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1 Modeling in Biology

Sydney Brenner wrote, “In late 1962, Francis Crick and I began a long series
of conversations about the next steps to be taken in our research. ... I had
come to believe that most of molecular biology had become inevitable and that,
as I put it in a draft paper, ‘we must move on to other problems of biology
which are new, mysterious and exciting. Broadly speaking, the fields which we
should now enter are development and the nervous system.’ ... In a letter dated 5
June 1963 (see below), I wrote to Max [Perutz] and explained my views to him.
‘The great difficulty about these fields [development and the nervous system]
is that the nature of the problem has not yet been clearly defined, and hence
the right experimental approach is not known. There is a lot of talk about
control mechanisms, and very little more than that.... It seems to me that, both
in development and in the nervous system, one of the serious problems is our
inability to define unitary steps of any given process. ... It is possible that the
repressor/operator theory of Jacob and Monod will be the central clue, but
there is not very much to suggest that this is so, at least in its simple form.’ ”
[ref: Sydney Brenner, September 1987. From The Nematode Caenorhabditis elegans,

WB Wood and the community of C elegans researchers, eds., Cold Spring Harbor

Laboratory Press, Cold Spring Harbor, 1988.]

We continue to struggle with this problem of formulating a “unitary step”
that precisely defines how a complex biological system makes a transition from
one “state” or one “control mode” to another as well as the conditions under
which such transitions are enabled. This is because we recognize that automata
(either discrete or hybrid, terms defined subsequently in this paper), based on
the formulation of these unitary steps, can elegantly model practically all biolog-
ical control mechanisms, allow us to reason about such mechanisms in a modal
logic systems with modes constructed over a next-time operator and can become
the foundational framework for the emerging field of systems biology. In this pa-
per, we will also see how these models can lead to more rigorous algorithmic
analysis of large amounts of biological data, produced as (numerical) traces of
in vivo, in vitro and in silico experiments—currently a central activity for many
biologists and biochemists. Since modeling biological systems requires a careful
consideration of both qualitative and quantitative aspects, our automata-based
tools can effectively assist the working biologists to make predictions, generate



falsifiable hypotheses and design well-focused experiments—activities in which
the time dimension cannot be left out of consideration.

Thus, ultimately, the aim of our work is to elucidate the rôle played by
automata in modeling biological systems and to investigate the potential of such
tools when combined with more “classical” approaches used in the past to devise
models and experiments in biology. Our discussion here is based primarily on our
experience with a novel system that we introduced recently (called, XS-systems)
and used it to implement algorithms and software tools (Simpathica). These
conceptual tools have been integrated with prototype implementations, and are
currently undergoing many interesting and growing sets of enhancements and
optimizations—developments that can only be hinted at in this paper.

Both the theoretical as well the practical aspects of our approach have focused
our attention on the very notion of automata and directed our research—evolving
naturally—towards the study and use of hybrid automata: a family of tools
originally created to capture both continuous and discrete behavior in a unique
formalism and with combined computational techniques.

1.1 The mathematical tradition

If one considers the history of the applications of mathematics to biology, a rather
natural observation consists in noticing that it has mostly centered around the
design of conceptual tools for the mathematical interpretation of biological exper-
imental data. The mathematicians involved in assisting biologists have primarily
tackled the problem of designing—occasionally very complex and sophisticated—
formal tools that hope to capture the nature of the biological phenomena. As
examples, one may name several approaches based on systems of differential
equations, statistical models, numerical problems and solutions, developed in
a large variety of subfields of mathematics—all leading to important and deep
cross-fertilization with some aspects of biology: genomics, bioinformatics and
functional genomics.

By their very nature, if the above-mentioned formal tools, on one hand, turn
out to be useful when correctly designed and specified, or on the other hand ex-
plain some intrinsic limits to their usefulness in terms of modalities of interaction
with the user, then their impact on biology can be considered to be significant.
Nonetheless, once the mathematical models are defined, the interaction with the
biologists is in general rather rigid. Even in the case of models with some flex-
ibility (e.g., some unknown parameters of the biological processes kept in their
symbolic forms), this rigidity shifts to the inherent difficulty in determining the
right values of parameters. In our opinion, this difficulty is mostly due to the
fact that the control part of the model (defining its interaction with the external
world) is not considered ab initio.

The field of software verification naturally suggests a different approach that
has already addressed similar problems. The starting point in this field is the
problem of modeling a program implementing a given system, to be verified in
order to check if specific properties are provably true (e.g. the system is “bug”-
free for some class of “bugs”).



1.2 The logical tradition

While the mathematical tradition can be seen as oriented toward an observa-
tional approach to the design of tools, the more nascent approaches developed
in the verification arena are almost entirely focused on the control mechanisms
and aim to model the (relevant aspects of the) internal logic of a system. If one
wishes to model and specify mechanisms by describing, “how things work,” the
natural solutions and techniques must be based on various classes of automata
and rely on their history, deeply rooted in our logical tradition and formal tools.
In our opinion it is not merely by chance that such a tradition is interleaved with
the study of languages (natural and formal) and that resulting tools have become
pervasive and actively studied in the fields of specification and verification.

As a natural byproduct of this historical intertwining of automata with lan-
guages, the possibility of querying the model (the automata) becomes available.
But the level of expressivity of the query language sets the stage for many com-
putational problems and defines certain inherent computational limits. On the
positive side, however, are exactly the definition and implementation of inter-
preters for such languages that guarantee the interaction needed to verify the
control mechanisms and to (re)design (e.g., “debug”) the parts of the system
under study.

All in all, while the use of automata does give an additional dimension to
the purely observational approach, it also faces many problems in the process
of combining different kinds of knowledge under the same formal structure. As
described in the introduction, this problem naturally calls into play the concepts,
formalisms and algorithms, already developed in the context of hybrid automata.

2 Automata and Biology

Automata are potentially the most natural tools for pondering about biological
phenomena and there are many other different ways in which they enter the
picture in biological research.

Perhaps, the most direct link, attempting to connect biology (genome as a
language) and automata-theoretic study of language, dates back to the work
by Searls ([14]) in which the central theme has been to view biological macro-
molecules, represented as string of symbols, and any collection of such macro-
molecules in terms of formal languages.

Another classical and important use of automata in biology is represented by
the work on Hidden Markov Models (see [7]) which also represents a family of bi-
ological patterns (in DNA or proteins) in terms of a Markov model with certain
state-transition and emission probabilities. These and other families of appli-
cations provide interesting instances of the observations (made earlier) on how
difficult it is to determine the value of parameters involved in mathematically
sophisticated models (see [12]).

In a manner, much similar to ours, Alur et al. [1] have been investigating
the use of automata in modeling biologically complex systems, while trying to



capture the control mechanisms implemented by the biochemical interactions. In
particular, [1] demonstrates the necessity of modeling and analyzing both contin-
uous and discrete behaviors, showing the suitability of a tool (hybrid automata)
that we will also consider in our approach. In a sense, biological systems are more
of a network than a single dynamical systems to be modeled monolithically.

2.1 Our experience

Our approach was motivated by the desire to design a tool, capable of using
both data suitable for “classical” mathematical modeling activities as well as,
whenever available, information on the control mechanisms underlying the sys-
tem. In other words, our tools were designed to combine the two somewhat
disparate traditions in a single system, deducing an automata structure from (1)
experimental data as well as (2) trajectories derived from mathematical models.

Many choices we made can be further scrutinized and, possibly, modified in
the future, but the overall idea can be illustrated through the following notions,
central to our implementations.

S-systems The basic mathematical tool we used is represented by the so-called
S-systems which are basically the ones presented in [15] augmented with a set of
algebraic constraints. The constraints characterize the conditions that must be
additionally satisfied for the system to obey conservation of mass, stoichiometric
relations, etc.

Definition 1 (S-system). An S-system is a quadruple S = (DV , IV ,DE ,C )
where:

– DV = {X1, . . . , Xn} is a finite non empty set of dependent variables ranging
over the domains D1, . . . , Dn, respectively;

– IV = {Xn+1, . . . , Xn+m} is a finite set of independent variables ranging
over the domains Dn+1, . . . , Dn+m, respectively;

– DE is a set of differential equations, one for each dependent variable, of the
form

Ẋi = αi

n+m∏

j=1

X
gij

j − βi

n+m∏

j=1

X
hij

j

with αi, βi ≥ 0 called rate constants;
– C is a set of algebraic constraints of the form

Cj(X1, . . . , Xn+m) =
∑
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with γj called rate constraints.



In what follows we use X to denote the vector 〈X1, . . . , Xn, Xn+1, . . . , Xn+m〉
of variables and d (a, b,. . . ) to denote the vector 〈d1, . . . , dn, dn+1, . . . , dn+m〉 ∈
D1 × . . .×Dn ×Dn+1 × . . .×Dn+m of values. Similarly given a set of variables
U = {XU1 , . . . , XUu} ⊆ DV ∪ IV we use X ¹ U to denote the vector of variables
of U , while d ¹ U denotes the vector of values 〈dU1 , . . . , dUu

〉 ∈ DU1 × . . .×DUu
.

The dynamic behavior of an S-system can be simulated by computing the
approximate values of its variables at different time instants (traces). To deter-
mine a trace of an S-system it is necessary to fix an initial time (t0), the values
of the variables at the initial time (X(t0)), a final time (tf ), and a step (s).

Definition 2 (Trace). Let S = (DV , IV ,DE ,C ) be an S-system. Let f(t) =
〈f1(t), . . . , fn+m(t)〉 be a (approximated) solution for the S-system S in the time
interval [t0, tf ] starting with initial values X(t0) in t0. Let s > 0 be a time step
such that tf = t0 + j ∗ s. The sequence of vectors of values

tr(S, t0, X(t0), s, tf ) = 〈f(t0),f(t0 + s), . . . , f(t0 + (j − 1) ∗ s),f(t0 + j ∗ s)〉
is a trace of S. When we are not interested in the parameters defining the trace
we use the notation tr.

A trace is nothing but a sequence of values of D1 × . . .×Dn+m representing
a solution of the system in the time instants t0, t0 + s, . . . , t0 + j ∗ s. By varying
the initial values of the variables, we obtain different system traces, for the same
parameters t0, s and tf . Notice, moreover, that it is not restrictive to consider
traces having a fixed time step: the theory we developed can be straightforwardly
adapted to variable time steps. Simulations of the behavior of an S-system can
be automatically obtained by using the tool PLAS (see [15]). In fact, PLAS takes
in as input an S-system and approximates the values of the system variables,
once the parameters in Definition 2 have been specified. The output is exactly
a trace describing the behavior of the given system.

XS-systems The basic idea of XS-systems (introduced in [5]) is to associate
an S-system S with a finite automaton, obtained by suitably encoding a set of
traces on S. Essentially, each trace on S can be encoded into a simple automaton,
where states correspond to the trace elements (i.e., the values of the system
variables observed at each step), and transitions reflect the sequence structure
of the trace itself (i.e., there exists a transition from a state vi to a state vj if
they are consecutive in the trace). When more than one trace is involved in the
process, coinciding elements of different traces correspond to the same state in
the automaton.

Consider an S-system and a set of traces on it. The automaton derived from
the system traces is defined as follows.

Definition 3 (S-system Automaton). Let S be an S-system and Tr be a set
of traces on S. An S-system automaton is A(S,Tr) = (V, ∆, I, F ), where

– V = {v = 〈v1, . . . , vn+m〉 | ∃ tr ∈ Tr : v is in tr} ⊆ D1 × . . .×Dn+m is the
set of states;



– ∆ = {(v, w) | ∃ tr ∈ Tr : v,w are consecutive in tr} is the transition
relation;

– I = {v | ∃ tr ∈ Tr : v is initial in tr} ⊆ V is the set of initial states;
– F = {v | ∃ tr ∈ Tr : v is final in tr} ⊆ V is the set of final states.

Automata can be equipped with labels on nodes and/or edges (see [11]).
Labels on the nodes maintain information about the properties of the nodes,
while labels on the edges are used to impose conditions on the action represented
by the edge (see [6]). In the case of S-system automata edges are unlabeled, while
the label we assign to each node is actually the name (identifier) of the node
itself, i.e. the concentrations of the reactants for that state. In this way S-system
automata maintain qualitative information about the system only in the instants
corresponding to the steps.

In [5], a language called ASySA (Automata S-systems Simulation Analysis
language) has been presented to inspect and formulate queries on the simulation
results of XS-systems. The aim of this language is to provide the biologists with a
tool to formulate various queries against a repository of simulation traces. ASySA
is essentially a Temporal Logic language (see [8]) (an English version of CTL)
with a specialized set of predicate variables whose aim is to ease the formulation
of queries on numerical quantities.

Example 1. A given automaton can satisfy the formula

Eventually(Always(X2 > 1))

which means that the system admits a trace such that, from a certain point on,
X2 is always greater than 1. Similarly, it might not satisfy the formula

Always(Eventually(X1 > X2))

since it reaches a steady state in which X1 is less than X2.

Since the notion of steady state plays a fundamental role in biological systems,
a predicate steady state has been introduced in the ASySA language. This
predicate is satisfied by a system (S-system automaton) if there exists an instant
(a state) after which all the derivatives will always be equal to zero, i.e. the
system ends in a loop involving only one state.

In practical cases the automata built from sets of traces have an enormous
number of states. In [5] two techniques have been proposed to reduce the number
of states of an S-system automaton, namely projection and collapsing.

Definition 4 (Projection). Let S be an S-system and U be a subset of the set
of variables of S. Given a trace tr = 〈a0, . . . , aj〉 of S the projection over U of
tr is the sequence tr ¹ U = 〈a0 ¹ U, . . . , aj ¹ U〉. Given a set of traces, Tr the
projection over U of Tr is the set of projected traces Tr ¹ U = {tr ¹ U | tr ∈ Tr}.
The U -projected S-system automaton from Tr and S is A(S,Tr ¹ U).



The automaton A(S,Tr ¹ U) has usually less states than A(S,Tr). However,
the set of traces Tr ¹ U does not always satisfy either convergence or fusion
closure. Furthermore, the automaton A(S,Tr ¹ U) can be non-deterministic.
This can introduce approximation, which in our context means that the formulae
satisfied by the automaton A(S,Tr ¹ U) are not the same satisfied by the set of
traces Tr ¹ U .

In order to avoid the approximations resulting by the use of collapsing and
projection, and in order to obtain a more powerful and flexible framework, the
use of hybrid automata together with a reformulation of projection and collaps-
ing is naturally introduced (see [4]).

Hybrid Automata to model S-systems The notion of hybrid automata was
first introduced in [2] as a model and specification language for hybrid systems,
i.e., systems consisting of a discrete-valued program (with finitely many modes)
within a continuously changing environment.

Definition 5 (Hybrid automata). A hybrid automaton H = (Z, V, ∆, I, F,
init , inv ,flow , jump) consists of the following components:

– Z = {Z1, . . . , Zk} a finite set of variables; Ż = {Ż1, . . . , Żk} denotes the first
derivatives during continuous change; Z ′ = {Z ′1, . . . , Z ′k} denotes the values
at the end of discrete change;

– (V, ∆, I, F ) is an automaton; the nodes of V are called control modes, the
edges of ∆ are called control switches;

– each v ∈ V is labeled by init(v), inv(v), and flow(v); the labels init(v) and
inv(v) are constraints with free variables in Z; the label flow(v) is a con-
straint with free variables in Z ∪ Ż;

– each e ∈ ∆ is labeled by jump(e), which is a constraint whose free variables
are in Z ∪ Z ′.

The usefulness of hybrid automata has been widely proved in the area of
verification (see, e.g., [13]). In order to exploit the expressive power of hybrid
automata their properties have been deeply studied (see [9]), specification lan-
guages have been introduced to describe them, and model checkers have been
developed to automatically verify temporal logic properties on them. Among
the specification languages and the model checkers which deal with hybrid au-
tomata we mention SHIFT (see [3]) and HyTech (see [10]) developed at Berkeley
University, and Charon (see [1]) developed at the University of Pennsylvania.

In our context and in view of our previous observations, notice that S-system
automata retain only quantitative information maintained as the values of the
variables in instants corresponding to steps. The values at instants between two
steps are lost. This situation becomes particularly dangerous when we apply a
reduction operation such as collapsing. We circumvented this problem by using
the continuous component of hybrid automata to maintain also some approxi-
mate information about the values of the variables between two steps.



Let us introduce some notations which simplify the definition of a hybrid
automaton modeling a convergent set Tr of traces of an S-system. Given the
vectors X = 〈X1, . . . , Xn+m〉 and v = 〈v1, . . . , vn+m〉 we use the notation X =
v to denote the conjunction X1 = v1 ∧ . . . ∧ Xn+m = vn+m. The notation
v ≤ X < w has a similar meaning, while Ẋ = (w − v)/s stands for Ẋ1 =
(w1 − v1)/s ∧ . . . ∧ Ẋn+m = (wn+m − vn+m)/s.

Definition 6 (S-system Hybrid Automaton). Let S be an S-system and Tr
be a convergent set of traces on S. Consider the S-system automaton A(S,Tr).
The S-system hybrid automaton built on A(S,Tr) is H(S,Tr) = (X,V,∆, I, F,
init , inv ,flow , jump), where:

– X = {X1, . . . , Xn+m} = DV ∪ IV ;
– (V, ∆, I, F ) is the automaton A(S,Tr);
– for each v ∈ V let init(v) = X = v;
– for each v ∈ V such that (v, w) ∈ ∆ let1 inv(v) = v ≤ X < w;
– for each v ∈ V such that (v, w) ∈ ∆ let flow(v) = Ẋ = (w − v)/s;
– for each (v, w) ∈ ∆ let jump((v,w)) = X = X ′ = w.

Notice from the above definition that being in a state v does not necessarily
mean that the values of the variables are exactly v: they can in fact assume
values between v and w. In particular, they grow linearly in this interval and
when they reach w the system jumps to a new state.

The automaton H(S,Tr) is a rectangular singular automaton and the tem-
poral logic CTL is decidable for this class of automata (see [9]). The model
checker HyTech can be used to check whether a temporal formula is satisfied by
H(S,Tr). Moreover, H(S,Tr) is deterministic, since we require Tr to be conver-
gent and hence A(S,Tr) is deterministic. Notice also that all the information
needed to build H(S,Tr) is already encoded in A(S,Tr), i.e., it is possible to
work on H(S,Tr) by only maintaining in memory A(S,Tr).

The additional quantitative information stored in each state of an S-system
hybrid automaton allows one to deeply investigate the behavior of the system
during any individual step. This process assumes an additional relevance when
we apply any collapsing technique to reduce the number of states.

3 Conclusion

We are left with the following questions: Have we arrived at the “right” automata
definitions that naturally capture the biologist’s intuitions? Are the “unitary
steps” that emerge from these definitions at the right level from a biologist’s
viewpoint? Is it too detailed to obscure the central principles of biological control
mechanisms? Is it too coarse, missing the effects of principles, central to biology.

As time enters the picture, further ingredients should probably be added:
different scales and levels of granularity, a certain modularity and freedom in

1 We invert the interval when wi < vi.



the choice of the tools to be used for the quantitative analysis, the availability of
a powerful environment to facilitate the interface with database data or to have
automatic check on the formalisms employed.
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