic building blocks, it is relatively easy to connect
Simpathica, through a translator, to other public pathway
databases — e.g., NCI CGAP (Cancer Genome Anatomy
Project), KEGG, Biocarta, Biocyc, etc. Simpathica is able to
construct a rigorous mathematical description of these path-
ways through PDE’s, ODE’s, and SDE’s; create a qualitative
model (Kripke structure or hybrid automata) efficiently; and
compose these models hierarchically and reason about the
system’s behavior in a propositional branching time tempo-
ral logic. Thus, Simpathica is powerful enough to deal with
large biochemical systems, disease models, or models dealing
with a large family of cell lines, and mutants.

Furthermore, Simpathica has an “easy-to-use” structure
that “hides” all the mathematical details: users create mod-
els of the biochemical pathway diagrammatically (or down-
load existing models that are further modified and then com-
posed) and navigate through the analysis tools either by vi-
sual inspection of the trajectory or by engaging in a dialogue
with Simpathica by proposing various hypotheses that Sim-

pathica either ascertains or refutes—when Simpathica refutes
a hypothesis it provides a “counter-example” to the user.
Moreover, because of qualitative nature of the analysis, of-
ten Simpathica can analyze a system convincingly even when
it does not have access to the full set of kinetic parameters
operating in vivo.

Simpathica can deal with traces (time course data) that
are the product of wet-lab experiments or computer simula-
tions. Simpathica manipulates these traces with a variety of
techniques and tools: standard visualization tools, exhaus-
tive “queries” expressed with a branching time propositional
temporal logic formalism, clustering and pattern matching
using multiresolution time-frequency techniques.

Generally speaking, starting as an input a trace of a bio-
chemical pathway, (i.e. a time-indexed sequence of state
vectors representing a numerical simulation of the pathway),
Simpathica can perform the following operations.

• Simpathica answers complex questions involving several
variables about the behavior of the system. To this end
we defined a query language based on temporal logic
formalism. Thus we can, formulate queries like

eventually(not always(LacI < 1.3)

or always(LacI > 4.0)).

In the above example, the query expresses the fact that
the value of the ‘LacI’ variable “oscillates” between
the two values of 1.3 and 4.0. The system being ana-
lyzed is the repressilator system of Elowitz and Leibler.

The analysis tool provides counter examples when input
query fails to hold true or restricts the conditions under
which the query can be satisfied.

• Simpathica stores traces in a database and allows easy
search and manipulation of traces in this format. The
analysis tools allow these traces to be further exam-
ined to extract interesting properties of the bio-chemical
pathway. Simpathica contains a prototype subsystem
(called NYU BioSim) as its main simulation database.

• Simpathica classifies several traces (either from a single
experiment or from different ones) according to features
discernible in their time and frequency domains. Mul-
tiresolution time-frequency techniques can be used to
group several traces according to their features: steps,
decreases, increases, and even more complex features,
such as, memory. Simpathica contains a prototype sub-
system (called NYU BioWave), which implements these
classification procedures using Matlab.

• With these tools, Simpathica provides an environment to
suggest plausible hypotheses and then, refute or validate
these hypotheses with experimental analysis of time-
course evolution. It also allows investigating conditions
or perturbations under which a metabolic pathway may
modify its behavior to produce a desired effect (an in-
stance of a control engineering problem).

2 Mathematical Models and Tra-

jectory Generation

In Simpathica, biochemical reactions are modeled with sets
of differential equations. Each reaction is thought of as a
module and belongs to one of many types: reversible re-
actions , synthesis , degradation, and reactions modulated by
enzymes and co-enzymes or other reactions satisfying certain
stoichiometric constraints . If the stochastics in these reac-
tions are ignored (i.e., mass-action models), each of these
reactions can be described by a first order algebraic dif-
ferential equation whose coefficients and degrees are deter-
mined by a set of thermodynamic parameters. As an exam-
ple, reaction modulated by an enzyme leads to the classi-
cal Michaelis-Menten’s formulation of reaction speed as es-
sentially differential equations for the rate of change of the
product of an enzymatic reaction. The parameters of such
an equation are the constants Km (Michaelis-Menten Con-
stant) and Vmax (maximum velocity of a reaction). In a
simple formulation, such as in S-system [Voi91, Voi00], this
approach provides a convenient way of describing a biochem-
ical pathway as a composition of several primitive reaction
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modules and then automatically translating them into a set
of ODE’s with additional algebraic constraints. Simpathica

and XS-system [Mis02, APP+03] (an extension of the basic
S-System) retains this modular structure while allowing for
a far richer set of modules.

Canonical Forms. A set of differential equations in XS-
system can always be rewritten (recast) in special canonical
forms by purely algebraic transformations and further inclu-
sions of a set of algebraic constraint equations. Canonical
forms have several advantages over more general forms of
equations, since they can be more easily manipulated, inte-
grated and interpreted in mathematical terms.

An XS-system is simply a list of expressions describing the
rate of change of a given quantity in a model (say the con-
centration of a compound), plus a set of equations describing
some constraints on the relationships among some of the pa-
rameters characterizing the model. Each of the expressions
describing a rate has a very simple form as well: it is sim-
ply a difference between two algebraic power-products (or
monomials) one representing synthesis and the other, disso-
ciation. More formally we have the following: An XS-system
is defined by a set of pairs of equations (a rate equation and
a constraint equation)
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g1i

1 X
g2i

2 · · ·Xgni
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1 Xh2i
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n
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with index variables, i ranging from 1 to n, and j, from 1
to k. This formalism describes an XS-system with n equa-
tions and k constraints. An XS-system can be interpreted
as the representation of a set of flows of reactants within
a network of reactions [Voi00] and thus describes how to
algorithmically translate a graphical rendition of such reac-
tion networks into the equations in a canonical form. Our
XS-system formulation naturally captures these steps in a
computer-assisted translation, which had been traditionally
carried out by a manual manipulation; see [Voi00].

The XS-system formulation makes one more distinction
between dependent and independent variables. Independent
variables represent environmental conditions which influence
the behavior of the system but which do not influence them-
selves in return. Dependent variables are all the others. Of
course, to complete the description of the system it is nec-
essary to specify all the rate constants (α’s and β’s) and
the kinetic orders (g’s, h’s, and c’s) of each equation and
constraint.

Once such a representation is obtained, behavior of the
system can be analyzed by examining the temporal relations
between the independent and dependent variables in terms

of the sets of trajectories (traces) as the initial conditions
and parameters vary over their possible realistic values. The
sets of tools presented here provide an automated approach
to derive the equations for the biochemical pathways, nu-
merically simulate them to create trajectories as time-series
traces, store and catalogue these traces in a database and an-
alyze and classify these functional data to gain insight into
the biological function of the pathway.

3 Trajectories Storage in NYU

BioSim

NYU BioSim is a database system for storing time-indexed
simulation data. The need for such a system arose from the
fractious state of affairs met by several researchers within
the NYU/Courant Bioinformatics Group and outside
it—namely, in the larger BioSpice community.

Time-indexed (or time-course, time-series) data is being
generated by many researchers and they always appear in
the format

〈t, v1, v2, . . . , vk〉i, for i = 0, . . .N,

decorated with some “meta” information, such as the name
of the quantities being measured and the circumstances of
the “experiment”. We found that managing this kind of
data in a more organized way is key to making sure that
our research results are easily reproducible and analyzable,
especially by third party laboratories.

Thus, we decided to build a simple yet versatile, central-
ized facility to ease the storage, retrieval, and above all, clas-
sification of time-indexed data sets: NYU BioSim.

The system has a three-tier architecture insuring scala-
bility. A Postgresql relational database management system
forms the back-end tier. The middle application tier com-
prises Java servlets and supporting modules that respond to
client requests and interact with the database. The front-end
is a Java application that provides an easy and intuitive GUI
(graphical user interface). The GUI communicates with the
server side using an XML data exchange format over HTTP.
The architecture is illustrated in Figure 1.

The system is accessible to anyone with an internet con-
nection1. Users with IDs and passwords can save, edit and
retrieve private data. Other users can log on as a guest and
view and retrieve public data. The login screen is shown in
Figure 2.

The system allows controlled access to data so that only
users with the correct authorization can view private data.

1See http://bioinformatics.cat.nyu.edu/nyumad for information
on how to download and use the client GUI application.
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Figure 1: The three-tiered architecture of NYU BioSim.

Figure 2: NYU BioSim login screen. The NYU BioSim user
interface is architecture independent and it will work on any
platform that supports a Java virtual machine.

Figure 3: NYU BioSim data set.

Each dataset has an ownership that determines its visibility.
Collaborating groups can allow shared visibility of the data
between their groups. After publication data can be made
publicly available with a simple command. Public data can
be viewed by all users, including guest users.

The system stores a set of simulation trace data as a ma-
trix, each column representing a simulated variable and each
row representing a time point. Simulation data sets (matri-
ces) are grouped under an experiment. Users create experi-
ments, and for each experiment they can generate and store
several sets of simulation data. Figure 3 shows a view of one
such data set.

The GUI makes the importing of new data easy. New data
sets are imported in to the system by cutting and pasting in
to an importing area or by loading from a file. After import-
ing data, synthetic data sets can be created by combining
columns from different but compatible matrices. Data can
be exported to the system clipboard from all the screens
where matrix data is loaded or viewed, providing very flexi-
ble and efficient data retrieval for further analysis. There is
a custom ‘Export’ screen where any combination of compat-
ible columns can be exported.

The security model of the system controls visibility and
read/write access to the data. Each user belongs to a pri-
mary group which gives them read access to all the data
belonging to members of that group. An administrator tool
is used to set and edit a user’s write access and additional
access rights to data from other groups.

For viewing data, users have the flexibility to restrict data
query to data categories of interest. This will be a useful
feature as the number of experiments and data sets increases.
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Figure 4: A data set with two factors and a synopsis.

The query panel can be seen on the two figures above. There
are four major data categories.

1. Public Data: visible to all users including ‘guest’ users.

2. User Data: the user’s private data, visible only to other
members of the same group.

3. Group Data: data from other members in the same
group as the user.

4. Other Group Data: data from other groups giving the
user access rights.

Collaborating groups that share data will see the data
from other groups under the ‘Other Group Data’ category.
In the tree view of the data hierarchy, the different data cat-
egories are color-coded for easy identification. Furthermore,
the data query can be restricted to experiments with names
matching a given pattern.

In addition to basic simulation data it is possible to store
associated data such as experimental factors and parameters
as well as free format descriptive text for each experiment or
data set. If there are common sets of factor and parameter
data, a template of such factors can be created for easy input.
Figure 4 shows a data set with two factors and a very brief
synopsis.

Figure 5: Simple test case used to evaluate NYU BioWave:
30 β functions evaluated with different parameters, and 10
step functions with different shifts, steepness and amplitude.

4 Time-Frequency Analysis within
NYU BioWave

Many biological experiments (especially in silico experi-
ments) produce time course data which can be analyzed both
in time and frequency domains to extract interesting func-
tional properties. To this end we have constructed NYU

BioWave, a tool that can find similarities in the ‘shape’ of
time course data, that is, it can easily group together mea-
surements of different quantities based on their time-course
behavior. As an example, it can group together all trajecto-
ries that present a ‘step’ feature, thus easing the detection
of relationships among observed variables. Moreover, it can
do so across several datasets (e.g. datasets corresponding to
different values of controlled parameters.)

The mathematical theory behind the NYU BioWave tool is
primarily based upon Multiresolution Time-Frequency Anal-
ysis through Wavelet Decompositions [Mal99]. We will de-
scribe the overall structure of our application in Section 4.1.
In Figures 5 and 6 we show a simple and artificial test case
used to validate NYU BioWave capabilities, and the NYU

BioWave user interface (built in Matlab).
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Figure 6: A view of the NYU BioWave user interface. There
are three windows visible. In the background there is the dia-
log showing the connection to NYU BioSim, in the foreground
there are the two windows that constitute the “classifier in-
spection tool.” The group comprising the step functions is
being reviewed (the functions are normalized before being
plotted).

4.1 Using a Multiscale Optimal Basis Se-
lection Algorithm to Classify Tra-
jectories

NYU BioWave utilizes a multiscale basis selection algorithm.
The first example in this class of algorithms, the best ba-
sis algorithm can be found in [CW92]. There, given bi-
orthogonal wavelet filter denoted by [v, w], the best basis
algorithm defines a method for searching a subset of O(M)
(the set of orthogonal transformations in R

M ). O(M) is
generated by wavelet filter trees [v, w], and has a number of
interesting mathematical properties, which we do not discuss
here (again, cfr. [CW92]). We denote the subset analyzed by
the algorithm as K[v, w] ⊂ O(M). The best-basis algorithm
searches K[v, w] by means of a heuristic tree pruning algo-
rithm.

NYU BioWave implements a computational scheme to an-
alyze arbitrary continuous function α : R

M → R. Given
a wavelet filter [v, w] and a continuous function α, NYU

BioWave defines a method for searching a subset of O(M)
that uses a tree pruning algorithm whose operation is gov-
erned by the function α. The original best-basis algorithm
is then an instance (with α being the entropy function) of
the algorithm implemented in NYU BioWave.

Trajectory Classification

NYU BioWave eventually associates a ‘score’ si ∈ R to each
trajectory fi examined, with i = 0 . . . n.

Currently, the ‘score’ is a value derived from the entropy
of the trajectory. The set of scores is simply S = 〈si〉.
These scores are then partitioned in groups, according to
the characteristics of their distributions. At present, NYU

BioWave implements a simple grouping scheme that opti-
mizes gaps between the groups. The scheme is based on the
computation of a “moving average” µ̂ and relative standard
deviation σ̂ of the “distances” DS = 〈si+1 − si〉 between
the scores. Two scores si and sj are grouped separately if
|sj − si| > µ̂ + 2σ̂. Of course, this method of clustering en-
tropy scores is rather coarse and arbitrary and requires fur-
ther research. However, we note that this approach works
well when there is a known correlation among the fi’s (as is
the case with the example described in Section 5).

An alternative and a more sophisticated way to assign a
score to each trajectory would be to compute the set {ǫij} de-
fined as the “entropy of the coefficients of the representation
of fi, with respect to the best basis computed for fj .” We
could then group fi and fj together, based on ‖ǫij−ǫii‖ ≤ κ,
for a given parameter κ. In other words, we consider a pair
of functions similar, when they are ‘close’ with respect to
their representation in terms of the optimal basis associated
to the function2.

Finally, we note that, this clustering problem is quite dif-
ficult to solve in a complete general and more sophisticated
way, and we will explore it in more detail in a different set-
ting.

5 Biological Circuit of Guet et

al.

As a rather simple example of how NYU BioWave and NYU

BioSim may be used in analyzing biological systems, we will
focus on a “bio-circuit” originally designed by Guet and oth-
ers [GEHL02].

The original motivation for designing such a family of syn-
thetic networks by combinatorial variations of the network
topology were given as follows [GEHL02]: “A central prob-
lem in biology is determining how genes interact as parts
of functional networks. Creation and analysis of synthetic
networks, composed of well-characterized genetic elements,
provide a framework for theoretical modeling. ... Combina-
torial synthesis provides an alternative approach for study-
ing biological networks, as well as an efficient method for
producing diverse phenotypes in vivo.” Nonetheless, lack
of efficient tools for modeling and analysis of such synthetic
networks has hindered many possible applications of these

2We also note that the criteria we described is not symmetric. We
will describe the detail of our approach in a different setting.
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networks. Clearly, with appropriate tools, one could foresee
applications where millions of randomly generated networks
could be screened for selection of primitive circuits with spe-
cific properties (robustness, immunity to noise, etc.), or as
building blocks of larger circuits with specific temporal prop-
erties, or even as scaffold structures for measuring kinetic
parameters of a component as it operates in vivo. Here,
we suggest that NYU BioSim and NYU BioWave and their
planned software progenies respond to these demands quite
well.

In the scheme created by Guet and colleagues, they used a
combinatorial method to generate a library of networks with
varying connectivity and implemented them as plasmids ca-
pable of transfecting Escherichia coli . These networks were
composed of genes encoding the transcriptional regulators
LacI, Tet, and λ CI, as well as the corresponding promot-
ers. Although the networks had time-varying output tra-
jectories for a fixed input and implemented sequential cir-
cuits, Guet et al. characterized their phenotypic behaviors
as resembling binary logical/combinatorial circuits, with two
chemical “inputs” and a fluorescent protein “output.” Nev-
ertheless, the biological experiments indicated a rich and di-
verse set of functions dependent on network connectivity and
raised questions about how to design appropriate computa-
tional tools to analyze them.

In this paper [GEHL02], the authors generated a com-
binatorial library composed of a small set of transcrip-
tional regulatory genes and their corresponding promot-
ers and varied their connectivity in a combinatorially
exhaustive manner. They chose genes of three well-
characterized prokaryotic transcriptional regulators: Lac,
Tet , and λ cI. The binding state of LacI and TetR can
be changed with the small molecule inducers, isopropyl
b-D-thiogalactopyranoside (IPTG) and anhydrotetracycline
(aTc), respectively. In addition, they also selected five
promoters regulated by these proteins (i.e. Lac, Tet,
and λ CI), which span a rather broad range of regulatory
characteristics—e.g., repression, activation, leakiness, and
strength. Two of the promoters are repressed by lac (to
be referred to as PL1 and PL2), one is repressed by tet(to
be referred to as PT), and finally, the last two are regulated
by λ ci, one positively (Pλ+) and one negatively (Pλ

−
).

Their genetic assembly scheme ensured that each network in
the library has the following structure: Pi-lac-Pj-λ ci-Pk-tet,
where each Pi, Pj , and Pk ∈ {PL1,PL2,PT,Pλ+,Pλ

−
} is

implemented as any of the five promoters. Thus, the regula-
tory genes on each plasmid interact (i.e., activate or repress)
with one another, generating networks with diverse connec-
tivities. A separate plasmid consisting of a reporter gfp and
repressed by λ ci is used to measure the biological activity

of the synthetic network through the fluorescence of gfp.
In this paper, we will model all possible 53 = 125 dif-

ferent networks and by examining their trajectories group
them into various classes and examine how well this group-
ing coincides with the others based on topology. Since the
networks constructed this way encompass a wide range of
motifs (including negative and positive feedback loops, os-
cillators, and toggle switches) they present an interesting
family of trajectories to NYU BioWave.

In summary the system to be analyzed consists of the
following:

1. There are combinations of four genes: lac, λ ci, tet and
gfp, of which the first three interact with each other by
pair-wise activation or repression and the last one (gfp)
is used as an output. The corresponding proteins are
denoted as lac, λ ci, tet and gfp. Their concentra-
tions will be indicated by the notation [x] (e.g., [lac] is
the concentration of lac-mRNA and [lac] is the concen-
tration of lac-protein). The temporal rate of change of
concentration will be denoted as [ẋ].

2. The small molecule inducers IPTG and aTc act as the
inputs to the system through their inactivation of the
lac and tet genes, respectively.

3. There are five Operons: two lac-based: PL1, PL2; two
λ ci-based: Pλ

−
, Pλ+; one tet-based: PT.

4. Total 53 = 125 different combinatorial circuits are pos-
sible. A circuit is denoted as Pi-lac-Pj-λ ci-Pk-tet, in-
dicating that Pi determines the transcriptional state of
lac; Pj determines the transcriptional state of λ ci and
Pk determines the transcriptional state of tet.

5. For instance the circuit Pλ+-lac-PL1-λ ci-PL1-tethas
the following connections:

(a) lac is activated by λ ci.

(b) λ ci is repressed by lac, and lac is inactivated by
IPTG.

(c) tet is repressed by lac, and lac is inactivated by
IPTG.

(d) gfp is repressed by λ ci.

In our analysis we will make several simplifying assump-
tions: (1) All genes have similar time constants; (2) mRNA’s
instantaneous concentration depends on the transcription
process, its leakiness and its instability (i.e., how it de-
grades); (3) Protein’s instantaneous concentration depends
on the translation process and its degradation. Their dy-
namic state-evolution equations can be written in terms of
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two intrinsic parameters α (governing mRNA) and β (gov-
erning protein) as well as Hill-coefficient like terms (n and
k), leakiness term (ρ) and saturation terms (θ).

If x denotes a gene and X its corresponding protein, we
have the following equation for x’s transcription:

[ẋ] = −[x] + α[ρ + fx(θ, [Y ], [uy])]

where

fx(θ, [Y ], [uy]) =
1 + θ[Y ]n + [uy]k

1 + [Y ]n + [uy]k
.

In this equation, the transcription is activated or repressed
by a protein Y and Y , itself is modulated by a small molecule
uy. Note that, for small values of [uy], fx shows a sharp
transition from a value of 1 (when [Y ] = 0) to a value of θ

(when [Y ] = ∞), as Y increases. However, for large values
of [uy], fx remains at 1 (when [uy] = ∞), thus inactivating
the effect of Y .

Similarly, we have the following equation for X ’s (corre-
sponding protein) translation:

[Ẋ] = −β([X ] − [x]).

Going back to our example circuit Pλ+-lac-PL1-λ ci-
PL1-tet, we can write down in a straightforward manner
the corresponding ODE’s as shown below:

˙[lac] = −[lac] + αρ + α
1 + θa[λ ci]n

1 + [λ ci]n

˙[lac] = −β([lac] − [lac])

˙[λ ci] = −[λ ci] + αρ + α
1 + θs[lac]n + [IPTG]k

1 + [lac]n + [IPTG]k

˙[λ ci] = −β([λ ci] − [λ ci])

˙[tet] = −[tet] + αρ + α
1 + θs[lac]n + [IPTG]k

1 + [lac]n + [IPTG]k

˙[tet] = −β([tet] − [tet])

˙[gfp] = −[gfp] + αρ + α
1 + θs[λ ci]n

1 + [λ ci]n

˙[gfp] = −β([gfp] − [gfp])

Thus,

1. The first two equations model the fact that lac is acti-
vated by λ ci.

2. The next two equations model the fact that λ ci is re-
pressed by lac, and lac is inactivated by IPTG.

3. The next two equations model the fact that tet is re-
pressed by lac, and lac is inactivated by IPTG.

4. The last two equations model the fact that gfp is re-
pressed by λ ci.

We used the following parameters and simulation func-
tions:

˙[IPTG](t) = − exp(−t)[IPTG](0)

[IPTG](0) = x0 = 3

˙[aTc](t) = − exp(−1.1t)[IPTG](0)

[aTc](0) = y0 = 3

α = 5

β = 1

ρ = 0.1

θs = 0 implying suppression

θa = 2 implying amplification

n = 2

k = 2,

and note that in our normalized equations, we have

• α = concentration of proteins per cell from unrepressed
promoter

• αρ = concentration of proteins per cell from repressed
promoter

• β = protein : mRNA decay rate ratio

• n = Hill (cooperativity) coefficient of the repressor

• k = Hill (cooperativity) coefficient of the small molecule

5.1 Analysis

We ran simulations for each of the 125 circuits with the
inputs listed in Table 1. The simulations were run using
Matlab standard Ordinary Differential Equations integrators
In each run all 125 circuits were tested until a steady state
was reached. The result was a set of 125 trajectories for
each input pair 〈IPTG, aTc〉 (i.e. 4 sets). Two kinds of
analysis were performed on the resulting sets of data: a time-
frequency analysis using NYU BioWave and a classification
of combinatorial circuits using Simpathica/XSSYS.
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IPTG aTc

0.0 0.0
0.0 3.0
3.0 0.0
3.0 3.0

Table 1: Initial concentrations of the input molecules (to be
interpreted as µMol) IPTG and aTc. The concentrations
of IPTG and aTcdecay exponentially in each experiment.
Each set of inputs was fed in turn to the 125 circuits. Each
simulation was performed until a steady state was reached.

5.1.1 Analysis: Time-Frequency

The motivating example is taken from the work of Guet et al.
We analyze the ODE behavior using the non-linear projec-
tion discussed in Section 4.1. The results are 125 projection
points in the range [1.3905× 10−2, 2.6561× 10−2] which are
divided into 4 classes with our multi-resolution-adaptive bin-
ning algorithm. The 4 classes are presented below as images
obtained from NYU BioWave. Of significant interest is that
the 4 classes are associated to at least as many hypothe-
sized circuit topologies. There is consistency in the classes
both in qualitative description of the element functions as
well as the derived circuit topology, thus we believe that to
a certain extent the low-dimensional clustering of the 125
function encodes the underlying circuitry.

5.1.2 Analysis: Temporal Logic

As a simple test of our Simpathica/XSSYS system, we ran
a non-traditional analysis of the four sets of trajectories us-
ing Simpathica Temporal Logic analysis tool: XSSYS. Sim-

pathica/XSSYS sorted the circuits according to the following
properties.

• Circuits exhibiting switch-like properties.

• Circuits exhibiting a boolean behavior (i.e. showing a
combinatorial function of the inputs).

We modified our tool to handle all these cases and pro-
ceeded in the following way.

1. Find good candidate circuits; call this set C.
These are the circuits that present a variation in outputs
given different inputs3.

3This was not really necessary with respect to step 2, as the circuits
eliminated would have been classified as the as either boolean constant
true, or false.)

Circuit Comment

Circuit 104 〈Pλ+, PL1, Pλ
−
〉

Figure 7: The shape of the trajectories in Group 2 is de-
termined by the topological arrangement of the plasmids in
which λ ci (C) activates the transcription of one of the other
genes, while this gene represses the transcription of λ ci. The
sample diagram (Circuit 104) reflects this feature. The triple
of promoters denotes the structure of the circuit.

2. Find which circuit c ∈ C implements one of the basic
2-inputs boolean functions4.

3. Find which circuit admits more than 2 output values.

To test for the first property we used the following method.
Each circuit was simulated given one of of the input pairs in
Table 1. The result is a quadruple of traces for each circuit.
Next we ran a simple script testing whether the steady state
value of each member of the quadruple was above or below
a threshold. This corresponded to formulating the following
TL query on each element of the quadruple.

eventually(always(c < threshold)).

thresholdwas varied in the range [0.5 . . . 5.0] with 0.1 incre-
ments. Any circuit c which failed the query for some element
of the quadruple was marked as “potential circuit.”

4Given two inputs i1 and i2 there are 16 possible boolean functions:
0, 1, i1, i2, ¬i1, ¬i2, OR, AND, NOR, NAND, XOR, NXOR, IF 1 2,
IF 2 1, NIF 1 2, NIF 2 1.
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Circuit Comment

Circuit 76 〈Pλ+, PL1, PL1〉

Figure 8: The shape of the trajectories in Group 3 is de-
termined by the topological arrangement of the plasmids in
which λ ci represses the transcription of one of the other
genes, while this gene represses the transcription of λ ci.
The sample diagram (Circuit 76) reflects this feature. The
triple of promoters denotes the structure of the circuit.

The next step was to test which of the potential circuits
actually represented a boolean one. This step immediately
posed a problem, as certain circuits exhibit a two-valued re-
sponse to the inputs from Table 1, while other exhibit three-
valued response. Moreover, the choice of what constitutes a
high and low response appeared rather arbitrary. To cope
with this problem we devised a procedure that automatically
constructs TL formulæ of the form

Circuit Comment

Circuit 71 〈PT, Pλ+, PL1〉

Figure 9: Group 4 includes the trajectories whose shape is
dominated by the topological arrangement of the plasmids
in which λ ci (C) activates its own transcription and neither
lac (A) nor tet (B) have an affect on the transcription of
λ ci. This feature clearly eliminates the significance of the
topological arrangement of the promoters before LAC and
TETR. The sample diagram of this group shows lambda
CI activating its own transcription, while the relationship is
arbitrary, as long as they do not affect λ ci. Circuit 71 is
a sample of the diagrams representing these functions. The
triple of promoters denotes the structure of the circuit.

eventually(IPTG = 0 and aTc = 0

==> eventually(always(low(c))))

and eventually(IPTG = 0 and aTc = 3

==> eventually(always(high(c))))

and eventually(IPTG = 3 and aTc = 0

==> eventually(always(high(c))))

and eventually(IPTG = 3 and aTc = 3

==> eventually(always(high(c)))).

The formula checks whether circuit c represents an OR gate5.
Mixing the low and high functions yields tests for all the
other 15 two inputs boolean functions. The low and high

functions yields depend on a threshold which can be changed.

5The outer eventually operator is introduced mostly as a techni-
cality
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Figure 10: Group 1 incorporates all remaining plasmids.
Their topology involves unilateral repression of λ ci by one
of the other genes or by itself. The three sample diagrams
reflect these features ( the middle example is an oscillator).

Boolean Function Circuit

¬ IPTG 51 52 56 57 76 77 78 79 80 81 82 83
85

aTc 14 39 64 89 114
aTc → IPTG 61 62

Table 2: The classification of potential boolean circuits given
a threshold of 1.3 µMol. Each number denotes one of the
circuits described in [GEHL02].

Table 2 shows which circuits have been identified as which
boolean circuit, given a threshold of 1.3 µMol.

6 Discussion

In this paper, we have described a set of tools within
Simpathica, specifically designed to perform time-frequency
analysis of the trajectories of bio-chemical pathways and to
classify them into groups for further characterization. Two
of the new tools NYU BioSim and NYU BioWave facilitate
a user to automate this analysis process and handle a large
number of trajectories, obtained either through in silico sim-
ulation or through in vitro or in vivo experiments. The ca-
pabilities of these systems are illustrated through a detailed
analysis of a combinatorial approach to bio-circuit design,
following the scheme suggested by Guet et al. [GEHL02].

Circuit Function Comment

¬ IPTG Circuit 85

〈Pλ−, PL2, Pλ+〉

aTc Circuit 114

〈Pλ+, PT, Pλ−〉

aTc ⇒ IPTG Circuit 61

〈PT, PT, PL1〉

Table 3: Some of the circuits implementing the logic-
combinatorial circuits found with threshold parameter equal
to 1.3µMol. Again the triple of promoters denotes the struc-
ture of the circuit.

Arguably, much research remains to be done before biolog-
ical circuit design can be fully and faithfully carried out in
this manner, but this style of analysis may ultimately pro-
vide a better scheme over other competing approaches based
on tedious hand design or in vitro evolution. Furthermore,
these ideas suggest that our approach will also allow one
to study phenotypical properties of a genetic network in
wild type, by concomitantly studying a family of mutants
and double-mutants obtained by combinatorial knock-outs.
Same approach also suggests that the functional properties
of a novel gene can be studied by combinatorially mixing
it with a family of artificial genetic networks that have al-
ready been characterized. Thus, such combination of bio-
logical experiments with computational and mathematical
tools promises to open up new and exciting opportunities.
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[Liò03] P. Liò. Wavelets in bioinformatics and computational
biology: state of the art and perspectives. Bioinfor-
matics, 19(1):2–9, 2003.

[Mal99] S. Mallat. A wavelet tour of signal processing. Aca-
demic Press, 1999.

[Mis02] B. Mishra. A symbolic approach to modeling cellular
behavior. In Proceedings of HiPC 2002, Bangalore,
India, December 2002.

[Voi91] E. O. Voit. Canonical Nonlinear Modeling, S-system
Approach to Understanding Complexity. Van Nos-
trand Reinhold, New York, 1991.

[Voi00] E. O. Voit. Computational Analysis of Biochemical
Systems A Practical Guide for Biochemists and Molec-
ular Biologists. Cambridge University Press, 2000.

A Appendix

A.1 Web Resources for Simpathica, NYU

BioSim and NYU BioWave

All the software described in this paper is available as part
the DARPA BioSpice distribution (see www.biospice.org).
The DARPA BioSpice project currently makes releases of
the software distribution every six months. Our web site,
bioinformatics.nyu.edumay contain more up to date ver-
sions of the NYU BioSim, NYU BioWave, Simpathica and
other software.

Simpathica is actually a collection of tools: a pathway
editor, a pathway simulator, and an analysis tool based
on a Temporal Logic model checker. This last mod-
ule is also known as Simpathica/XSSYS. An OAA (cfr.
www.ai.sri.com/ oaa) agent providing access to XSSYS is
also available on our site.

NYU BioSim6 is the core infrastructure of our architec-
ture, as all our tools eventually store their time-indexed data
into it. NYU BioSim provides a simple way to import time
series data in a variety of formats. Given an application
that produces time-series data (e.g. BioCharon from Uni-
versity of Pennsylvania – also available from the DARPA
BioSpice distribution), the results can be dumped in NYU

BioSim and made available for a number of analysis tools
(e.g. NYU BioWave). As an extension that will make NYU

BioSim more interoperable with other BioSpice components,
we will deploy an OAA agent supporting reading and writing
operations on the database.

6NYU BioSim is a derivative of NYUMAD, our MGED-compliant
Microarray Database and Microarray Analysis tool.

NYU BioWave is a set of Matlab routines that can be down-
loaded as a standalone package. NYU BioWave can access
NYU BioSim to read data to be analyzed and clustered.

Again, all our software will eventually implement all the
interfaces agreed upon by the participants in the DARPA
BioSpice working groups.


