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ABSTRACT A fast adaptive multiscale algo-

rithm has been devised to characterize a random set of

points spanning a high dimensional Euclidean space, but

concentrated around special lower dimensional subsets.

It has been adapted to analyze gene expression data from

microarray experiments. We present here the simplest

version of this “multi-strip” algorithm applied to a set

of points in RD concentrated around a line. The algo-

rithm characterizes this set by finding a strip around

the principal axis of the set, so that it isolates deviating

points from the main bulk of points enveloped by the

strip. The algorithm generalizes to computing a strip

around a best L2 d-plane, where 1 ≤ d < D, or even fit-

ting a strip around a d-dimensional Lipschitz graph. We

establish various estimates for its performance. When

applied to gene-expression data, the algorithm can be

thought of as estimating the local statistics (means, stan-

dard deviations, tail distributions, etc.) as a function of

the entire expression range. Genes with abnormal dif-

ferential expression values can be identified and given

biological interpretations based on the local deviations

in their statistics. By avoiding rigid local segmentations

(as in segmental nearest neighbor normalization) or non-

adaptive global estimates, the algorithm achieves a su-

perior performance.

1 Introduction

Microarray and gene-chip technologies provide an approach
for characterizing transcriptional properties of thousands of
genes and studying their interactions simultaneously under

∗To whom correspondence should be addressed. E-mail:
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many different experimental conditions. However, in many
applications the key problem has been statistical noise in
the transcriptional data, varying from experiment to exper-
iment and attributable to non-specific hybridization, cross-
hybridization, competition, diffusion of the target on the sur-
face, base-specific structural variations of the probe, etc. A
better understanding of this noise can come from the kinetic
analysis of the base-pairing, denaturing, and diffusion pro-
cesses. In the absence of detailed knowledge how to decon-
volve the measurement data, it is hard to distinguish prop-
erly between specific clusters of genes, based on expression
intensities data. The purpose of identification (combined
with normalization) methods is to compare expression inten-
sities from multiple experiments, and distinguish between a
stable subset of genes whose behaviors could be expected to
be already well-modeled (so-called housekeeping genes, rank-
invariant genes, or genes with constant expression), and a
subset of genes deviating from the stable model (so-called
non-housekeeping genes, regulated genes or differentially ex-
pressed genes). See [17].

The identification process creates a statistical model of
the “main bulk” of the genes (i.e., the stable subset) either
through a global statistical analysis of transcriptional expres-
sion intensities of all the data or through a local statistical
analysis of similar statistics as a function of the expression
range. The genes deviating from the statistics computed via
initial identification are then subjected to further analysis
to determine their biological characteristics in response to
the experimental condition (see e.g. [1]). In the simplest
conceivable setting, one may consider thousands of genes
monitored under two different experimental conditions (c1

and c2), and the data in a 2-D Euclidean space thought to
consist of average over expression intensities for a gene (g)
versus a measure of its relative expression intensities. Such
a measure of the relative expression intensities may take the
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form of expression ratio (ER), logarithm of expression ratio
(LER), differential expression ratio (DE), etc. For instance,
if the intensity values are ec1,g and ec2,g, then they may be
described by a point

〈
ln ec1,g + ln ec2,g

2
, ln

ec2,g

ec1,g

〉
∈ R2.

Implicit in our approach is the assumption that for a large
stable subset of genes any one of these measures of relative
expression intensities varies randomly about a mean value
from experiment to experiment in a way which may depend
on the different mean values. For instance, we may model
the log ratio (LER) to have a normal distribution with a
variance depending on the local average intensities:

ln
ec2,g

ec1,g
∼ N

(
0, σ(eg)2

)
, (1)

where eg is estimated by (ln ec1,g + ln ec2,g)/2. In this set-
ting, the area defined by |y| ≤ 3σ(x) may describe a strip
containing 99.73% of the housekeeping genes.

In general, we thus aim to separate, by a compact region,
the genes belonging to a stable set (e.g., housekeeping genes)
from the other genes that respond unambiguously to the
change in experimental conditions. The boundary of this
region will be referred to as the “strip,” and devising an
algorithm to compute it efficiently and accurately becomes
an interesting mathematical problem.

Formally, we consider the following mathematical prob-
lem: Given a set of points in RD concentrated around a line,
find a strip around the principal axis of the set, so that it
isolates deviating points from the main bulk of points. For
this problem, we propose a fast multiscale algorithm and es-
tablish some estimates for the quality of the computed strip.

We can easily extend the above mathematical problem to
finding a strip around a best L2 d-plane, where 1 ≤ d < D.
A more general version of our algorithm (following math-
ematical ideas of [7, 3, 8]) can be shown to even fit a d-
dimensional Lipschitz graph (or chord-arc curve when d = 1)
and a strip around it. The later generalization can be used,
when d = 1, in order to both normalize the genes’ expres-
sion intensities and identify differentially expressed genes;
it will be discussed in a future publication. The algorithm
described here is used only for identification, assuming the
data is normalized around the principal axis (see e.g. [17]).

Our algorithm constructs three different strips in a mul-
tiscale fashion. For the first strip A, we show how at differ-
ent scales the algorithm controls both the number of points
outside it and also the rate of change of that strip in the
direction of the principal axis (a measure of the strip’s com-
plexity). The second strip R maintains at different scales and

locations the same ratio between the number of points out-
side the strip and the total number of points. The third strip
S estimates adaptively the standard deviation of the points
(more precisely it estimates adaptively the second moments
of the distances of the points from the principal axis). This
multiscale approach is capable of balancing between overfit-
ting at small scales and underfitting at large scales.

2 Algorithm and Methods

2.1 Description of Algorithm

Input, preprocessing and output

The main input to the algorithm is a set E = {xi}N
i=1 of

N points in RD where N ≥ D. Additional input includes
the following predefined parameters: `0 (integer), n0 (inte-
ger), αi, i = 0, 1, 2 (reals), δ0 (real), c0 (real) and C1 (real,
C1 > 1). We discuss our choice of all parameters in the full
paper [9]. The parameters αi, i = 0, 1, 2, are set by the user
according to the expected ratio of differentially expressed
genes over the total number of genes.

The algorithm initially stores the set E in an N ×D data
matrix A, whose rows correspond to the D-dimensional vec-
tors in E. It then performs the following operations (we
maintain the notation E and A for the transformed set and
matrix): First, it shifts each row of A by the center of mass
of the set. Second, it computes “the principal axis”, L ≡ LE ,
of the data set (recall that the principal axis of E is the line
spanned by the top right singular vector of the shifted ma-
trix A). Third, it rotates the set so that its principal axis
coincides with the x axis. The algorithm then fixes an in-
terval Q0 = [a0, b0) of nearly minimal length containing the
projection of E onto L.

The output of our algorithm includes three different strip
functions: A, R and S. These are real-valued functions de-
fined on Q0. The algorithm evaluates them for all points
in PLE, where PL denotes the projection operator from RD

onto L. The envelopes of the strips are obtained by rotating
the graphs of the corresponding functions around the x-axis
(the line L).

Basic Notation and Definitions

We use the following notation and definitions in describing
the main part of the algorithm.

We denote by PL the projection operator from RD onto L
(the principal axis of E).

If K is a subset of RD, we denote by |K| ≡ |K ∩ E| the
number of points of E in K. If Q is an interval, we denote
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by `(Q) its length. We denote by χQ the indicator function
of Q:

χQ(x) =

{
1, if x ∈ Q;
0, otherwise.

The algorithm operates on generalized dyadic grids, which
depend on a fixed rule R for partitioning an interval [a, b)
into two subintervals: [a,m) and [m, b), where m = R([a, b)).
We use either the median rule: R(Q) = PL(median of Q̃)
(see below for the definition of Q̃) or the symmetric rule
(equivalently midpoint rule): R([a, b)) = a+b

2 . The general-
ized grids Dj(Q0) ≡ DRj (Q0) are formed as follows. If j = 0,
then D0(Q0) = {Q0}. If j > 0, Q = [a, b) is an interval in
Dj(Q0) and m = R([a, b)), then set

QL(Q) := [a,m) and QR(Q) := [m, b).

Define

Dj+1(Q0) =
⋃

Q∈Dj(Q0)

(
QL(Q)

⋃
QR(Q)

)
,

and

D(Q0) =
`0⋃

j=0

Dj(Q0).

If Q is an interval in D(Q0), we define its extensions Q̂

and Q̃ to RD by the formula:

Q̂ = {x ∈ RD : PLx ∈ Q},

and

Q̃ =

{
{x ∈ Q̂ : dist(x, L) ≤ c0 · `(Q)}, if Q ( Q0;
Q̂0, if Q = Q0.

Define the “top” part of Q̃ as follows:

T (Q̃) = Q̃ \ (Q̃L ∪ Q̃R).

If R is any set contained in Q̂, then define

σR =

(
1
|R|

∑

xi∈R

dist2(xi, L)

) 1
2

and βR =
σR

`(Q)
.

If Q ∈ D(Q0)\{Q0}, then denote by PQ the dyadic parent
of Q according to the grid D(Q0) and also define PQ0 := Q0.

Figure 1: Illustration of different parts assigned to the inter-
val Q.

The stopping time construction

The description of the algorithm can now be completed by
assigning its stopping time criteria. For each Q ∈ D(Q0) we
define

fQ =
|T (Q̃)|
|Q̂|

and FQ =
∑

Q′∈D(Q0)
Q′⊇Q

fQ′ .

The algorithm computes FQ with a top-bottom procedure:
First, it initializes FQ ≡ 0 for all Q ∈ D(Q0). Then, it ap-
plies the reduction formula (from coarse levels to fine levels):

FQ = FPQ
+ fQ.

While proceeding from top to bottom levels, the algorithm
stops at an interval Q′ ∈ D(Q0) (together with all of its
descendants in D(Q0)) if and only if one of the following
conditions is satisfied:

1. FQ′ > α0. (2)

2. |Q̃′| < n0.

3. β eQ′ > δ0 (optional).

4. |Q̂′ \ Q̃′| > α1 · |Q̃′| (optional) . (3)

The first stopping time condition is the crucial one for con-
trolling the number of points outside the different strips
(mainly A). The second one is necessary in order to have
valid estimates in each interval. The third one allows us to



2 ALGORITHM AND METHODS 4

control the “complexity” of the strip A (see Proposition 2.3).
The fourth one is used to obtain the last equations of both
Propositions 2.1 and 2.2. The last two stopping conditions
may be ignored by setting δ0 = c0 and α1 = 1, respectively.
A detailed discussion of the stopping time criteria can be
found in the full paper [9].

We denote

Q = {Q : Q is a stopping time interval in D(Q0)}.

We partition Q into two different disjoint sets of “good” and
“bad” intervals respectively:

G ={Q : Q ∈ Q, |Q̃| ≥ n0 and β eQ ≤ δ0},
B =Q \ G.

The strips A, R and S

We describe piecewise constant versions of the different strip
functions. They all use the stopping time criteria described
earlier, but differ in the manner they select the parameters
to determine the stopping time intervals.

In order to assign A, the algorithm computes for each
interval Q ∈ Q the following number:

γ eQ =

{
min{C1 · σ eQ, c0 · `(Q)}, if Q ∈ G;
min{C1 · σ ePQ∩ bQ, c0 · `(Q)}, otherwise .

It then sets the values of A as follows:

A(x) =
∑

Q∈Q
γ eQ · χQ(x), for all x ∈ PLE . (4)

The algorithm computes the strip R, so that at each stop-
ping time interval Q it leaves a fraction of size α2 of the
points outside the strip. More precisely, if Q ∈ Q, then

|x : x ∈ Q̂ and dist(x, L) ≥ R(PLx)| = bα2 · |Q̂|c ≈ α2 · |Q̂|,
where the “floor function” bxc denotes the largest integer
smaller or equal to x.

The algorithm computes the strip S as follows:

S(x) =
∑

Q∈Q
σ bQ · χQ(x).

Note that this strip estimates locally (and adaptively) the
square root of the second moments of the distances of the
points of E to the line L.

By multiplying S by a certain constant, we obtain an ap-
proximate version of R which is less sensitive to noise. More
precisely, set Cσ ≡ Cσ(α1) :=

√
2 ∗ erfinv(α2), where erfinv

is the inverse Erf function (error function for normal distri-
bution). If the assumption stated in equation (1) is correct,
then the strip Cσ · S leaves out a fraction of size α2.

The strips A, R and S constructed above are all piecewise
constant functions. However, it is possible to derive smooth
strip functions as follows: First, generate many instances
of the corresponding piecewise constant function according
to different grids. Then average these piecewise constant
functions over all the instances. The complete details appear
in the full paper [9].

It is possible to apply the stopping time construction twice
or to reiterate the whole algorithm. The resulting strips are
supposed to be less sensitive to highly deviating points than
the original strips.

Lastly, we remark that for gene expression data, we pre-
fer using the smoothed version of the strip C ′ · S (usually
C ′ = Cσ(α2)) with the specific constants described in the
full paper [9] and without reiteration.

Analysis of the strips

By appropriate choice for the stopping time criteria, we con-
trol at different scales the number of points outside the strip
A as well as the rate of change of A in the direction of the
line L. We also remark on the relation between the strip
A and the strips R and Cσ · S. We only state the main re-
sults. Additional results and proofs are available in the full
paper [9].

Denote the set of ancestors of intervals in Q by P. That
is,

P = {P : P ∈ D(Q0) and ∃ Q ∈ Q such that Q ⊆ P}.

For any given interval Q ∈ P \ Q , define the number of
points in Q̃ outside the strip A as

m eQ(A) := |{x : x ∈ Q̃ and dist(x, L) ≥ A(PLx)}|.

Similarly, define

m bQ(A) := |{x : x ∈ Q̂ and dist(x, L) ≥ A(PLx)}|

We estimate these numbers as follows:

Proposition 2.1 For any Q ∈ P \ Q:

m eQ(A)

|Q̃|
≤ α0 +

1
C2

1

and
m bQ(A)

|Q̂|
≤ α1 +

1
C2

1

.

Extensive numerical experiments lead us to conclude that
the numbers m eQ(A) do not depend on the constant C1 (es-
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pecially for large scale intervals, e.g. Q0). Indeed, define

µ eQ(A) :=
∑

Q′∈Q & Q′⊆Q

C1·σ eQ′<c0·`(Q′)

∣∣∣∣
{

x : x ∈ E, PLx ∈ Q′ and

c0 · `(Q′) ≥ dist(x, L) ≥ C1 · σ eQ′
}∣∣∣∣

and note the following property:

Proposition 2.2 If there exists a constant C ′ ' 1 so that

µ eQ(A) ≤
(

1− 1
C ′

)
·m eQ(A),

then

m eQ(A) ≤ C ′ · α0 · |E| and m bQ(A) ≤ C ′ · α1 · |E|. (5)

Our algorithm controls at different scales the rate of
change of the strip A in the direction of the line L, which
we view as a complexity of that strip. We formulate this
property more precisely as follows:

Proposition 2.3 Assume that for any Q ∈ Q: β ePQ
≈

β ePQ∩ bQ and that the grids are symmetric (midpoint rule). If
Γ is any one of the curves obtained by intersecting the strip
obtained by the function A together with a D-plane contain-
ing the line L, then

`(Γ ∪ Q̂) ≤ (1 + C1 · δ0) · `(Q) for any Q ∈ P \ Q. (6)

The above estimates hold for the strip A. However, note
that the strips C1 ·S and A are quite similar (recall that the
values of the functions A and S depend on the input constant
C1). Indeed, the strip A is obtained by first thresholding
the points outside ∪Q∈QQ̃, and then estimating C1 · σ eQ for
each Q ∈ Q. Whereas, the strip S estimates C1 · σ bQ for
each Q ∈ Q. The similarity of A and S thus follows from
the stopping time condition stated in equation (3), which
controls locally the differences between Q̃ and Q̂ (there is an
additional assumption which is necessary for that similarity;
see [9]). The similarity of R and Cσ ·S has been discussed in
the previous section, together with the assumptions under
which it holds.

3 Results and Discussion

We examined the performance of the multi-strip algorithm
with three different data sets: (i) A synthetic in silico gene
expression data set, generated under a mixture model com-
bining a stable set of genes with a small number of deviating

gene expressions. (ii) An experimental in vitro gene expres-
sion data set derived from the megaplasmid pSOL1 deficient
C. acetobutylicum strain M5 relative to WT [17]. (iii) Fi-
nally, a gene expression data set examining the sex-biased
genes of D. melanogaster [13].

Synthetic Gene Expression Data

For the purpose of testing the algorithm, we rely on two-
dimensional synthetic data sample from several types of
Gaussian mixture distributions. We use the synthetic data
for demonstration and algorithm development purposes only
and in no way suggest that one could convincingly argue the
optimality of an algorithm based on these limited experi-
ments alone. The choice of two dimensions can be extended
to multiple sample gene-chip experiments in higher dimen-
sions.

The data is simulated as follows. First, we create an
i.i.d. sample of 5000 points from a mixture of bivariate nor-
mal distributions concentrated around the x-axis. We de-
note this mixture distribution by F0. Next, indices of 50 up
regulated and 50 down regulated genes are randomly chosen.
Last, we convolve the distributions of both up and down reg-
ulated genes with a similar mixture of Gaussians with means
in the upper half plane and lower half plane, respectively.
The resulting distributions are denoted by Fup and Fdown,
respectively. We specify the complete parameters in [9].

We denote the class of “stable” genes sampled from the
distribution F0 by St, the class of up-regulated genes, sam-
pled from the distribution Fup by Up, the class of down-
regulated genes, sampled from the distribution Fdown by Do
and finally the set of differentially expressed genes (Do∪Up)
by Df . After running the multiscale algorithm, we identify
the gene expressions that lie outside the strip Cσ · S as dif-
ferentially expressed and refer to them as positives (or P ).
Similarly, we refer to the genes inside the strip as negatives
(or N). The set of true (T ) and false (F ) positives and
negatives are set as follows: TP := Df ∩ P , FP := St ∩ P ,
TN := St∩N and FN := Df ∩N . We define the sensitivity
Sns, the specificity Spc and the error Er as follows:

Sns =
|TP |
|Df | , Spc =

|TN |
|St| and Er =

1
2
·
( |FP |
|St| +

|FN |
|Df |

)
.

We use an ROC curve, shown in Figure 3, to demonstrate
how well the strip Cσ ·S separates the differentially expressed
genes for different choices of the parameter α2 (for the actual
quality of separation of these genes in the data set, see [9]).
The area below the piecewise linear ROC curve is 0.78. The
error Er is minimized when α2 = 0.11. Figure 3 shows
the synthetic data set together with the strip Cσ · S, where
α2 = 0.11.
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Figure 2: ROC curve for separating the differentially ex-
pressed genes in the synthetic data by the strip Cσ · S. The
blue dots correspond to different values of α2.

C. acetobutylicum Gene Expression Data
and comparison with SNNLerm Algorithm

Yang et al. [17] have developed what they call a segmental
nearest neighbor method of LERs (SNNLerm) for gene ex-
pression normalization and identification. They divide the
log mean intensity range into a fixed number of equidistant
intervals and compute the mean and standard deviation of
LERs for each interval using only nearest neighbor genes.
The value of the strip function (“mask”) in each interval
is determined by the standard deviation. They also assign
confidences to the points in each intervals. They concluded
that their identification method is superior to other methods
(conditioned on using the SNNLerm normalization).

We compare the SNNLerm identification algorithm with
our algorithm using the glass slide arrays of tissue sam-
ples taken from the megaplasmid pSOL1 deficient C. ace-
tobutylicum strain M5 relative to WT [17]. Strain M5 is
isogenic to WT but lacking the pSOL1 plasmid. Only 169
out of the 178 pSOL1 genes are included in the glass slides.
The pSOL1 genes are expected to be expressed with a broad
range of levels in WT, but unexpressed in M5. Therefore
the expression ratios of these genes should be characterized
as non-differentially expressed and even down-regulated. Of
course, this classification depends on whether such a devi-
ating gene is actually expressed in WT or not. We used
six glass arrays (see [9] for details), which were chosen by
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2
 = 0.11
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Lo

g 
R

at
io

Figure 3: Synthetic data set with a multistrip. “Stable” genes
are denoted by blue dots, up regulated genes are denoted by
red circles and down regulated genes are denoted by magenta
circles. The multistrip (in black) is Cσ ·S, where α2 = 0.11.

Yang et al. [17] to produce Table 1 (see [17, page 1126]).
We were not able to reproduce the same table and thus ana-
lyzed each slide separately. After pre-filtering and normaliz-
ing each slide by the initial part of the SNNLerm algorithm
we ran both identification algorithms. We used the strip
Cσ · S for the multiscale algorithm (with the corresponding
parameters specified in [9]). In order to be able to compare
between the two algorithms, we have determined the value
of α2 in order to obtain the same average fraction (averaged
over the six slides) of pSOL1 genes identified by both al-
gorithm as differentially expressed over the total number of
those genes.

We use the error of identification specified in [17, equa-
tion (9)]. More specifically, we denote the set of pSOL1
genes in each experiment by Df and the complementary set
by St. We identify the gene expressions that lie outside the
assigned strip (or with confidences greater than 95.5% when
using the SNNLerm algorithm) as differentially expressed
and refer to them as positives (or P ). We use the notation
P , N , TP , FP , TN and FN as in the previous section. Also
denote by DU the points of the set Df , which the given al-
gorithm identified as up regulated (that is, above the strip).
We define the the error Ẽr as follows:

Ẽr =
1
2
·
( |FP |
|St| +

|FN |+ |DU |
|Df |

)
.

We summarize the results in Table 1. We remark that
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Numerical Slide Slide Slide Slide Slide Slide
Results 422 424 783 784 786 805

Total Count

|Df | 118 127 51 144 119 136

|St| 655 645 551 742 653 706

SNNLerm

|FP | 58 47 38 34 37 41

|FN | 106 115 47 107 95 111

|DU | 1 1 1 0 0 1

|TP | 12 12 4 37 24 25

eEr 0.498 0.493 0.505 0.394 0.427 0.441

Multiscale

|FP | 61 43 38 36 32 41

|FN | 103 112 47 109 96 108

|DU | 1 1 1 0 0 1

|TP | 15 15 4 35 23 28

eEr 0.487 0.478 0.505 0.403 0.428 0.430

Table 1: Comparison of SNNLerm and the Multistrip method
for identification of C. acetobutylicum pSOL1 genes in six
slides of M5-WT experiments.

Df is less than 169 due to pre-filtering of pSOL1 genes with
high background noise. The multiscale algorithm performs
better than the SNNLerm algorithm for slides numbers: 422,
424, 805, while SNNLerm performs better for slide number:
784. The two algorithms are comparable for slides numbers:
783 and 786. Unlike the SNNLerm algorithm, the multiscale
algorithm is adaptive. In particular, parameter values are
independent of the types of microarray experiments (glass,
vinyl, plastic).

D. melanogaster Gene Expression Data and
Sex-Biased Genes

Lastly, we apply the multiscale algorithm to detect sex-
biased genes of Drosophila melanogaster using one of the
many experiments of Parisi et al. [13]. In this experiment
tissue is taken from adult male versus adult female flies with-
out having removed their reproductive organs (slide is avail-
able from the Gene Expression Omnibus under accession
GSM2456).

Global gene expression in Drosophila melanogaster has
been reported to have an elevated transcription of X-
chromosome genes in males due to a dosage-compensation
mechanism. However, it has been suggested that, unlike in
the somatic cells, there is no dosage compensation in the
germ line and this hypothesis can be tested by comparing
expression data in males against expression data in females
(of both somatic, germ line and mixed cells).

In order to distinguish between male-biased and female-
biased genes and also due to the non-symmetric nature of
the data, we implement a slight variation of the multiscale
algorithm. That is, we run the algorithm twice for the two
sets of genes in the two half planes bisected by the diagonal
of the data. We use this line instead of the principal axis
and thus avoid the initial transformation of the algorithm
(specific details are in [9]).
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(L
n

)M
a

le

Figure 4: Logarithmic intensities of Drosophila melanogaster
whole adult fly, male vs. female. The two fold strip is in
black and the multistrip is in red.

Parisi et al. used the threshold ln 2 to determine the dif-
ferentially expressed genes (two fold approach). In order to
compare their constant strip with ours, we set for each subset
(in each half plane) α2, so that the number of genes outside
both strip are the same. For the sake of simplicity, we used
the strip R. The resulted strip together with the two fold
strip are shown in Figure 3.

Some Concluding Remarks

The multiscale algorithm is a robust, efficient and mathe-
matically innovative way to adaptively analyze data with-
out prescribing assumptions to the data when little prior
information is available. Thus, this and other such priorless
approaches depart from conventional statistical methods as
well as Bayesian methods in that we have no longer access to
a model, or fitting to a model through optimization of a like-
lihood, expectation, or related functions (e.g., MCMC, EM
or MLE methods). Even empirical Bayes methods [5] cannot
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reconcile the problems of non-specific hybridization, cross-
hybridization, competition, target diffusion, probe-specific
complications, etc., that happen at the local level. Any
algorithm that pre-determines the localities of the expres-
sion level also undermines analysis. In any case, through
local spatial adaptability, the focus of this multiscale proce-
dure becomes a low-complexity representation of the struc-
ture in the data without ascribing parametric distributions,
see Jones [7], David and Semmes [3] and Lerman [8]. Fur-
thermore, the complexity of the representation is provably
bounded by a “competitive factor” with respect to the best
possible representation. Other algorithmic examples of sim-
ilar approach include CART (Breiman et al. [2]), MARS
(Friedman [6]), MART, variable bandwidth kernel methods
(Muller and Stadtmuller [11]), etc.

Our application of this approach to gene expression data
is decidedly a natural one; nonetheless, an important one, as
it resolves many important difficulties in comparing poorly
understood variations in gene-expression measurements from
experiment to experiment. We may compare our algorithm
to other techniques for defining and elucidating genes with
putative differential expression as well as methods for nor-
malization and experimental control. See Li [10], Dudoit and
Yang [4], Efron et al. [5], Garrett and Parmigiani [14]. Yang
et al. [17] and Newton and Kendziorski [12]. We focused
on three important datasets (one synthesized and two ex-
perimental) and concluded that multi-scale approach in its
most skeletal form captures the local variations extremely
well, even when it has no direct way of modeling the na-
ture of the variation. There are several further modifications
that remain to be explored: extension to higher dimension,
asymmetry in the data sets, low dimensional variations in
the “principal axis”, shrinkage approaches to handle sparsely
populated regions, etc.
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