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ABSTRACT 
Gene clustering based on microarray data provides useful 
functional information to the working biologists. Many current 
gene-clustering algorithms rely on Euclidean-based distance 
metrics and fail to capture the time-dependent features of the 
data, usually corrupted by high levels of experimental noise. Here 
we propose an algorithm capable of dealing with the noise 
through a time-frequency approach and related measure of 
correlation between time-course expressions of different genes 
(trajectories). The approach makes use of fast multi-resolution 
feature classification algorithms and allows for the desired 
functional characteristics (such as phase delay, 
activation/repression etc.) to be enhanced and detected. 
 
We have applied our algorithm to time-course microarray data of 
Drosophila melanogaster (Arbeitman et al., Science, Sep 27, 
2002, page 2270-2275). We examined various relations among 
homeodomain genes (referred to as group H) and regulators of 
homeodomain genes (group RH) as follows: After normalization, 
the trajectories were projected on to CosBell wavelet basis. The 
four genes in group RH form two clusters: three of them stayed 
close to each other, and the last one, CG8651 (trithorax), was 
singled out. The group H genes, forming four clusters, showed 
functional features that are more similar to trithorax than the other 
three. We further analyzed ten homeodomain genes that have 
good correlations with trithorax in the wavelet basis. Literature 
search showed that there are five genes thought to be in the 
downstream pathway of trithorax. Although only two of these 
five genes were in the dataset available to the algorithm, it was 
able to identify both of these. Our study suggests that time-
frequency analysis provides a powerful tool for discovering the 
underlying regulatory networks when applied to time-course 
microarray data. 
 

Categories and Subject Descriptors 
[Bioinformatics]: Clustering of very large dimensional data such 
as those from microarrays and proteomic experimental platforms. 

 

General Terms 
Algorithms, Measurement, Experimentation. 
Keywords 
Time Frequency Analysis, Local Distance, Gene Networks, 
Functional Genomics 
 
1. INTRODUCTION 
One of the fundamental problems of cell biology is to understand 
how genes behave individually and how the features of different 
genes interact to carry out complex biological functions. 
Traditionally, biologists investigate the functions of genes by 
focusing on handful of genes each time. Recent advances in the 
microarray technology have made it possible to simultaneously 
measure the mRNA expression level of thousands of genes. 
Given such large amount of data, computational and 
mathematical techniques became essential for the correct 
interpretation of such large data sets.  A variety of machine 
learning methods, both supervised and unsupervised, has been 
applied to microarray data. Since the underlining structure of the 
gene network is largely unknown and building labeled data sets 
for supervised learning is difficult, unsupervised methods are 
more popular in the research community. Current unsupervised 
clustering methods includes hierarchical clustering, self-
organizing maps, relevance networks, principal components 
analysis, nearest neighbors, support vector machines, etc. All 
these clustering methods are based on certain types of measures 
of distances (metrics) between genes, such as Euclidean distance, 
Pearson correlation coefficients, and mutual information. For a 
detailed treatment of relative advantages and disadvantages of 
these techniques, please refer to [1]. The metrics developed 
through the methodologies mentioned above are not ideal, as they 
obscure many interesting biological features of the data: 
Euclidean distance brings up complicated normalization 
problems, and it is not robust to noise; Pearson correlation 
coefficients rely on normal densities of the measurements and  
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linear models of interactions; mutual information depends on the 
number of  ‘bins’ used, while such ‘bins’ can be very difficult to 
identify correctly [1]. 
 
In this work, we propose a different approach to the problem of 
establishing a meaningful notion of distance for time-coursed 
gene expression data. The method requires the number of samples 
to be relatively large (at least a dozen, depending on the data-set). 
 
We consider time-series data (trajectories) as mathematical 
functions within a larger system, and identify the relationship 
between these functions by means of time-frequency analysis and 
“network-correlations”. We have applied this method to the time-
course microarray data of Drosophila’s development [2] and 
discuss our results in a later section. Our results suggest that this 
kind of analysis can be a powerful tool for measuring the 
correlations of gene expressions within the context of the gene 
network they operate in. 
 
2. COMPUTATIONAL FRAMEWORK 
The basic assumption underlying our technique, is that genes 
derive their functionality from the role assigned to them in a 
network of interacting genes. In order to produce an efficient 
algorithm to understand these functions, we have to effectively 
translate their biological function into mathematical relations and 
identify the candidate genes that facilitate the transclation 
process. 
 
In most cases the group of candidate genes will be already known 
from the biological context. Other methods can be considered as 
well. The next section offers a strategy to deal with this problem. 
 
2.1. Adaptive Basis Selection 
One possible way to identify an initial set of genes for functional 
analysis is as follows: Focus on a small specific set of Time-
Frequency features (such as highly localized oscillatory behavior 
etc.) and extract those genes exhibiting the required 
characteristics by means of Multi-resolution classifiers. One such 
classifier we explore here is a variant of the so-called Local 
Discriminant Basis [7]. 
 
The primary objects of consideration are finite sets of functions of 
the form }0),({ TttfF ≤≤= , along with their approximate 
representations in terms of M-dimensional vectors in a Euclidean 
space: 
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Such a vector representation is referred to as the “projection” of 
the time series F . The choice of the subset 

{ }MjtgB j ≤≤= 1),(~  of an orthonormal basis for ],0[2 TL  is of 

fundamental importance in order to capture the desired features of 
the data. More specifically, an appropriate choice of such B~  will 
suffice for the Euclidean distance between the projections of two 
sets of time series functions to determine if such functions, in 
fact, describe similar behavior of the system.  
 

In the ideal case, one has many such time series functions and a 
natural choice of B  and B~  can be made so that, once the 
functions have been projected onto a finite dimensional Euclidean 
space, the most typical as well as robust behaviors of the system 
can be determined by those functions whose projections all lie 
within, say, n  “small” Euclidean spheres, 
{ }),(,),,( 1 εε nxBxB K , with the property that 

εεε 3),(),,( >−⇒∈∈ yxxByxBx kj  (2) 

i.e., the sets of time series functions giving rise to unique clusters. 
 
Thus, in order to apply this method effectively to analyze 
biological trajectories, it only requires that suitable orthonormal 
bases have been selected for a biological process under 
examination. It is further desirable that the analysis can be carried 
out with a feasibly small value of M (say M=2 representing the 
Euclidean plane) and suitable ε . Our algorithm consists of a 
wavelet-based algorithm to devise an appropriate orthonormal 
bases and subsequently, compute the projections. The examples 
we considered demonstrate that the method is applicable for a 
vast number of biological processes and requires only projections 
on to the plane (M=2). 
 
The next issue to be considered is to identify the role that the 
selected genes play inside the network they are imbedded in.   
 
2.2. Functional Correlation Sets 
Next, we introduce a notion of “network-correlation” of a pair of 
genes ( )kj gg , , belonging to a gene network { } niigN <<= 1

. We 

proceed as follows: the time trajectories of the pair ( )kj gg ,  are 

re-sampled and filtered to obtain two slightly smoother, yet 
completely faithful representations of the original pair. The re-
sampled genes are then normalized in the square norm. We 
denote the resulting new pair with ( )kj gg ~,~ .  The functional 

correlation matrix jkC  with respect to N  is defined as: 
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Where •  denotes the cyclic correlation of the vectors and the 
norm is taken in the Euclidean sense. In doing so we have 
associated a 2×n matrix to the pair. This new set contains 
information to understand how the two genes are acting on the 
network with respect to each other. There are two essential 
aspects to this simple computational procedure: 
 

� High robustness with respect to additive as well as 
phase noise (i.e. time-shifts/dilations of the signals with 
respect to each other). This allows for experimental 
errors to be absorbed very well. 

� High robustness with respect to localized frequency 
perturbations. This feature may be crucial to deal with 
“burst errors” (due for example to short-time systematic 
perturbations) in some of the trajectories. 

 
The next step in the algorithm is to identify geometric features of 
these Functional Correlation Sets (FCS), viewed as point in the 

129



 

 

Euclidean plane, and associate the corresponding biological 
function to the genes that generate them. 
 
3. BIOLOGICAL ANALYSIS OF FUNC-
TIONAL CORRELATION SETS (FCS) 
We first selected two groups of genes from the data in [2]: 
homeodomain (GroupH) genes and their regulators (GroupRH). 
GroupRH consists of four genes E(z), ash2, esc and trx.  E(z) and 
esc belong to a group of proteins referred as Polycomb Group 
(PcG). These proteins bind to a DNA fragment of several hundred 
base pairs, which is called Polycomb response elements (PREs). 
PcG genes are responsible for maintaining repression state of 
homeodomain genes during Drosophila early development. 
Interestingly enough, Trx and related proteins (trx-group, or trx-
G) also bind to PREs, but their effect is the opposite of PcG: they 
maintain the derepression state (active state) of homeodomain 
genes expression. Whether the target gene is repressed or 
derepressed depends on the preset of earlier regulators, the jobs 
for PcG and Trx are just to keep the memory of previous states 
[3]. It has also been reported that E(z) is required for binding of 
Trx and other proteins to specific chromosomal sites where they 
may interact with other chromatin factors to alter target gene 
transcription [4]. Ash2 belongs to trx-G. It is also reported that in 
yeast, homologs of Drosophila Ash2 and Trx form a protein 
complex called SET1 with the function of reforming chromatin 
structure [7]. 
 

 
 
Figure 1. Plot of the first two most important Time-
Frequency components of the GroupRH(Circles) and 
GroupH (Cross) genes. The point corresponding to trx 
appears very distant from the other three in its group. 
 
We proceeded as follows. First, we isolated Time-frequency 
features of the GroupH and GroupRH by means of cosine-bell 
(CosBell) wavelet-packets and performed their clustering 
analysis. The result clearly indicated the drastic difference 
between trx and the other genes in GroupRH. The four genes in 
group RH form two clusters, three of them stayed close to each 
other, whereas the last one, CG8651 (also called trithorax, or trx), 

is singled out. It is interesting to observe that the GroupH genes, 
while forming four clusters, were displaying Time-Frequency 
features similar to the ones of trx. Only two of the GroupH genes 
have been suggested in the literature to be in the downstream of 
trx; these two genes are AntP and adbA, which were found to be 
closely related to trx in the time-frequency analysis. 
 
Table 1. Summary of shapes (in contour map) in the 
correlation analysis. Abbreviations: ES (Early Stage); ELS 
(Early + Lava Stage); ISC (Is Shape Changed?) 

Pairs ES ELS ISC 

E(z)-
ash2 

 

 

 

 

No 

E(z)-
esc 

 

 

 

 

No 

E(z)-
trx 

 

 

 

 

Yes 

Ash2
-esc 

 

 

 

 

No 

Ash2-
trx 

 

 

 

 

Yes 

Esc-
trx 

 

 

 

 

No 
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The next step consisted in creating the FCS (Functional 
Correlation Sets) for the GroupRH genes and detecting their 
functional relations. We used a simple graphical analysis by 
plotting our N by 2 matrices onto a contour map, where we can 
compare the density distributions of the other genes in the 
network with respect to the particular pair of genes. We 
summarized the results of our correlation analysis in Table 1. For 
the full-set result and more detailed explanation, please refer to 
the on-line supplementary materials at: 
http://www.cs.nyu.edu/cs/faculty/mishra/NOTES/mynotes.html. 
 
4. CONCLUSIONS 
By combining the results of Time-Frequency analysis (Figure 1) 
and FCS (Functional Correlation Sets) analysis (Table 1) with 
biological knowledge, we conclude the following: 
 

1. The geometric features of the FCSs (Functional 
Correlation Sets) indicated that trx has an antagonistic 
relation with E(z), esc, and ash2. 

 
2. The expression levels of E(z), esc, ash2 are very 

consistent throughout the ‘early + lava’ stage, which 
may suggest that they form a stable protein complex. 
Such a complex is confirmed by several studies ([4], 
[3], [7]). It is not surprising that E(z) and esc have 
similar shapes, since they cooperate as a repression 
mechanism. However, the behavior of ash2 is somehow 
mysterious, since it is reported to belong to the 
Trithorax-Group and has a function that is opposite to 
those of E(z) and esc [7]. 

 
3. The contour shapes of two pairs containing trx changed 

between early and ‘early + lava’. Which suggests that 
the behavior of trx is different from the other genes. 
This is consistent with our observations from Time-
Frequency analysis. 

 
4. Considering point 2 and 3, we speculate that although 

ash2 is supposed to be a de-repressor, it might not 
function by itself. The scenario could be that ash2 was a 
static component of the protein complex and might 
cooperate with a dynamic component (such as trx) to 
de-repress genes transcription. 

 
5. Although PcG and trx-G have opposite effects on 

homeodomain gene expression, their logical status 
might not be equivalent: PcG appears more like a static, 
“default” configuration and trx-G appears more like a 
dynamic, “alternative” configuration. 

 
5. DISCUSSIONS 
Understanding the complex genetic networks at the cell biology 
level is a crucial task for the biologists and is of enormous 
biomedical value as well. Due to the limitations of current 
biotechnological systems, such a mission cannot be accomplished 
in one single step. A more viable approach is to gather many 
pieces of information about a network through high-throughput 
experiments, and then computationally put things together later 
on. Microarray analysis of gene expression profiles provides 
much such useful information by direct comparison of “normal” 

state and “alternative state” of the target organism and by more 
advanced studies such as gene clustering. 
 
Nowadays, the popular gene clustering algorithms often give 
large groups of clusters that often contain more than a hundred 
genes. Such large clusters make biological validation a 
prohibitive task. Here we emphasize more on a specific group of  
genes, hence can give results that are provable by established 
biological experiments such as RNAi, gene knockouts/knock-ins 
or yeast two-hybrid experiments. In addition, mathematically, we 
can “deconvolve” the time-course microarray data to provide very 
useful information that non-time-course data lack. An explanation 
for this added informativeness is that time-course data clearly 
reflect the internal natural constraints imposed on biology, 
whereas scattered sampling of genes expression obscure such 
information. Furthermore, classical statistical analysis grounged 
on the assumptions of “laws of large numbers” views gene 
expression as a collection of a large number of independent 
random events (patently false in biology) and thus “looses the 
context” in the sense that the expression of entire set of genes in 
an individual organism is a system. Our correlation analysis, on 
the other hand, takes the existence of such a system into 
consideration in order to assign a functional meaning to a gene. 
For these reasons, we believe that large-scale multi-resolution 
geometric analysis of time-course data will occupy a central 
position in systems biology. 
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