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The current standard correlation coefficient used in the analysis of
microarray data was introduced by M. B. Eisen, P. T. Spellman, P. O.
Brown, and D. Botstein [(1998) Proc. Natl. Acad. Sci. USA 95, 14863–
14868]. Its formulation is rather arbitrary. We give a mathematically
rigorous correlation coefficient of two data vectors based on James–
Stein shrinkage estimators. We use the assumptions described by
Eisen et al., also using the fact that the data can be treated as
transformed into normal distributions. While Eisen et al. use zero as
an estimator for the expression vector mean �, we start with the
assumption that for each gene, � is itself a zero-mean normal random
variable [with a priori distribution N(0, �2)], and use Bayesian analysis
to obtain a posteriori distribution of � in terms of the data. The shrunk
estimator for � differs from the mean of the data vectors and
ultimately leads to a statistically robust estimator for correlation
coefficients. To evaluate the effectiveness of shrinkage, we con-
ducted in silico experiments and also compared similarity metrics on
a biological example by using the data set from Eisen et al. For the
latter, we classified genes involved in the regulation of yeast cell-cycle
functions by computing clusters based on various definitions of
correlation coefficients and contrasting them against clusters based
on the activators known in the literature. The estimated false posi-
tives and false negatives from this study indicate that using the
shrinkage metric improves the accuracy of the analysis.

Recent advances in technology, such as microarray-based gene
expression analysis, have allowed us to ‘‘look inside the cells’’

by quantifying their transcriptional states. While the most interest-
ing insight can be obtained from transcriptome abundance data
within a single cell under different experimental conditions, in the
absence of technology to provide one with such a detailed picture,
we have to make do with mRNA collected from a small, frequently
unsynchronized, population of cells. Furthermore, these mRNAs
will give only a partial picture, supported only by those genes that
we are already familiar with and possibly missing many crucial
undiscovered genes.

Of course, without the proteomic data, transcriptomes tell less
than half the story. Nonetheless, it goes without saying that mi-
croarrays have already revolutionized our understanding of biology
even though they provide only occasional, noisy, unreliable, partial,
and occluded snapshots of the transcriptional states of cells.

In an attempt to attain functional understanding of the cell, we
try to understand the underlying structure of its transcriptional
state-space. Partitioning genes into closely related groups has thus
become the key mathematical first step in practically all statistical
analyses of microarray data.

Traditionally, algorithms for cluster analysis of genomewide
expression data from DNA microarray hybridization are based on
statistical properties of gene expressions and result in organizing
genes according to similarity in pattern of gene expression. If two
genes belong to a cluster then one may infer a common regulatory
mechanism for the two genes or interpret this information as an
indication of the status of cellular processes. Furthermore, coex-
pression of genes of known function with novel genes may lead to
a discovery process for characterizing unknown or poorly charac-
terized genes. In general, since false negatives (FNs) (where two
coexpressed genes are assigned to distinct clusters) may cause the

discovery process to ignore useful information for certain novel
genes, and false positives (FPs) (where two independent genes are
assigned to the same cluster) may result in noise in the information
provided to the subsequent algorithms used in analyzing regulatory
patterns, it is important that the statistical algorithms for clustering
be reasonably robust. Unfortunately, as the microarray experiments
that can be carried out in an academic laboratory for a reasonable
cost are small in number and suffer from experimental noise, often
a statistician must resort to unconventional algorithms to deal with
small-sample data.

A popular and one of the earliest clustering algorithms reported
in the literature was introduced in ref. 1. In that paper, the
gene-expression data are collected on spotted DNA microarrays (2)
and based on gene expression in the budding yeast Saccharomyces
cerevisiae during the diauxic shift (3), the mitotic cell division cycle
(4), sporulation (5), and temperature and reducing shocks. Each
entry in a gene expression vector represents a ratio of the amount
of transcribed mRNA under a particular condition with respect to
its value under normal conditions. All ratio values are log-
transformed to treat inductions and repressions of identical mag-
nitude as numerically equal but opposite in sign. It is assumed that
the raw ratio values follow log-normal distributions, and hence, the
log-transformed data follow normal distributions. Although our
mathematical derivations will rely on this assumption for the sake
of simplicity, we note that our approach can be generalized in a
straightforward manner to deal with other situations where this
assumption is violated.

The gene similarity metric used in ref. 1 was a form of correlation
coefficient. Let Gi be the (log-transformed) primary data for gene
G in condition i. For any two genes X and Y observed over a series
of N conditions, the classical similarity score based on Pearson
correlation coefficient is:

S�X, Y� �
1
N �

i�1

N �Xi � Xoffset

�X
��Yi � Yoffset

�Y
�, [1]

where

�G
2 �

1
N �

i�1

N

�Gi � Goffset�
2 [2]

and Goffset is the estimated mean of the observations, i.e.,

Goffset � G� �
1
N �

i�1

N

Gi.

Note that �G is simply the (rescaled) estimated standard devi-
ation of the observations. In the analysis presented in ref. 1,
‘‘values of Goffset which are not the average over observations on
G were used when there was an assumed unchanged or reference
state represented by the value of Goffset, against which changes
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were to be analyzed; in all of the examples presented there, Goffset
was set to 0, corresponding to a fluorescence ratio of 1.0.’’ To
distinguish this modified correlation coefficient from the clas-
sical Pearson correlation coefficient, we shall refer to it as Eisen
correlation coefficient. Our main innovation is in suggesting a
different value for Goffset, namely Goffset � �G� , where � is allowed
to take a value between 0.0 and 1.0. Note that when � � 1.0, we
have the classical Pearson correlation coefficient and when � �
0.0, we have replaced it by Eisen correlation coefficient. For a
nonunit value of �, the estimator for Goffset � �G� can be thought
of as the unbiased estimator G� being shrunk toward the believed
value for Goffset � 0.0. We address the following questions: What
is the optimal value for the shrinkage parameter � from a Bayesian
point of view? (See ref. 6 for some alternate approaches.) How do
the gene expression data cluster as the correlation coefficient is
modified with this optimal shrinkage parameter?

To achieve a consistent comparison, we leave the rest of the
algorithms undisturbed. Namely, once the similarity measure has
been assumed, we cluster the genes by using the same hierarchical
clustering algorithm as the one used by Eisen et al. (1). Their
hierarchical clustering algorithm is based on the centroid-linkage
method [referred to as the ‘‘average-linkage method’’ of Sokal and
Michener (7) in ref. 1] and is discussed further below. The modified
algorithm has been implemented by us within the New York
University MicroArray Database system and can be freely down-
loaded from: bioinformatics.cat.nyu.edu�nyumad�clustering�. The
clusters created in this manner were used to compare the effects
of choosing differing similarity measures.

Model
We derive the proposed similarity metric. In our setup, the mi-
croarray data is given in the form of the levels of M genes expressed
under N experimental conditions. The data can be viewed as

��Xij�i�1
N �j�1

M ,

where M �� N and {Xij}i�1
N is the data vector for gene j.

We begin by rewriting S (see Eqs. 1 and 2) in our notation:

S�Xj, Xk� �
1
N �

i�1

N �Xij � �Xj�offset

�j
��Xik � �Xk�offset

�k
�, [3]

�j
2 �

1
N �

i

�Xij � �Xj�offset�
2

In the most general setting, we can make the following assump-
tions on the data distribution: let all values Xij for gene j have a
normal distribution with mean �j and standard deviation �j (vari-
ance �j

2); i.e.,

Xij � N��j, �j
2� for i � 1, . . . , N

with j fixed (1 � j � M), where �j is an unknown parameter (taking
different values for different j). To estimate �j, it is convenient to
assume that �j is itself a random variable taking values close to zero:

�j � N�0, �2�.

The assumed distribution aids us in obtaining the estimate of �j
given in Eq. 6.

For convenience, let us also assume that the data are range-
normalized, so that �j

2 � �2 for every j. If this assumption does not
hold on the given data set, it is easily corrected by scaling each gene
vector appropriately. Following common practice, we adjusted the
range to scale to an interval of unit length, i.e., its maximum and
minimum values differ by 1. Thus,

Xij � N��j, �2� and �j � N�0, �2�.

Replacing (Xj)offset in Eq. 3 by the exact value of the mean �j yields
a clairvoyant correlation coefficient of Xj and Xk. In reality, since �j

is itself a random variable, it must be estimated from the data.
Therefore, to get an explicit formula for S(Xj, Xk) we must derive
estimators �ĵ for all j.

In Pearson correlation coefficient, �j is estimated by the vector
mean X.j�; Eisen correlation coefficient corresponds to replacing �j
by 0 for every j, which is equivalent to assuming �j � N(0, 0) (i.e.,
�2 � 0). We propose to find an estimate of �j (call it �ĵ) that takes
into account both the prior assumption and the data.

First, let us obtain the posterior distribution of �j from the prior
N(0, �2) and the data. This derivation can be done either from the
Bayesian considerations or via the James-Stein shrinkage estima-
tors (see refs. 8 and 9). Here, we discuss the former method.

Assume initially that N � 1, i.e., we have one data point for each
gene, and denote the variance by �2 for the moment:

Xj � N��j, �2� and �j � N�0, �2�.

From these assumptions, we get (see ref. 10 for full details)

E��j�Xj� �
�2

�2 	 �2 Xj � �1 �
�2

�2 	 �2� Xj,

Var��j�Xj� �
�2�2

�2 	 �2 .
[4]

Now, if N � 1 is arbitrary, Xj becomes a vector X.j. In ref. 10 we
show (by using likelihood functions) that the vector of values
{Xij}i�1

N , with Xij � N(�j, �2), can be treated as a single data point
Yj � X.j� � 	i�1

N Xij�N from the distribution N(�j, �2�N).
Thus, following the same derivation with �2 � �2�N, we have a

Bayesian estimator for �j given by E(�j�X.j):

� ĵ � �1 �
�2�N

�2�N 	 �2�Yj. [5]

Unfortunately, Eq. 5 cannot be used in Eq. 3 directly, because �2

and �2 are unknown, so must be estimated from the data. The
details of the estimation are presented in ref. 10.

The resulting explicit estimate for �j is

� ĵ � �1 � W �
�2̂

N
�Yj

� �1 �
M � 2

MN�N � 1�
�
	k�1

M 	i�1
N �Xik � Yk�

2

	k�1
M Yk

2 �Yj [6]

�

� �X.j�,

where W � ((M 
 2)�	k�1
M Yk

2) is an estimator for 1�(�2�N � �2).
Finally, we substitute �ĵ from Eq. 6 into the correlation coefficient in

Eq. 3 wherever (Xj)offset appears to obtain an explicit formula for
S(X.j, X.k).

Algorithm and Implementation
The implementation of hierarchical clustering proceeds in a greedy
manner, always choosing the most similar pair of elements (starting
with genes at the bottom-most level) and combining them to create
a new element. The ‘‘expression vector’’ for the new element is
simply the weighted average of the expression vectors of the two
elements that were combined. This structure of repeated pairwise
combinations is conveniently represented in a binary tree, whose
leaves are the set of genes and internal nodes are the elements
constructed from the two children nodes. The algorithm is de-
scribed below in pseudocode.
Hierarchical clustering pseudocode.

Given {{Xij}i�1
N }j�1

M :
Switch:
Pearson: � � 1;
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Eisen: � � 0;
Shrinkage: {

Compute W � (M 
 2)�	j�1
M X.j�2

Compute �2̂ � 	j�1
M 	i�1

N (Xij 
 X.j�)2�(M(N 
 1))

� � 1 
 W��2̂�N
}
While (no. clusters � 1) do

Y Compute similarity table:

S�Gj, Gk� �
	i�Gij � �Gj�offset��Gik � �Gk�offset�

�	i�Gij � �Gj�offset�
2�	i�Gik � �Gk�offset�

2 ,

where �G��offset � �G�.

Y Find (j*, k*):

S�Gj*, Gk*� 
 S�Gj, Gk� � clusters j, k.

Y Create new cluster Nj*k* � weighted average of Gj* and Gk*.
Y Take out clusters j* and k*.

As each internal node can be labeled by a value representing the
similarity between its two children nodes, one can create a set of
clusters by simply breaking the tree into subtrees by eliminating all
the internal nodes with labels below a certain predetermined
threshold value.

The implementation of generalized hierarchical clustering with
options to choose different similarity measures has been incor-
porated into the New York University MicroArray Database
(NYUMAD), an integrated system to maintain and analyze bio-
logical abundance data along with associated experimental condi-
tions and protocols. To enable widespread utility, NYUMAD
supports the MAGE-ML standard (www.mged.org�Workgroups�
MAGE�mage-ml.html) for the exchange of gene expression data,
defined by the Microarray Gene Expression Data Group. More de-
tailed information about NYUMAD can be found at http:��
bioinformatics.cat.nyu.edu�nyumad�.

Results
Mathematical Simulation. To compare the performance of these
algorithms, we started with a relatively simple in silico experiment.
In such an experiment, one can create two genes X and Y and
simulate N (�100) experiments as follows:

Xi � �X 	 �X��i�X, Y� 	 N�0, 1��, and
Yi � �Y 	 �Y��i�X, Y� 	 N�0, 1��,

where �i, chosen from a uniform distribution over a range [L, H]
(�(L, H)), is a ‘‘bias term’’ introducing a correlation (or none if all
�s are zero) between X and Y. �X � N(0, �2) and �Y � N(0, �2) are
the means of X and Y, respectively. Similarly, �X and �Y are the
standard deviations for X and Y, respectively.

Note that, with this model

S�X, Y� �
1
N �

i�1

N
�Xi � �X�

�X

�Yi � �Y�

�Y

if the exact values of the mean and variance are used.
The model was implemented in MATHEMATICA (11); the follow-

ing parameters were used in the simulation: N � 100, � � {0.1, 10.0}
(representing very low or high variability among the genes), �X �
�Y � 10.0, and � � 0 representing no correlation between the genes
or � � �(0, 1) representing some correlation between the genes.
Once the parameters were fixed for a particular in silico experiment,
the gene-expression vectors for X and Y were generated many
thousand times, and for each pair of vectors Sc(X, Y), Sp(X, Y), Se(X,
Y), and Ss(X, Y) were estimated by four different algorithms and
further examined to see how the estimators of S varied over these
trials. These four different algorithms estimated S according to Eqs.
1 and 2 as follows: Clairvoyant estimated Sc by using the true values
of �X, �Y, �X, and �Y; Pearson estimated Sp by using the unbiased
estimators X� and Y� of �X and �Y (for Xoffset and Yoffset), respectively;
Eisen estimated Se by using the value 0.0 as the estimator of both
�X and �Y; and Shrinkage estimated Ss by using the shrunk biased

Fig. 1. Histograms representing the performance of four different estima-
tors of correlation between genes.

Table 1. Summary of observations from mathematical simulation of gene expression models
of correlated and uncorrelated genes

Parameters Distributions

� � Sc Sp Se Ss

0 0.1  
0.000297 
0.000269 
0.000254 
0.000254
� 0.0996 0.0999 0.0994 0.0994

0 10  
0.000971 
0.000939 
0.00119 
0.000939
� 0.0994 0.100 0.354 0.100

�(0,1) 0.1  0.331 0.0755 0.248 0.245
� 0.132 0.0992 0.0915 0.0915

�(0,1) 10  0.333 0.0762 0.117 0.0762
� 0.133 0.100 0.368 0.0999

The distributions of S as estimated by Sc (Clairvoyant), Sp (Pearson), Se (Eisen), and Ss (Shrinkage) are
characterized by the means  and standard deviations �. When there is no correlation (� � 0) and low noise (� �
0.1), all methods do equally well. When there is no correlation but the noise is high (� � 10), all methods except
Eisen do equally well; Eisen has too many FPs. When the genes are correlated [� � �(0, 1)] and the noise is low,
all methods except Pearson do equally well; Pearson has too many FNs. Finally, when the genes are correlated and
the noise is high, all methods do equally poorly, introducing FNs; Eisen may also have FPs.
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estimators �X̂ and �Ŷ of �X and �Y, respectively. In the latter three,
the standard deviation was estimated as in Eq. 2. The histograms
corresponding to these in silico experiments can be found in Fig. 1.
Our observations are summarized in Table 1.

In summary, one can conclude that for the same clustering
algorithm, Pearson tends to introduce more FNs and Eisen tends to
introduce more FPs than Shrinkage. Shrinkage, on the other hand,
reduces these errors by combining the good properties of both
algorithms.

Biological Example. We then proceeded to test the algorithms on a
biological example. We chose a biologically well-characterized
system and analyzed the clusters of genes involved in yeast cell cycle.
These clusters were computed by using the hierarchical clustering
algorithm with the underlying similarity measure chosen from the
following three: Pearson, Eisen, or Shrinkage. As a reference,
the computed clusters were compared to the ones implied by the
common cell-cycle functions and regulatory systems inferred from
the roles of various transcriptional activators (see Fig. 2).

Note that our experimental analysis is based on the assumption
that the groupings suggested by the chromatin immunoprecipita-
tion analysis are, in fact, correct and thus, provide a direct approach
to compare various correlation coefficients. It is quite likely that the
chromatin immunoprecipitation-based groupings themselves con-
tain many false relations (both positive and negative) and corrupt
our inference in some unknown manner. Nonetheless, we observe
that the trends of reduced false positives and negatives in shrinkage
analysis with these biological data are consistent with the analysis
based on mathematical simulation and hence, reassuring.

In the work of Simon et al. (12), genomewide location analysis
was used to determine how the yeast cell-cycle gene expression
program is regulated by each of the nine known cell-cycle tran-
scriptional activators: Ace2, Fkh1, Fkh2, Mbp1, Mcm1, Ndd1, Swi4,
Swi5, and Swi6. It was also found that cell-cycle transcriptional
activators that function during one stage of the cell cycle regulate
transcriptional activators that function during the next stage. This
serial regulation of transcriptional activators together with various
functional properties suggests a simple way of partitioning some
selected cell-cycle genes into nine clusters, each one characterized
by a group of transcriptional activators working together and their
functions (see Table 2): for instance, group 1 is characterized by the
activators Swi4 and Swi6 and the function of budding; group 2 is
characterized by the activators Swi6 and Mbp1 and the function
involving DNA replication and repair at the juncture of G1 and S
phases, etc.

Upon closer examination of the data, we observed that the data

in its raw ‘‘prenormalized’’ form is inconsistent with the assump-
tions used in deriving �: (i) the gene vectors are not range-
normalized, so �j

2  �2 for every j, and (ii) the N experiments are
not necessarily independent.

Range normalization and subsampling of experiments were used
before clustering in an attempt to alleviate these shortcomings. The
clusters on the processed data set, thresholded at the cut-off value
of 0.60, are listed in Tables 3–5. The choice of the threshold
parameter is discussed further in Discussion.

Our initial hypothesis can be summarized as follows: Genes
expressed during the same cell-cycle stage and regulated by the
same transcriptional activators should be in the same cluster. We
compared the performance of the similarity metrics based on the
degree to which each of them deviated from this hypothesis. Below
we list some of the observed deviations from the hypothesis.
Possible FPs.

Y Bud9 (group 1: budding), Egt2 (group 7: cytokinesis), and Cdc6
(group 8: prereplication complex formation) are placed in the
same cluster by all three metrics: (E68, S49, and P51).

Y Mcm2 (group 2: DNA replication and repair) and Mcm3 (group
8) are placed in the same cluster by all three metrics: (E68, S15,
and P15).

Y For more examples, see ref. 10.

Fig. 2. Regulation of cell-cycle functions by the activators. [Reproduced with
permission from ref. 12 (Copyright 2001, Elsevier)].

Table 2. Genes in our data set, grouped by transcriptional
activators and cell cycle functions

Group Activators Genes Functions

1 Swi4, Swi6 Cln1, Cln2, Gic1, Gic2, Msb2,
Rsr1, Bud9, Mnn1, Och1,
Exg1, Kre6, Cwp1

Budding

2 Swi6, Mbp1 Clb5, Clb6, Rnr1, Rad27,
Cdc21, Dun1, Rad51,
Cdc45, Mcm2

DNA replication and
repair

3 Swi4, Swi6 Htb1, Htb2, Hta1, Hta2,
Hta3, Hho1

Chromatin

4 Fkh1 Hhf1, Hht1, Tel2, Arp7 Chromatin
5 Fkh1 Tem1 Mitosis control
6 Ndd1, Fkh2,

Mcm1
Clb2, Ace2, Swi5, Cdc20 Mitosis control

7 Ace2, Swi5 Cts1, Egt2 Cytokinesis
8 Mcm1 Mcm3, Mcm6, Cdc6, Cdc46 Prereplication complex

formation
9 Mcm1 Ste2, Far1 Mating

Table 3. Range-normalized subsampled data, � � 0.0 (Eisen)

Clusters Activators Genes

E58 Swi4�Swi6 Cln1, Och1
E68 Swi4�Swi6 Cln2, Msb2, Rsr1, Bud9, Mnn1, Exg1

Swi6�Mbp1 Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45, Mcm2
Swi4�Swi6 Htb1, Htb2, Hta1, Hta2, Hho1
Fkh1 Hhf1, Hht1, Arp7
Fkh1 Tem1
Ndd1�Fkh2�Mcm1 Clb2, Ace2, Swi5
Ace2�Swi5 Egt2
Mcm1 Mcm3, Mcm6, Cdc6

E29 Swi4�Swi6 Gic1
E64 Swi4�Swi6 Gic2
E33 Swi4�Swi6 Kre6, Cwp1

Swi6�Mbp1 Clb5, Clb6
Swi4�Swi6 Hta3
Ndd1�Fkh2�Mcm1 Cdc20
Mcm1 Cdc46

E73 Fkh1 Tel2
E23 Ace2�Swi5 Cts1
E43 Mcm1 Ste2
E66 Mcm1 Far1
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Possible FNs. Group 1: budding (Table 2) is split into five clusters by
the Eisen metric: {Cln1, Och1} � E58, {Cln2, Msb2, Rsr1, Bud9,
Mnn1, Exg1} � E68, Gic1 � E29, Gic2 � E64, and {Kre6,
Cwp1} � E33; into four clusters by the Shrinkage metric: {Cln1,
Bud9, Och1} � S49, {Cln2, Gic2, Msb2, Rsr1, Mnn1, Exg1} � S6,
Gic1 � S32, and {Kre6, Cwp1} � S65; and into eight clusters by the
Pearson metric: {Cln1, Och1} � P1, {Cln2, Rsr1, Mnn1} � P15,
Gic1 � P29, Gic2 � P2, {Msb2, Exg1} � P3, Bud9 � P51, Kre6 �
P11, and Cwp1 � P62.

We introduced a new notation to represent the resulting cluster
sets, and a scoring function to aid in their comparison.

Each cluster set can be written as follows:

�x 3 ��y1, z1�, �y2, z2�, . . . , �ynx
, znx

���x�1
# of groups,

where x denotes the group number (as described in Table 2), nx is
the number of clusters group x appears in, and for each cluster j �
{1, . . . , nx} there are yj genes from group x and zj genes from other
groups in Table 2. A value of � for zj denotes that cluster j contains
additional genes, although none of them are cell-cycle genes. The
cluster set can then be scored according to the following measure:

FP��� �
1
2�

x

�
j�1

nx

yj � zj [7]

FN��� � �
x

�
1�j�k�nx

yj � yk [8]

Error score��� � FP��� 	 FN���. [9]

Table 2 contains those genes from Fig. 2 that were present in our
data set. Tables 3–5 contain these genes grouped into clusters by a
hierarchical clustering algorithm using the three metrics (Eisen in
Table 3, Shrinkage in Table 4, and Pearson in Table 5) thresholded
at a correlation coefficient value of 0.60. Genes that have not been
grouped with any others at a similarity of 0.60 or higher are absent
from the tables; in the subsequent analysis they are treated as
singleton clusters.

The subsampled data yielded the estimate � � 0.66. In our set
notation, the resulting Shrinkage clusters with the corresponding
error score computed as in Eq. 9 can be written as follows:

� � 0.66�S� f

�1 3 ��6, 6�, �3, 2�, �2, 5�, �1, *��,

2 3 ��6, 6�, �2, 5�, �1, 1��,

3 3 ��5, 2�, �1, *��,

Fig. 3. Receiver operator characteristic curves. Each curve is parametrized by
the cut-off value � � {1.0, 0.95, . . . , 
1.0}.

Fig. 4. FN and FP curves, plotted as functions of �.

Table 4. Range-normalized subsampled data, � � 0.66
(Shrinkage)

Clusters Activators Genes

S49 Swi4�Swi6 Cln1, Bud9, Och1
Ace2�Swi5 Egt2
Mcm1 Cdc6

S6 Swi4�Swi6 Cln2, Gic2, Msb2, Rsr1, Mnn1, Exg1
Swi6�Mbp1 Rnr1, Rad27, Cdc21, Dun1, Rad51, Cdc45

S32 Swi4�Swi6 Gic1
S65 Swi4�Swi6 Kre6, Cwp1

Swi6�Mbp1 Clb5, Clb6
Fkh1 Tel2
Ndd1�Fkh2�Mcm1 Cdc20
Mcm1 Cdc46

S15 Swi6�Mbp1 Mcm2
Mcm1 Mcm3

S11 Swi4�Swi6 Htb1, Htb2, Hta1, Hta2, Hho1
Fkh1 Hhf1, Hht1

S60 Swi4�Swi6 Hta3
S30 Fkh1 Arp7

Ndd1�Fkh2�Mcm1 Clb2, Ace2, Swi5
S62 Fkh1 Tem1
S53 Ace2�Swi5 Cts1
S14 Mcm1 Mcm6
S35 Mcm1 Ste2
S36 Mcm1 Far1

Table 5. Range-normalized subsampled data, � � 1.0 (Pearson)

Clusters Activators Genes

P1 Swi4�Swi6 Cln1, Och1
P15 Swi4�Swi6 Cln2, Rsr1, Mnn1

Swi6�Mbp1 Cdc21, Dun1, Rad51, Cdc45, Mcm2
Mcm1 Mcm3

P29 Swi4�Swi6 Gic1
P2 Swi4�Swi6 Gic2
P3 Swi4�Swi6 Msb2, Exg1

Swi6�Mbp1 Rnr1
P51 Swi4�Swi6 Bud9

Ndd1�Fkh2�Mcm1 Clb2, Ace2, Swi5
Ace2�Swi5 Egt2
Mcm1 Cdc6

P11 Swi4�Swi6 Kre6
P62 Swi4�Swi6 Cwp1

Swi6�Mbp1 Clb5, Clb6
Swi4�Swi6 Hta3
Ndd1�Fkh2�Mcm1 Cdc20
Mcm1 Cdc46

P49 Swi6�Mbp1 Rad27
Swi4�Swi6 Htb1, Htb2, Hta1, Hta2, Hho1
Fkh1 Hhf1, Hht1

P10 Fkh1 Tel2
Mcm1 Mcm6

P23 Fkh1 Arp7
P50 Fkh1 Tem1
P69 Ace2�Swi5 Cts1
P42 Mcm1 Ste2
P13 Mcm1 Far1
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4 3 ��2, 5�, �1, 3�, �1, 6��,

5 3 ��1, *��,

6 3 ��3, 1�, �1, 6��,

7 3 ��1, *�, �1, 4��,

8 3 ��1, *�, �1, 1�, �1, 4�, �1, 6��,

9 3 ��1, *�, �1, *��

�

Error score�0.66� � 76 	 88 � 164.

The error scores for the Eisen (� � 0.0) and Pearson (� � 1.0)
cluster sets, computed according to Eq. 9, are

Error score(0.0) � 370 � 79 � 449
Error score(1.0) � 69 � 107 � 176.

From the data shown in Tables 3–5, as well as by comparing the
error scores, one can conclude that for the same clustering algo-
rithm and threshold value, Pearson tends to introduce more FNs
and Eisen tends to introduce more FPs than Shrinkage, as Shrink-
age reduces these errors by combining the good properties of both
algorithms. This observation is consistent with our mathematical
analysis and the simulation presented above.

We have also conducted a more extensive computational analysis
of Eisen’s data, but omitted it from this article because of space
limitations. This analysis appears in a full technical report available
for download from www.cs.nyu.edu�cs�faculty�mishra� (10).

Discussion
Microarray-based genomic analysis and other similar high-
throughput methods have begun to occupy an increasingly
important role in biology, as they have helped to create a visual
image of the state-space trajectories at the core of cellular
processes. This analysis will address directly to the observational
nature of the new biology. As a result, we need to develop our
ability to ‘‘see,’’ accurately and reproducibly, the information in
the massive amount of quantitative measurements produced by
these approaches or be able to ascertain when what we see is
unreliable and forms a poor basis for proposing novel hypoth-
eses. Our investigation demonstrates the fragility of many of
these analysis algorithms when used in the context of a small
number of experiments. In particular, we see that a small
perturbation of, or a small error in the estimation of, a parameter
(the shrinkage parameter) has a significant effect on the overall
conclusion. The errors in the estimators manifest themselves by
missing certain biological relations between two genes (FNs) or
by proposing phantom relations between two otherwise unre-
lated genes (FPs).

A global picture of these interactions can be seen in Fig. 3, the
receiver operator characteristic (ROC) figure, with each curve
parametrized by the cut-off threshold in the range of [
1, 1].
An ROC curve (13) for a given metric plots sensitivity against
(1–specificity), where

Sensitivity � fraction of positives detected by a metric

�
TP���

TP��� 	 FN���
, [10]

Specificity � fraction of negatives detected by a metric

�
TN���

TN��� 	 FP���
, [11]

and TP(�), FN(�), FP(�), and TN(�) denote the number of true
positives, false negatives, false positives, and true negatives, respec-
tively, arising from a metric associated with a given �. (Recall that
� is 0.0 for Eisen, 1.0 for Pearson, and is computed according to
Eq. 6 for Shrinkage, which yields 0.66 on this data set.) For each pair
of genes, {j, k}, we define these events using our hypothesis (see
above) as a measure of truth:

TP: {j, k} are in the same group (see Table 2) and {j, k} are placed
in the same cluster;

FP: {j, k} are in different groups, but {j, k} are placed in the same
cluster;

TN: {j, k} are in different groups and {j, k} are placed in different
clusters; and

FN: {j, k} are in the same group, but {j, k} are placed in different
clusters.

FP(�) and FN(�) were already defined in Eqs. 7 and 8, respectively,
and we define

TP��� � �
x

�
j�1

nx �yj

2� [12]

and

TN��� � Total � �TP��� 	 FN��� 	 FP����, [13]

where Total � ( 2
44) � 946 is the total no. of gene pairs { j, k} in

Table 2.
Fig. 3 suggests the best threshold to use for each metric and can

also be used to select the best metric to use for a particular
sensitivity.

The dependence of the error scores on the threshold can be more
clearly seen from Fig. 4. It shows that the conclusions we draw above
hold for a wide range of threshold values, and hence a threshold
value of 0.60 is a reasonable representative value.

As a result, to study the clustering algorithms and their effec-
tiveness, one may ask the following questions. If one must err, is it
better to err on the side of more FPs or more FNs? What are the
relative costs of these two kinds of errors? Intelligent answers to our
questions depend crucially on how the cluster information is used
in the subsequent discovery processes.
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