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Summary. The evolutionary theory, “evolution by duplication”, originally pro-
posed by Susumu Ohno in 1970, can now be verified with the available genome
sequences.

Recently, several mathematical models have been proposed to explain the topol-
ogy of protein interaction networks that have also implemented the idea of “evolution
by duplication”. The power law distribution with its “hubby” topology (e.g., P53
was shown to interact with an unusually large number of other proteins) can be
explained if one makes the following assumption: new proteins, which are dupli-
cates of older proteins, have a propensity to interact only with the same proteins as
their evolutionary predecessors. Since protein interaction networks, as well as other
higher-level cellular processes, are encoded in genomic sequences, the evolutionary
structure, topology and statistics of many biological objects (pathways, phylogeny,
symbiotic relations, etc.) are rooted in the evolution dynamics of the genome se-
quences.

Susumu Ohno’s hypothesis can be tested ‘in silico’ using Polya’s Urn model. In
our model, each basic DNA sequence change is modeled using several probability
distribution functions. The functions can decide the insertion/deletion positions of
the DNA fragments, the copy numbers of the inserted fragments, and the sequences
of the inserted/deleted pieces. Moreover, those functions can be interdependent. A
mathematically tractable model can be created with a directed graph representa-
tion. Such graphs are Eulerian and each possible Eulerian path encodes a genome.
Every “genome duplication” event evolves these Eulerian graphs, and the proba-
bility distributions and their dynamics themselves give rise to many intriguing and
elegant mathematical problems.

In this paper, we explore and survey these connections between biology, mathe-
matics and computer science in order to reveal simple, and yet deep models of life
itself.
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1 Introduction

The genome of an organism is a collection of its genes, encoded by four chem-
ical bases in its DNA (DeoxyriboNucleic Acid), and forms the genetic core of
a cell. The genes ultimately encode for the proteins (chains of amino acids)
and in turn, the genes themselves are regulated by transcription factors and
other operons, many of which are proteins. The sequences of amino acids,
specified by the DNA through transcription and translation processes, de-
termine the three-dimensional structure and biochemical properties of the
proteins as well as the nature of their interactions. Furthermore, mRNA sta-
bility, protein degradation, post-translational modifications, and many other
biochemical processes tightly regulate the time-constants involved in the re-
sulting biochemical machinery. Proteins also associate in complexes to form
dimers (pairs of proteins), trimers (triplets), and multimers. An isoform of a
protein is a slightly different protein with a closely related sequence, and often
shares similar functional properties, e.g., enzymatic reactions, but is regulated
differently. However, we know that this complex machinery of life has evolved
over several billion years through random mutations and re-arrangements of
the underlying genomes while being shaped by the selection processes. We ask
the following questions: Are the processes altering, experimenting and correct-
ing the genomes completely untamed and haphazard? If not, what signatures
have they left on the genomes, proteomes, pathways, organs and organisms?
What structures have they imposed on these biological elements and their in-
teractions? We posit that a better understanding of biology is hinged on a deep
information-theoretic study of evolving genomes and their roles in governing
metabolic and regulatory pathways.

We begin with the following account: Genomes are not static collections of
DNA materials. Various biochemical and cellular processes—including point
mutation, recombination, gene conversion, replication slippage, DNA repair,
translocation, imprinting, and horizontal transfer—constantly act on genomes
and drive the genomes to evolve dynamically. These alterations in the genomic
sequences can further lead to the corresponding changes in the higher-level
cellular information (transcriptomes, proteomes and interactomes), and are
crucial in explaining the myriad of biological phenomena in the higher-level
cellular processes. However, until recently, the lack of sufficient historical data
and the complexity of biological processes involved have hampered the de-
velopment of a rigorous, faithful, and yet simple abstract model for genome
evolution.

Present genomes can be viewed as a snapshot of an ongoing genome evo-
lution process. Although it would be ideal, it is usually impossible to base
genome evolution studies on ancient genome samples. Fortunately, various his-
torical evolutionary events leave their “signatures” in the present sequences,
which can be deciphered by statistical analyses on a family of genomes that
are currently available. With the development of high throughput experimen-
tal technology, the flow of information at different levels of biology (genome,
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proteome, transcriptome, and interactome) is increasing dramatically. By an-
alyzing and comparing this data, we are now able to look for the structure of
cellular processes and the dynamics of the evolution process driving it.

A survey of the literature reveals many interesting statistical analyses of
various kinds on genomic and proteomic data. Among the large collection of
results, it is worthwhile to note that many interesting statistical characteris-
tics are shared by data from all organisms, from different cellular processes,
as well as at various scales. For example, research during the last decade re-
veals long range correlation (LRC) between single nucleotides in the genomic
sequences of various species from different kingdoms [1][20], and in differ-
ent regions of the genomic sequences. Furthermore, the LRC is persistent in
all the genomic sequences examined. This indicates that on single-nucleotide
level, genomes have evolved independently to share a common scale-free global
structure. On a slightly larger scale than single nucleotides, the short words
in DNA sequences (mers, oligonucleotides) and protein sequences (short pep-
tides) also seem to display similar generic statistical properties. The frequency
distributions of the short words in the genomic and proteomic sequences from
various organisms are found to follow a power-law [18][14], a feature often
found in linguistic studies. Those general properties are further reflected in
the higher-level cellular processes. As the large-scale metabolism networks and
protein interaction networks in some model organisms become available, e.g.
metabolic networks in E. coli [8] or protein interaction networks in S. cere-

visiae [3] and H. pylori [11], the topology of those networks is analyzed [9][19]
and is found to be characteristic of a group of graphs known as scale-free
networks [4]. Scale-free networks are characterized by their “hubby” struc-
tures associated with a power-law distribution of their connectivities, and
can be created by an evolution process following a“rich gets richer” rule. All
those statistical features—the positive correlation between single nucleotides,
the over-representation of high-frequency words in genomes and proteomes,
the “hubbiness” due to highly-connected nodes in the protein and genetic
networks—can be viewed as the different aspects of an underlying generic
structure. (See Genomic data Analysis section for more examples.) Differ-
ent organisms preserve a common structure in their cellular processes despite
drastically different evolutionary environments. This common structure may
reflect the most fundamental processes in biology.

The positive feedback mechanism suggested by the highly-correlated struc-
tures found in various data is reminiscent of the “evolution by duplication”
theory originally proposed by S. Ohno in 1970’s [15]. Based on this theory,
we develop a mathematical model to explain the observations in our mer-
frequency distribution analysis. The model is an extension of Polya’s urn
model [13], and considers genome evolution as a stochastic process with three
main events: substitution, deletion, and duplication. We study a simpler ver-
sion of the model in numerical simulation as well as a more realistic, thus
more complicated, version of the model in a large-scale in silico evolution
simulation. The simple model fits the real-world data for mer-frequency dis-
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tributions. These results suggest that despite the highly diversified evolu-
tionary environment for different organisms, the essential composition of the
evolutionary dynamics is commonly shared. A simple stochastic process (sub-

stitution, deletion, and duplication) can describe the recurrent pattern in the
statistical signatures of different organisms. The model is extremely intrigu-
ing as it suggests that all the complexities found in life can be the result of a
simple stochastic evolutionary process.

2 Evolution by duplication

Susumu Ohno proposed an evolutionary theory “evolution by duplication” [15].
Although not explicitly stated, his theory suggested a “rich gets richer” rule
in genome evolution. The theory argues that the evolutionary advantage of
evolution by duplication lies in the promise that with an extra copy, the se-
lection pressure on the gene is somewhat relaxed. Since the original function
can be maintained efficiently by either copy of the duplicated gene, the other
copy can undergo various modifications, increasing the chance of the organ-
ism obtaining a new advantageous gene. Gene duplication can speed up the
search for higher fitness in various ways [23]: it can adjust gene dosage; attain
a permanent heterozygous advantage by incorporating two former alleles into
the genome, allow more specialized functions by differential regulation of the
duplicated genes, or create a new gene with a diverged function.

The duplication process mentioned in the theory can be well explained by
molecular biology. There are various molecular mechanisms that can cause
DNA duplication of different size ranges. For example, during DNA replica-
tion, replication slippage [6] can introduce small insertions or deletions locally,
when the newly replicated DNA fragments misalign to the template. The
misalignment, usually triggered by tandem repeats or secondary structure in
the template DNA strand, causes the DNA polymerase to pause, dissociate,
and continue an erroneous strand extension after re-association. During mei-
otic cell division, recombinations between two DNA molecules occur through
cross-overs between corresponding homologous regions. Unequal cross-overs
between two DNA molecules bearing successive repeated fragments will result
in the duplication or deletion of the repeated units in the daughter cells [23].
Another process that can introduce duplications or deletions of relatively large
sizes and globally in the genome involves mobile DNA elements (insertion el-
ements, transposons, and retrotransposons) [23]. The mobile elements can be
either excised or copied from their original positions, and subsequently in-
serted elsewhere in the genome where target sequences can be found. The
frequencies and sizes of the deletions or insertions vary with specific elements.
Since the target sequences are widely distributed in the whole genome, the
mobile elements can essentially affect sequence changes on the whole-genome
range. In summary, duplications and deletions in genomes can be fully justified
by the well-known molecular mechanisms.
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However, the duplication dynamics do not proceed completely unopposed—
the cell also possesses DNA repair machineries to counteract the changes made
in the sequences and prevent genomes from changing too rapidly [7]. For
example, the mismatch repair (MMR) mechanism is mainly responsible for
correcting most of the deletions and insertions of various sizes. Therefore,
duplications, deletions, and other changes in genomes are the results of the
interactions between the molecular mechanisms leading to genomic sequence
changes and the surveillance system of the cell.

If we assume that the target gene of every duplication is randomly chosen
from the genes that are already in the genome, then we have a realization
of Polya’s Urn model [13]. Therefore, under the “evolution by duplication”
theory, genome evolution can be viewed as a stochastic duplication process
that can lead to a highly correlated structure with over-abundance of some
elements.

Several mathematical models recently proposed to explain the topology of
protein interaction networks have also implemented the idea of “evolution by
duplication” [2][17][10]. The power-law distribution with its “hubby” topol-
ogy (e.g., P53 was shown to interact with an unusually large number of other
proteins [12]) can be explained if one makes the assumption that new proteins
which are duplicates of older proteins have a propensity to interact only with
the same proteins as their evolutionary predecessors. Since the protein inter-
action networks, as well as other higher-level cellular processes, are encoded
in genomic sequences, the evolution of their topology is rooted in the genomic
sequence changes. Therefore, we believe that a more general model of “evo-
lution by duplication” at genomic level should explain the common pattern
observed at various scales and different cellular information levels, and may
be exploited prudently in the design of better bioinformatics algorithms.

3 Genomic data analysis

Large-scale genomic data analysis is the essential starting point in the search
for the main players during genome evolution. Previous researches have pro-
vided statistical evidence favoring a general genome evolution dynamic, “evo-
lution by duplication”. Here, we report further discoveries that support such a
hypothesis. We have examined the statistical properties of the distribution of
short words in various whole genomes and proteomes. Our results confirm and
extend the previous conclusion that there is an over-representation of high-
frequency words in all the sequences studied. Furthermore, our analysis of
the distribution of the end-points of putative large segmental duplications in
human genome provides convincing evidence that duplications tend to occur
more often around the prior duplication sites. In another words, the already
duplicated segments are more likely to be duplicated again, thus the already
over-represented segments tend to be more over-represented, while the other
segments are more likely to be suppressed. The duplication dynamics im-
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Fig. 1. Mer-frequency distribution in some genomes examined. The plots shows
the non-overlapping mer frequency distribution (blue bars) in the genomes of a
eubacteria (E. coli K12), an archea (P. abyssi) and two eukaryote (S. cerevisiae and
C. elegans). When compared with the expected distribution from a random sequence
of the same length (black line), the distributions from real sequences consistently
show an over-representation of high-copy mers. Our simulation results (red line)
from the simple graph model closely fit the “real” mer frequency distribution. Given
that we only have two free parameters (q = single point mutation probability and
p1/p0 = ratio of probabilities of duplication over deletion, see below) in the model,
the data-fitting is extremely convincing.

plied by the end-point distribution analysis may explain our observations on
protein domain family sizes, which follow a power-law distribution and are
characterized by an over-representation of larger families.

3.1 Mer-frequency distribution analysis

To study the statistics of short words in different whole genomic sequences,
we performed a large-scale non-overlapping mer-frequency distribution anal-
ysis. The experiment was conducted on all the reasonable mer-sizes, covering
almost all the presently available whole genomic sequences and including vari-
ous organisms from all the kingdoms. To avoid the complication of inversions,
we treated two inversely complimentary mers as one species. (For example,
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5’-ATCG-3’ and 5’-CGAT-3’ are counted as one mer species, i.e., their fre-

quencies are combined.) Therefore, for mer size l, there are 4
l

2
species of l -mers.

From our results, it is clear that the mer-frequency distributions from all the
genomic data examined deviate from the random distribution (see Figure 1
for some of the results). Furthermore, they are all characterized by the same
type of deviation—over-representation of high frequency mers.

We have also looked at the mer-frequency distribution in just the coding
sequences, and the distribution of amino-acid word-frequency in the corre-
sponding proteome sequences. (For a length of n, there are 20n species of
different amino-acid words.) Both results share the same type of deviation
from the random distribution that is observed in the whole genomic sequences
(data not shown).

A simple simulation of “evolution by duplication” was also performed,
where a short random sequence (1000bp) was allowed to evolve to a final length
of 500Kb by duplicating fragments randomly chosen from itself. The deviation
in the mer-frequency distribution of the final sequence from a random sequence
closely resembles the pattern seen in real genomes (see Figure 2). Therefore,
the particular statistics of mers in genomes and short amino-acid words in
proteomes can be simply due to the duplication processes during genome
evolution.

Fig. 2. The 6-mer frequency distribution of the resulting sequence of a simple “evo-
lution by duplication” simulation. The initial condition is a random sequence of
length 1000bp. The sequence is evolved through multiple iterations until it reaches
a length of 500Kb. In each iteration, a fragment of length uniformly randomly dis-
tributed from 1 to 100bp is randomly chosen from the sequence, duplicated, and
re-inserted randomly into the sequence. The blue bars in the plot show the 6-mer
frequency distribution of the final sequence from the simulation. The red bars show
the 6-mer frequency distribution of a random sequence of the same length.
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3.2 Analysis on the end-points of potential large segmental

duplication fragments in human genome

As mentioned above, the results of various statistical analyses on genomic
data have suggested that there is a generic evolution dynamic dominated by
duplication. To justify this hypothesis, it is important to study the dynamic of
duplication processes. Although the exact molecular mechanisms that cause
duplications are not fully understood, we can approach the problem indirectly
by looking at the distribution of the most recent segmental duplications in
genomes.

Fig. 3. The distribution of the potential duplication ‘hot-spots’ on the human
genome. A. The distribution of the duplicated segment end-points on the chromo-
somes (over windows size of 1Kb). The ‘hot-spot’ density is color coded (see the color
bar). The dark areas represent chromosomal regions where no reference sequences are
available. There is a tendency for areas with high densities to cluster together on the
chromosomes. B. The distribution of the end-point densities on a log-log scale. The X
axis shows the number of end-points in non-overlapping windows of size 1Kb (density
of end-points), starting from 1. The Y axis indicates the number of non-overlapping
1Kb windows containing a given number of end-points (density frequency). It is clear
that the Log10(densityofend− points) and Log10(densityfrequency) form a linear
relationship, both in the whole-genome range (thick black points) and in individual
chromosome range (multiple thin colored lines).

Recently, intensive large segmental duplications (both intra- and inter-
chromosomal) have been reported in the assembled human genome [21], and
the potential large duplicated regions (>500bp, >95% identity) have been
mapped out in pairs under the standard sequence homology criteria [22].
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Although the exact molecular mechanism is unclear, one could hypothesize
that some of the processes involve single- or double-strand DNA breakage
at the time of duplications, like homologous or heterologous recombination,
and transposition. The end-points of the mapped-out duplicated segments are
good candidate sites where such processes initiate or terminate at the time of
duplications.

Since the end-points can be viewed as the signatures left by the dupli-
cation process over the genome evolutionary history, their distribution along
the genome could reveal some dynamic features of the duplication process. To
verify this hypothesis about the “density” distribution of the end-points, we
first fragmented the genome into non-overlapping windows of a fixed size. The
number of end-points covered by each window was treated as its local “den-
sity” over the corresponding genomic region. When we plotted the histogram
of the end-point density over a chromosome or over the whole genome, we
discovered another power-law distribution (Figure 3). This implies that du-
plications tend to happen more often at the previous duplication sites, which
is driven by a positive feedback dynamic. To further verify this interpreta-
tion, we performed a correlation test (detrended fluctuation analysis) [5] on
the series of densities along the genome in relation to the distances between
them. The result of the test indicated a positive correlation between neigh-
boring densities of end-points. Such positive correlation suggests that over the
evolutionary history, consecutive segmental duplications occur favorably near
or on some previously duplicated segments, and are absent elsewhere.

3.3 Protein domain family size distribution

In our mer-frequency distribution analysis, the chosen mer sizes ranges up
to 12 nucleotides. In comparison to other functional elements in the genome,
the mers are of the smallest scale. To check whether the generic structure
observed on such a small scale also persists on a bigger scale, we studied the
protein domain family size distribution.

The protein domain families in different organisms are extracted from the
protein family database InterPro [16]. The sizes of the domains are mostly
above 50 amino acids (150 nucleotides) — a bigger scale than that of the
mer analysis. The analysis of domain families is based on sequence signature
and homology. A family of protein domains found by this method can be
viewed as a cluster of amino acid sequences from a proteome that share enough
similarity with each other and have maintained their critical sequences. When
the histograms of the sizes of those protein domain families from various
organisms were plotted on a log-log scale, a linear relationship was observed
in all cases, including in E. coli K12, P. abyssi, S. cerevisiae, H. sapiens

(Figure 4). Therefore, the domain family size distribution, or more generally,
the cluster size of homologous amino acid sequences, seems to follow a power-
law distribution. Here, on this larger scale, we observed the same deviation
pattern from the random distribution as in the small-scale mer distribution
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Fig. 4. Protein domain family size distribution in some genomes examined. The
plots show the protein domain family size distribution in the corresponding pro-
teomes (blue dots). The protein domain family data is extracted from InterPro
database. The plots are on a log-log scale. The almost linear shape (red line) on
such a plot indicates a power law relationship between a domain family size and the
number of domain families of that size. Therefore, the protein domain family size
distributions are also characterized by an over-representation of large size families
when compared with uniformly random distributions (black curves).

analysis, which further confirms the effects of duplication processes during
genome evolution.

4 Evolutionary models

The results from genomic data analysis at different scales, at different lev-
els, and in different organisms repeatedly show the same pattern (over-
representation of high-frequency elements). It consistently suggests a generic
evolutionary dynamic involving positive feedback as postulated by S. Ohno’s
theory of “evolution by duplication.” If we assume that the target fragment
of every duplication is uniformly randomly chosen from the genome, then the
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fragments that are already over-represented in the genome will have a higher
probability of getting duplicated again. Similarly, the fragments that are ini-
tially under-represented in the genome will be further suppressed. To further
verify the theory quantitatively, we develop a mathematical model based on
the theory.

4.1 Graph model

We develop a Eulerian graph model to explain the frequency distribution of
non-overlapping mers (all the different species of oligonucleotides of a par-
ticular size) in various genomic sequences. The model aims to capture the
parsimonious processes needed to recover the dynamics involved in genome
evolution. Yet, it preserves enough fidelity to validate biological reality. The
processes included in the model are: duplication, deletion, and substitution.
The parsimony of the model can be inferred from the fact that the omission
of any of the three processes renders the model unsuitable to fit real genomic
data. In the model, a genome is represented by a Eulerian graph. Each mer
species of a particular length is represented by a node. Whenever two non-
overlapping mers are immediately adjacent to each other in the genome, they
are connected by an additional directed edge. Without loss of generality, the
edges are always directed from the 5’ end to the 3’ end. Therefore, the number
of directed edges from node i to node j (ki,j) indicates how many times the
ith mer is immediately adjacent to the 5’ end of the jth mer. We use ki to
represent both the out-degree (ki

out) and the in-degree (ki
in) of the node i,

since due to the Eulerian property of the graph, each node has identical in-
and out-degrees, each being equal to the copy number of the corresponding
mer in the genome. For mers of size l, and a genome of length L, the graph

will have a total of N = 4
l

2
nodes and E = L

l
=

∑N

i=1
ki edges. Such graphs

are Eulerian and each possible Eulerian path in the nontrivial (non-singleton)
connected component encodes a genome. The genomes represented by the
same graph share the same mer frequency distributions but not necessarily
the same arrangement of mers.

The evolution of a genome is modeled as a stochastic evolution process of
the graph that goes through multiple iterations. The model assumes that all
the presently existing genomes originated from a proto-genome, which is very
small and its has are randomly distributed mers. Thus, the initial graph is a
random graph with a small average degree. In each iteration, one of the three
possible processes occurs: duplication of a chosen mer (with probability p1),
deletion of a chosen mer (with probability p0), or substitution of a chosen mer
by another mer (with probability q) (Figure 5). Therefore,

p1 + p0 + q = 1 (1)

To avoid extinction, we let p1 > p0. Biological processes that can cause
duplications or deletions include homologous or heterologous recombination
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Fig. 5. The three processes during graph evolution: deletion, duplication, and substi-

tution. In each process, the target node (indicated by red fill in the figure) is chosen
with preference for nodes with larger degrees: If the i-th node has degree ki, the
probability of it being chosen is proportional to ki

∑

N

i=1
ki

. For deletion process (A),

one incoming edge and one outgoing edge of the target node are randomly chosen
(red), and deleted from the graph. A new forward edge (green) is added from the
root node of the deleted incoming edge to the head node of the deleted outgoing
edge. For duplication (B), an edge is randomly selected from the graph (red), and
deleted. Two forward edges (green) are added from the root node of the deleted
edge to the target node, and from the target node to the head node of the deleted
edge, respectively. For substitution (C), besides the target node as the substituted
node, another node (indicated by red boundary) is randomly chosen from the graph
uniformly as the substituting node. One incoming and one outgoing edge of the tar-
get node are randomly selected (red), and rewired to the selected substituting node
(green). Note that all the processes during graph evolution keep the out-degree and
in-degree of a node identical.

and DNA polymerase slippage. Substitutions can be caused by random point
mutation. During graph evolution, let ki

t and Et indicate the copy number of
ith mer and the total number of mers in the evolving genome at tth iteration. If
we assume that the target mers for any process is chosen uniformly randomly
from the genome, then the probability of ith mer species being chosen for a
process in the next iteration is proportional to its frequency in the genome in

the current iteration (∝ ki
t

Et ). With these assumptions, we implemented the
“rich gets richer” rule in dynamics. If, for simplicity, a mer chosen for substi-
tution is assumed to change into any other mer with equal probability during
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substitution, the conditional probabilities describing how the copy number of
the ith mer changes in each iteration can be expressed as follows4:

P (ki
t = n | ki

t−1 = n − 1) = p1

n − 1

Et−1
+ (1 −

n − 1

Et−1
)q

1

N − 1
, (2)

P (ki
t = n | ki

t−1 = n) = 1 − p1

n

Et−1
− p0

n

Et−1

−q
n

Et−1
− (1 −

n

Et−1
)

q

N − 1
, and (3)

P (ki
t = n | ki

t−1 = n + 1) = p0

n + 1

Et−1
+ q

n + 1

Et−1
. (4)

We are now able to write down the difference equation describing the
expected probability distribution for the copy number of the ith mer:

P (ki
t = n) = P (ki

t−1 = n − 1)P (ki
t = n | ki

t−1 = n − 1)

+P (ki
t−1 = n)P (ki

t = n | ki
t−1 = n)

+P (ki
t−1 = n + 1)P (ki

t = n | ki
t−1 = n + 1)

= P (ki
t−1 = n − 1)

(

p1

n − 1

Et−1
+ (1 −

n − 1

Et−1
)

q

N − 1

)

+P (ki
t−1 = n)

(

1 −
n

Et−1
− (1 −

n

Et−1
)

q

N − 1

)

+P (ki
t−1 = n + 1)

(

p0

n + 1

Et−1
+ q

n + 1

Et−1

)

= P (ki
t−1 = n − 1)

(

(p1 −
q

N − 1
)
n − 1

Et−1
+

q

N − 1

)

+P (ki
t−1 = n)

(

1 − (1 −
q

N − 1
)

n

Et−1
−

q

N − 1

)

+P (ki
t−1 = n + 1)

(

p0

n + 1

Et−1
+ q

n + 1

Et−1

)

. (5)

Since the total number of mers in a genome is usually very large, and each
mer species only accounts for a very small fraction of the genome, we assume
that the copy number of each mer species evolves independently. Therefore,
the above equation can be viewed as an expression of the copy number dis-
tribution of all possible mers in a genome. This assumption is validated by
Monte Carlo simulations.

4 We approximate the probability of a specific mer being chosen to substitute an-
other mer during substitution as 1

N−1
(instead of 1

3l
). This approximation stands

when mer size l is small.
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4.2 Model fitting

The simple graph model is applied to fit the mer-frequency distributions from
various genomes. Since the process is non-stationary, we use numerical sim-
ulation in the model fitting. The initial condition is set as a proto-genome:
a random sequence of size 1Kb containing uniformly distributed mers. The
iteration proceeds until the final genome size reaches the real genome size
under study. Some of the fitted mer-frequency distribution results can be seen
in Figure 1. The model has two degrees of freedom in its parameter space.
Here we choose to estimate q and p1

p0

. The parameters for the optimal fit to
the data from genome analysis are estimated so that the sum of the absolute
differences between the real data and the data produced by the model are
minimized. Some of the fitted parameter values are shown in 1.

Mer size 6-mer 7-mer 8-mer 9-mer

q p1/p0 q p1/p0 q p1/p0 q p1/p0

M. genitalium 0.0176 1.1 0.0436 1.1 0.1587 1.5 0.3222 1.5

M. pneumoniae 0.0319 1.1 0.1151 1.5 0.2309 1.5 0.4363 1.5

P. abyssi 0.0269 1.1 0.0672 1.2 0.1778 1.4 0.3897 1.5

P. horikoshii 0.0234 1.1 0.0443 1.1 0.139 1.3 0.3456 1.5

P. furiosus 0.0213 1.1 0.0384 1.1 0.1119 1.2 0.3114 1.5

H. pylori 0.018 1.1 0.032 1.1 0.0925 1.3 0.2262 1.5

H. influenzae 0.0202 1.1 0.0366 1.1 0.1364 1.5 0.2802 1.5

S. tokodaii 0.018 1.1 0.032 1.1 0.0925 1.3 0.2262 1.5

S. subtilis 0.0187 1.1 0.0326 1.1 0.1139 1.4 0.2585 1.5

E. coli K12 0.0207 1.1 0.0334 1.1 0.0698 1.1 0.2389 1.5

S. cerevisiae 0.0113 1.1 0.0176 1.1 0.0459 1.2 0.1311 1.4

C. elegans – – 0.0076 1.1 0.0115 1.1 0.0275 1.2

Table 1. Graph model parameters (q, p1/p0) fitted to the mer-frequency distribution
data (6 to 9-mer) from the whole genome analysis.

The fitted parameters in the table show some interesting properties. The
optimal relative substitution probabilities, q values, of a particular genome
increase monotonically with the mer-size (l). This may reflect the scaling effect
in this simple model introduced by fixing the size of duplication or deletion as
the size of one mer. In the related biological processes, while one substitution
changes one mer to another, one duplication or deletion may change the copy
numbers of more than one mer. In a particular duplication or deletion event,
when the mer-size increases, the corresponding number of mers being affected
by the process decreases. Therefore, the relative probabilities of substitution
of larger mer’s tend to be larger than those of the smaller mer’s. It is also
noticeable that the values of the parameter p1

p0

increase along with the mer-
sizes in each genome. This suggests that duplication probability p1 decays
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more slowly than deletion probability p0 when the mer size increases. Such
a behavior indicates that duplications of large regions occur more often than
deletions of large regions. Furthermore, the ratios p1

p0

are consistently larger
than 1, which validates our assumption of p1 > p0 in the model.

The organisms listed in the table 1 are ordered by their genome sizes (from
580Kb for M. genitalium to 97Mb for C. elegans). There is a slight tendency
for q values to be smaller when the genome sizes become larger. This may
reflect the fact that the sizes of duplication or deletion units increase with the
corresponding genome size. However, there are exceptions: For example, M.

genitalium has a genome of size 580Kb, its q values are smaller than many
listed organisms with larger genome sizes, such as M. pneumoniae (816Kb),
P. abyssi (1.8Mb), etc. This observation may be explained by a higher sub-
stitution rate in M. genitalium.

Under biologically reasonable assumptions, the parameters of the model
can be used to estimate the size distribution of the duplication and deletion
events in real genomes. Previous research [24] [25] has shown that the size dis-
tribution of the insertion and deletion regions in the genomes examined follows
a power-law. The exponents of the power-law are the key characterizing fac-
tors of the size distributions, and are of the greatest interest as they reveal
the link between the genome dynamics and genome statistics. Unfortunately,
direct estimation of the exponents (e.g., from sequence comparison) not only
requires complex and expensive computation, but also imposes strong con-
straints on data sources so as to minimize ambiguity. However, for a specific
genome, our model and the mer distribution data are sufficient to determine
the exponents reasonably well, as described below. We start with the following
assumptions: During genome evolution, the averaged rate of point mutation
in each time interval is µ per nucleotide; the probability of duplicating a frag-
ment of size x in each time interval is f1x

−b1 ; the probability of deleting a
fragment of size x in each time interval is f0x

−b0 (Here, f1 and f0 are normal-
ization constants; b1 and b0 are the exponents for the power-law distributions
of duplication and deletion sizes, respectively.). The relationships between the
model parameters and the size of the mer (l) they are fitted for in a specific
genome are shown in equations (6), (7), and (8).

When the model and its parameters are fitted to a specific genome for
a sufficiently large number of mer-sizes, the exponents (b1 and b0) can be
estimated by a linear regression using the relationship between the parameter
ratios and mer sizes (l) from equations (6), (7), and (8). This approach allows
us to infer the size distribution of duplication and deletion events over the
evolutionary history of that genome.
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q

p1

=
P (an l mer gets substituted)

P (an l mer gets duplicated)
=

µl
∫

∞

x>l
f1x−b1(x/l)dx

=
µl2

∫

∞

l
f1x1−b1dx

=
µ(b1 − 2)

f1

lb1 ∝ lb1 (6)

q

p0

=
P (an l mer gets substituted)

P (an l mer gets deleted)
=

µl
∫

∞

x>l
f0x−b0(x/l)dx

=
µ(b0 − 2)

f0

lb0 ∝ lb0 (7)

p1

p0

=
P (an l mer gets duplicated)

P (an l mer gets deleted)
=

∫

∞

x>l
f1x

−b1(x/l)dx
∫

∞

x>l
f0x−b0(x/l)dx

=
f1(b0 − 2)

f0(b1 − 2)
lb0−b1 ∝ lb0−b1 (8)

4.3 Polya’s model

Although the parsimonious model described above captures the most impor-
tant elements during genome evolution, it omits most of the details. To get a
more comprehensive and specific understanding of genome evolution, we de-
velop a more realistic model. The model will mainly include the parsimonious
rules, but apply them in a more interactive way. The model is an extension of
the Polya’s urn model on a string. In this model, the same three main events
in evolution are considered: duplication, deletion, and substitution (Figure 6).
Similar to the simple model, genome evolution is modeled as a stochastic pro-
cess that goes through multiple iterations. Within each iteration, one of the
three events happens with a certain probability. However, unlike in the simple
model, the details of the events can also be manipulated (Figure 6). In every
iteration, a set of probability distributions are applied to decide the changes
in the in silico evolution. All the probability distribution functions can be
inter-dependent, as well as independent.

As the model approaches in its resemblance to reality, it becomes increas-
ingly complex, thereby making the explicit mathematical approach infeasible.
Therefore, large-scale in silico experiments are needed. Finally, genome evo-
lution is also a population process. To understand the genome evolution more
completely, we also plan to simulate it in a population model which integrates
natural selection and polymorphism effects.

5 Conclusion

Among the few fundamental “dogmas” at the core of biological sciences, a
central and most elegant one is likely to be the “evolution by duplication.”
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Fig. 6. The more realistic model in our in silico simulation. During each iteration in
the simulation, just like in the simple graph model, one of the three events (deletion,
duplication, or substitution) happens with probabilities p0, p1 and q. A probability
distribution (F1) decides the initial position in the genome where a chosen event
will happen. Another probability distribution function (F2) controls the size of the
fragment chosen from the existing genome if either a duplication or a deletion event
happens. A third probability distribution function (F3) decides the copy number
for the duplication. (When the copy number is one, a translocation happens.) And
a fourth probability distribution function (F4) decides the insertion site(s) for the
duplicated fragment(s) during a duplication event. The distribution functions can
be interdependent. The model is a realization of Polya’s Urn on a string.

For many years, this theory is likely to remain intriguing and mysterious in its
pervasive power in explaining many seemingly unrelated biological phenom-
ena. Our efforts to understand it better will continue to raise many beautiful
mathematical and computational questions requiring many novel techniques.

For several years, we have focused on these problems, and have devel-
oped many computational techniques, not discussed in the paper but briefly
mentioned below: Valis, a computational environment and language allowing
us to rapidly prototype genome-analysis algorithms and visualization tools;
Genome Grammar, a highly memory and run-time efficient tool for large scale
in silico evolution simulations; Simpathica, a tool for understanding biological
processes involved in genome evolution and their effects on pathways.

References

1. Peng, C.K. et al: Long-range correlations in nucleotide sequences. Nature 356,
168–170 (1992)

2. Gomez, S.M., Rzhetsky, A.: Birth of scale-free molecular networks and the
number of distinct DNA and protein domains per genome. Bioinformatics 17,
988–996 (2001)

3. Fields, S., Schwikowski, B., Uetz, P.: A Network of protein-Protein interactions
in Yeast. Nature Biotechnol. 18, 1257-1261 (2000)

4. Albert, R., Barabasi A-L.: Statistical mechanics of complex networks. Review
of Modern Physics 74, 48–97 (2002)

5. Havlin, S. et al: Mosaic organization of DNA nucleotides. Physical Review E.
49, 1685–1689 (1994)

6. Ehrlich, S.D., Viguera, E., Canceill, D.: Replication slippage involves DNA
polymerase pausing and dissociation. EMBO J. 20, 2587–2596 (2001)



18 Yi Zhou and Bud Mishra

7. Lilley, D.M.J.,Eckstein, F.: DNA Repair (Springer, Berlin Heidelberg new York
1998)

8. Albert, R. et al: The large-scale organization of metabolic networks. Nature
407, 651–654 (2000)

9. Barabasi, A.L. et al: Lethality and centrality in protein networks. Nature 411,
41–42 (2001)

10. Gerstein, M., Qian, J., Luscombe, N.M.: Protein family and fold occurrence
in genomes: power-law behavior and evolutionary model. Journal of Molecular
Biology 313, 673–681 (2001)

11. Rain, J.C. et al: The protein-protein interaction map of Helicobacter pylori.
Nature 409, 211–215 (2001)

12. Vogelstein, B., Lane, D., Levine, A.J.: Surfing the P53 network. Nature 408,
307–310 (2000)

13. Johnson, N.L.: Urn models and their Application (Wiley 1977)
14. Ganapathiraju, M. et al: Comparative n-gram analysis of whole-genome protein

sequences. In: HLT‘02: Human Language Technologies Conference, San Diego,
California, USA, March 2002.

15. Ohno, S.: Evolution by Gene Duplication (Springer, Berlin Heidelberg New
York 1970)

16. Apweiler, R. et al: The InterPro database, an integrated documentation re-
source for protein families, domains and functional sites. Nucleic Acids Research
29, 37–40 (2000)

17. Sole, R.V., Pastor-Satorra, R., Smight, E.: Evolving protein interaction net-
works through gene duplication. Santa Fe Institute Working Paper 02-02-008
(2002)

18. Mantegna, R.N. et al: Linguistic features of noncoding DNA sequences. Physical
Review Letters 73, 3169–3172 (1994)

19. Sneppen, K., Maslov, S.: Specificity and stability in topology of protein net-
works. Science 296, 910–913 (2002)

20. Buldyrev, S.V. et al: Fractal landscapes and molecular evolution: modeling the
myosin heavy chain gene family. Biophysical Journal 65, 2673–2679 (1993)

21. Eichler, E.E.: Recent duplication, domain accretion and the dynamic mutation
of the Human genome. Trends in Genetics 17, 661–669 (2001)

22. Bailey, J.A. et al: Recent segmental duplications in the Human genome. Science
297, 1003–1007 (2002)

23. Graur, D., Li, W-H.: Fundamentals of Molecular Evolution (Sinauer 2000)
24. Gu, X., Li, W-H.: The size distribution of insertions and deletions in Human

and rodent pseudogenes suggests the logarithmic gap penalty for sequence align-
ment. Journal of Molecular Evolution 40, 464–473 (1995)

25. Ophir, R., Graur, D.: Patterns and rates of indel evolution in processed pseu-
dogenes from Humans and Murids. Gene 205, 191–202 (1997)


