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ABSTRACT We collaborate in a research
program aimed at creating a rigorous framework,
experimental infrastructure, and computational en-
vironment for understanding, experimenting with,
manipulating, and modifying a diverse set of fun-
damental biological processes at multiple scales and
spatio-temporal modes. The novelty of our research
is based on an approach that (i) requires coevolu-

∗The work reported in this paper was supported by grants from

NSF’s Qubic program, DARPA, HHMI biomedical support research

grant, the US Department of Energy, the US Air Force, National Insti-

tutes of Health, and New York State Office of Science, Technology &

Academic Research.
†To whom correspondence should be addressed. E-mail:

mishra@nyu.edu

tion of experimental science and theoretical tech-
niques and (ii) exploits a certain universality in bi-
ology guided by a parsimonious model of evolution-
ary mechanisms operating at the genomic level and
manifesting at the proteomic, transcriptomic, phylo-
genic, and other higher levels. Our current program
in “systems biology” endeavors to marry large-scale
biological experiments with the tools to ponder and
reason about large, complex, and subtle natural sys-
tems. To achieve this ambitious goal, ideas and con-
cepts are combined from many different fields: bio-
logical experimentation, applied mathematical mod-
eling, computational reasoning schemes, large-scale
numerical and symbolic simulations, etc.
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From a biological viewpoint, the basic issues are
many: (i) understanding common and shared struc-
tural motifs among biological processes; (ii) mod-
eling biological noise due to interactions among a
small number of key molecules or loss of synchrony;
(iii) explaining the robustness of these systems in
spite of such noise; (iv) cataloging multistatic be-
havior and adaptation exhibited by many biological
processes; etc. Examples of processes of interest are:
the irreversible commitment made by a Caspase cas-
cade and its result in apoptosis, zones of stem cells in
the gonad of C. elegans, robustness of the circadian
clock in spite of the small number of dimerizing per

and tim molecules, the multistaticity and metastabil-
ity in RAS/PKC/MAPK pathway, cell cycles, and
the immune system.

1 Background

The introduction of information technology into biology and
biotechnology has already transformed and accelerated the
nature of biological research. The impact of this transforma-
tion has been felt in the areas of agriculture, pharmacology,
disease diagnosis and prognosis, forensics, defense against
biowarfare, biometry, and ultimately, in the manner in which
we interact with our immediate natural environment. The
biggest impact of information technology thus far has been
at the descriptive level, enabling the collection of the bits
and pieces of biological structures or part-lists that can be
computed from the slew of data generated by modern high-
throughput instruments. However, the contribution of in-
formation technology to biological research is still relatively
minor when compared to what can be achieved if we are able
to understand the functional properties of these part-lists.

Recent progress in our observational and experimental
abilities has allowed us to understand the largely unobserv-
able transparent structures of the cell. We are now able to
catalog the genomic sequence of an organism, quantify the
transcriptional states of a cell through microarrays, or even
track photo-labeled single molecules in vitro or in vivo.

More recently, we have also become familiar with novel
“computational” approaches that rely on simultaneous
progress on many fronts: (a) vast amounts of computing
power (through distributed or tightly-coupled parallel com-
puters) have become available; (b) accurate physical mod-
els at kinetic mass-action, stochastic, spatio-temporal, and
hybrid discrete/continuum levels can be created; (c) algo-
rithmic efficiency can be achieved through symbolic and
qualitative computation; and (d) logical reasoning systems

and other analysis tools at multiple resolutions can be con-
structed with relative ease. These approaches borrow ideas
from computational theory and logic, systems and engineer-
ing sciences, and applied mathematics.

2 Central Dogma

We posit that it is possible to create powerful simulation,
analysis, and reasoning tools for working biologists that can
be used in deciphering the functional properties of genomes,
proteomes, cells, organs, and organisms by drawing upon
mathematical and computational approaches developed in
the fields of dynamical systems, kinetic analysis, computa-
tional theory, and logic. Thus, creating accurate and inte-
grated tools for this purpose has become one of the grand
challenges in computer science today. Coevolution of exper-
imentation technology and design methods is crucial, lest we
repeat the unfortunate history of “theoretical biology” from
the early part of last century, which attempted to develop an
abstract mathematical theory for biology without recourse
to experimentation (works of D’arcy Thompson, Alan Tur-
ing, Nicholas Refshavsky, etc.)

At present, there is no clear way to determine if the cur-
rent body of biological facts is sufficient to explain the phe-
nomenology. In the biological community, it is not uncom-
mon to assume certain biological problems to have achieved
a cognitive finality without rigorous justification. In these
particular cases, rigorous mathematical models with auto-
mated tools for reasoning, simulation, and computation can
be of enormous help in uncovering cognitive flaws, qual-
itative simplifications, or overly generalized assumptions.
Ideal candidates for such study would include: the prion hy-
pothesis, cell-cycle machinery (DNA replication and repair,
chromosome segregation, cell-cycle period control, spindle
pole duplication, etc.), muscle contractility, processes in-
volved in cancer (cell-cycle regulation, angiogenesis, DNA
repair, apoptosis, cellular senescence, tissue space model-
ing enzymes, etc.), signal transduction pathways, circadian
rhythms (especially the effect of small molecular concentra-
tion on their robustness), and many others.

We believe a modern computational and systems theory
that provides a solid mathematical foundation for biolog-
ical systems is needed. While traditional systems theory
focuses on simple behavioral attributes (such as reachabil-
ity or robustness) of small, idealized systems (for example,
linear time-invariant systems), and classical computational
theory focuses on the evolution of discretized, synchronous
systems (for example, finite state automata or Boolean net-
works), the methods of systems biology must be based on
many complex and interconnected attributes.
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3 Research Focus Areas

We concentrate on four focus areas of research.

(a) Biochemical Process Theory. Biochemical process the-
ory seeks to create a unified framework in which one can
understand biochemical pathways and the evolutionary pro-
cesses that shaped them. There are several interrelated com-
ponents. These include models derived from kinetic mass-
action that focus on concentrations of chemicals; models de-
rived from discrete events such as commitment, differenti-
ation, and self-renewal; models derived from cell-signaling;
models derived from large populations of cells; and mod-
els accounting for cellular compartmentalization and trans-
port across membranes and between compartments. The
demands that these models impose on computer science go
well beyond the biological areas and one quickly finds one-
self grappling with diverse issues related to the numerical,
probabilistic, logical, and symbolic aspects of computation,
and, in particular, how they can be implemented on modern
computer architectures.

(b) Evolutionary Processes, Genomes, and Pathway Models.
The biochemical processes that have evolved in nature are
governed by a set of simple processes that continue to alter
genomes gradually. Duplication, translocation, deletion, and
mutation are examples of such genomic processes. The main
effort here is to develop a set of models with solid mathe-
matical and biological foundations that allow for the sys-
tematic understanding of these probabilistic processes and
the constraints they impose on biological systems, as well as
the deciphering of the modular structure of large-scale bio-
chemical processes. Furthermore, we exploit this structure
through meta-modeling and metalanguages for composing,
transforming, and validating the basic building blocks of the
models.

(c) Advanced Tool Architectures. Our toolkits comprise a
set of reusable, inter-operating software modules integrated
within a bioinformatics language and environment. The sys-
tem is freely distributed as open-source software and allows
the users to augment and share improved software within
the user community. The main tools address simulation,
reasoning, and analysis for biochemical processes, but also
integrate with genome and genome-evolution analysis tools.

(d) Experimental Research. The program is founded upon
large-scale in vivo and in vitro experiments that are able
to reveal cognitive flaws, incompleteness, and false assump-
tions that may have been incorporated into the model. In
order to achieve this, we concentrate on time-course gene-
expression data that can be obtained through microarray
analysis or similar methods based upon mass-spectroscopy.

We also augment our data with proteomic data whenever
possible.

Thus, the coevolving experimental research guides the the-
ory, tool development, and model validation. The main
emphasis is naturally placed on providing biologists and
biotechnologists with the capability to analyze large and
complex biological systems and devise intelligent experi-
ments without being forced to deal with the mathematical
details and complexity of the system. Hierarchy and compo-
sition are the basic cornerstones of our tools, methods, and
models.

3.1 Biochemical Process Theory

Several biological and biochemical mechanisms can be mod-
eled with relatively simple sets of differential algebraic equa-
tions (DAE’s). In the past, we have constructed and demon-
strated to biologists the utility of a powerful computational
tool with the ability to query massive sets of numerical
data obtained from in silico experiments on complex bio-
logical systems. The initial design of the computational tool
derives its expressiveness, flexibility, and power from inte-
grating many well-established and time-tested approaches in
numerical analysis, symbolic computation, temporal logic,
model checking, and visualization. The basic system has
been successively augmented into a new system, dubbed XS-
system [9, 10], as it extends the basic foundations provided
by the “S-system models of biochemical processes.”

Our core design principles for XS-systems are based upon:
(a) an elegant structure founded upon an extendable set of
building blocks or modules: e.g., syntheses, degradations, re-
versible reactions, enzymatic reactions, reactions modulated
by coenzymes, and reactions constrained by stoichiometric
conditions; (b) flexibility in terms of compositionality and hi-
erarchy; (c) expressibility; and finally, (d) the capability to
create consistent semantics. Thus, in some sense, our rudi-
mentary XS-system can be thought of as “the RISC (reduced
instruction set computer) of systems biology” and provides
the foundation upon which a complex language for systems
biology can be built. For the same reasons, XS-systems also
provide an elegant pedagogic tool for computer scientists and
biologists to understand key biological processes as well as
the algorithmics used to describe them.

We have extended the core XS-system with many useful
modules — in fact, a key design criterion of our system was
the ease with which such new modules could be introduced.
Obvious examples of these key modules include Hill equa-
tions, saturation effects, concentration changes due to cell
volume growth, the effect of small numbers of molecules, and
detailed models of transcription, RNA stability, and protein
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degradation. In each case, the extended system also allows
for various representations such as models based on ODE’s
(Ordinary Differential Equations), SDE’s (Stochastic Differ-
ential Equations), timed automata, or hybrid automata for
each new module introduced, sometimes allowing for multi-
ple representations with instructions on how a representation
may be selected.

Our approach can be justified by simply noting that a vast
number of models of interest to working biologists can be ex-
pressed and analyzed by the simplest core system. It is at
this simplest core level that the most interesting biological
mechanisms reveal themselves and provide the most useful
insights for more experiments and more detailed or more
complex models. As an anecdote, our group recently ana-
lyzed a Caspase cascade model for apoptosis with Lazebnik-
lab at Cold Spring Harbor Lab: using the XS-system, a
rough topological model was constructed and analyzed in
less than half an hour. The model exhibited a quadratic
growth of C3A when Caspase-9 was active and a linear
growth in the absence of Caspase-9 — an effect that was ob-
served in the laboratory experiments (unpublished results).
The simplest model also pointed out the possible presence
of several unmodeled molecules as the core model could not
explain various well-known thresholding effects. Thus, we
contend that while we have left ample room for complexity
in the system, it is for the simplicity, elegance, and compo-
sitionality that we have strived.

A natural completion for the XS-system (also, see [94,
111, 9]) is an automaton summarizing the states along which
the simulated biochemical system evolves in time. The au-
tomaton, so generated, allows the user to view, manipulate,
and reason about the system, using a well-integrated set of
tools. As an example, we may consider the case study of
purine metabolism [111, 9], which illustrates the fact that
the “right” cellular behavior is often difficult to capture with
an initial abstraction model (see Figure 1).

Our existing tools for studying biological processes will be
augmented with simple interfaces that allow a biologist to
input a model, visualize the functions of the biological pro-
cesses, iteratively improve the model, and construct “what-
if” in silico experiments. Moreover, our tools will have the
ability to identify missing features and partial or incomplete
models through the model-checking algorithms for temporal
logic.

3.1.1 Biological Preliminaries

The genome of an organism, the genetic core of a cell, is a
collection of genes in its DNA. The role of a gene is to encode
for protein structure. The sequence of amino acids, specified
by DNA through the transcription and translation processes,

Always (PRPP > 50 * PRPP1)
implies

steady state()
and Eventually(IMP1 > IMP2)
and Eventually(HX < HX1)

and Eventually(Always(IMP = IMP1))
and Eventually(Always(HX = HX1))

The main metabolite in
purine biosynthesis is
5-phosphoribosyl-α-1-
pyrophosphate (PRPP).
A linear cascade of reactions
converts PRPP into inosine
monophosphate (IMP). IMP
is the central branch point
of the purine metabolism
pathway. IMP is trans-
formed into AMP and GMP.
Guanosine, adenosine, and
their derivatives are recycled
(unless used elsewhere)
into hypoxanthine (HX)
and xanthine (XA). XA is
finally oxidized into uric acid
(UA). In addition to these
processes, there appear to
be two “salvage” pathways
that serve to maintain IMP
levels and thus adenosine
and guanosine levels as
well. In these pathways,
adenine phosphoribosyl-
transferase (APRT) and
hypoxanthine-guanine phos-
phoribosyltransferase (HG-
PRT) combine with PRPP
to form ribonucleotides.

Figure 1: The pathway to the left depicts the classical (but
incomplete) model of purine metabolism. Using the XS-
system and the approaches described earlier, one can auto-
matically create the model and perform model checking on
the resulting qualitative automaton to show that the model
fails to satisfy the temporal logic formula encoding robust-
ness (bottom left). This reasoning process and manipula-
tions with the XS-system ultimately led to a more complete
model that does satisfy the robustness formula.

determines the three-dimensional structure and biochemical
properties of the proteins as well as the nature of their in-
teractions. The proteins, in the form of transcription factors
and other operons, may in turn regulate gene expression.
Other factors, such as mRNA stability, protein degradation,
post-translational modifications, and many other biochemi-
cal processes, tightly regulate the time-constants involved in
the resulting biochemical machinery.

An enzyme, E, is a protein which can enhance the activity
of a chemical reaction by attaching to a substrate, A, and
making the formation of the product , P , energetically easier:

E + A 
 EA → E + P.

In general, equations of this kind take the form

A + B 

K+

K
−

C + D, and [Ȧ] = K
−

[C][D] − K+[A][B],
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where the rate of change of A’s concentration is given by
the difference of the “synthesis rate” (K

−
[C][D]) and the

“dissociation rate” (K+[A][B]).

3.1.2 XS-Systems

Using a system of first-order differential equations (in ex-
plicit form), one can construct a general model of a complex
biochemical reaction involving many genes and proteins.

The basic ingredients of our XS-system are the n depen-
dent variables X1, . . . , Xn and the m independent variables
Xn+1, . . . , Xn+m. Let D1, . . . , Dn+m be the domains where
the n + m variables take values. We augment the form de-
scribed in [111] with a set of algebraic constraints which
serve to characterize the conditions under which a given set
of equations is derived from a set of maps.

The basic differential equations constituting the system
take the following power law form:

Ẋi = αi

n+m
∏

j=1

X
gij

j − βi

n+m
∏

j=1

X
hij

j , (1)

and

Cl(X1(t), . . . , Xm(t)) =
∑

j

(

γlj

n+m
∏

k=1

X
fljk

k

)

= 0 (2)

where the αi’s and βi’s are called rate constants. These
rate constants govern the positive and negative contributions
to a given substance. The γlj ’s are called rate constraints ;
these act concurrently with the exponents fljk to delimit the
evolution of the system over a specified (n+m)-dimensional
surface.

The set of differential equations in our XS-system can al-
ways be rewritten (recast) in a special canonical form by
purely algebraic transformations and a further inclusion of a
set of algebraic constraint equations. Canonical forms have
several advantages over more general forms of equations,
since they can be more easily manipulated, integrated, and
interpreted in mathematical terms. Thus, the XS-system
model we use has a simple canonical form: a list of expres-
sions, each describing the rate of change of a given quan-
tity in a model (say, the concentration of a reactant), plus
a set of equations describing some constraints on the rela-
tionships among some of the parameters characterizing the
model. Each of the rate-describing expressions has a very
simple form as well: it is simply binomial — the difference
between two algebraic power-products (or monomials), one
representing synthesis and the other, dissociation.

A system of differential equations of the form described
above can be integrated either symbolically or by numerical

approximation. Frequently, standard approximation tech-
niques suffice; however, in some cases, novel algorithmic
techniques are required. Both symbolic and numerical cases
are considered in our program on an equal footing, as we be-
lieve that without the reliance upon symbolic computational
methods and composition properties, a system of this kind
will ultimately fail when scaled to more realistic situations.

3.1.3 Traces and Trace Automata

We describe the semantics of an XS-system using an au-
tomaton that captures the qualitative features of the bio-
logical system. The automaton is constructed as follows: a
snapshot of the system variables constitutes the set of pos-
sible states of the automaton. Transitions are inferred from
traces of the system variables’ evolution. Final states are
those states in which the simulation reaches a recognizable
end, and are supposed to represent the equilibrium points
for the metabolic pathway being modeled.

More interesting states (with deteriorating computational
efficiency implications) are constructed by grouping together
several time instants according to simple rules, such as a
linearization rule that groups states where the rate of change
is within a user-defined parameter.

A major focus of our research is the question of how to
tame the complexity of such automata by “collapsing the
models” symbolically or modularly representing the models.
This approach allows for studying multiple evolutions and
experiments differing in rate constants and kinetic orders in
parallel (within a single structure).

Note that the automata proposed here are not necessar-
ily unique, and one may consider more complex automata
with different semantics that are amenable to different kinds
of logical analysis. For instance, we may extend the the-
ory to: timed automata, hybrid automata, communicating
automata, and “algebraic differential automata,” where the
states and state transitions are described by algebraic rules
only. We aim to exploit these symbolic structures to create
better reasoning systems: e.g., variants of CAD (Cylindrical
Algebraic Decomposition) to create qualitative automata,
Morse-theoretic models of transitions between steady states,
differential algebraic elimination theory for input-output be-
havior and their usage in collapsing, etc.

3.1.4 Reasoning with Temporal Logic

A simple and natural example of a logical property of many
biological systems is the one describing the existence of a
steady-state. Informally, a system is in a “steady-state”
when nothing “changes” in the system as time passes. Very



3 RESEARCH FOCUS AREAS 6

often, the biologist knows not only that, in the absence of ex-
ternal stimuli, such a state must be reached sooner or later,
but also the relative values of substances involved in such a
state. Another natural property involves the boundedness of
the reactant concentrations involved in a biological process
and may need to be ascertained as a precondition to other
interesting properties, such as the existence of a limit-cycle,
multiple stable solutions, meta-stability, or hysteresis.

A simple reasoning tool, based on the notion of model
checking, may analyze a single trace of the automaton re-
sults, where the single trace is created from only one “set-up”
(e.g., initial conditions, a set of values for the parameters, a
set of signaling events, etc.) for the system being analyzed.
In order to allow more than one trace, it is necessary to con-
sider different “set-ups,” e.g., many possible values for the
parameters, such as rate constants and kinetic orders. These
multiple “set-ups” may be defined parametrically (symbol-
ically), deterministically sampled over a cartesian grid, or
randomly sampled with respect to some reasonable distribu-
tion.

Fundamental to temporal logic is the notion that time-
dependent terms from natural language, such as “eventu-
ally” and “always,” can be given a precise meaning (seman-
tics) in terms of the abstract behavior of the system un-
der discourse. As an example, consider the following sen-
tence: “The concentration of guanosine triphosphate (GTP)
is equal to x.” Given a biological system in equilibrium, the
above sentence may or may not be true at any or all instants
of time. In particular, we can easily construct sentences (in a
suitable natural language) that express the fact that, given
a certain set of initial conditions, the above sentence will
eventually hold true. Temporal logic precisely formalizes the
meaning of the term “eventually” (and other such “modes”:
“always,” “infinitely often,” and “almost always”), and the
resulting semantics lead to a precise model-checking algo-
rithm for determining the validity of temporal logic sentences
in the context of our trace automaton. We have also aug-
mented the traces with time-frequency analysis using Linear
Discriminant Bases (LDB), Local Karhunen-Loeve (LKL),
and other techniques based on multi-resolution wavelet anal-
ysis. Temporal logic, thus enriched, allows us to understand
the dynamic properties of the biological processes and to
“cluster” different components of the system that may be
co-regulated or anti-regulated.

3.1.5 Reasoning with Statecharts

We have also been collaboratively investigating how to use
the visual formalism of statecharts to address the challenge
of analyzing biochemical processes. For instance, under this
formalism, we have presented a detailed model for T cell

activation using statecharts within the general framework
of object-oriented modeling. Encouraged by our early suc-
cesses, we have embarked upon a far more ambitious project
— applying the same methodology to constructing a fully
detailed model of the developmental processes that lead to
the formation of the egg-laying system in C. elegans.

We have demonstrated that the statechart-based approach
is applicable to the challenge of modeling large numbers of
biological processes in a hierarchical fashion and relating
the various cellular events within the spatial and temporal
context in which they occur to each other. Such models
are useful for investigating the behavior of a system un-
der many given scenarios, raising questions that were not
thought of before and confronting questions which, because
of their complexity, cannot be addressed by standard labo-
ratory techniques and/or pure intuition alone. We believe
that the statechart formalism integrates elegantly with for-
mal verification methods and allows one to test whether the
formal representation of the model fulfills the requirements
that emerge from existing biological data.

3.1.6 Open Questions

Several interesting questions remain to be further explored:
• Reactions Models: We have primarily focused on a sim-
ple ODE model using DAE’s, and narrowed this even further
to a model based on XS-systems. Does this imply a signif-
icant deviation from reality? How can a stochastic model
representing small numbers of molecules that interact pair-
wise and randomly be incorporated? We have already de-
vised an efficient spatial Gillespie-like algorithm to perform
stochastic computations and used it successfully to under-
stand a stem-cell model. We need to further explore how
to combine the SDE models with the algebraic-constrained
DAE models.
• Hybrid Systems: Certain interactions are purely dis-
crete, and after each such interaction, the system dynamics
may change. For a hybrid model of this kind the underlying
automaton must be modified for each such mode. How do
these enhancements modify the basic symbolic model?
• Spatial Models: The cellular interactions are highly spe-
cific to their spatial locations within the cell. How can these
be modeled with symbolic cellular-automata? How can we
account for the dynamics due to changes in the cell volume?
The time constants associated with diffusion may vary from
location to location; how can that be modeled?
• State Space (Product Space): A number of interacting
cells can be modeled by product automata. In addition to
the classical “state-explosion problem,” we also need to pay
attention to the variable structure due to (a) Cell division,
(b) Apoptosis, and (c) Differentiation.



3 RESEARCH FOCUS AREAS 7

• Communication: How do we model communication
among cells mediated by interactions between extra-cellular
factors and external receptors?

• Hierarchical Models: As we go to more and more com-
plex cellular processes, a clear understanding can be ob-
tained only through modularized hierarchical models. What
are the ideal hierarchical models? How do we model a pop-
ulation of cells with related statistics?

• Symbolic Verification: If a biologist wishes to reason
about a system with logical queries in an appropriate query
language (e.g., temporal logic), what are the best query lan-
guages? What are the best algorithms that take advantage of
the symbolic structures? What are the correct ways to solve
problems associated with (a) Model Equivalence, (b) Exper-
imental Analysis, and (c) Reachability Analysis?

3.2 Evolutionary Processes, Genomes, and

Pathway Models

Regulatory and metabolic processes in biology do not occur
in isolation, nor are they static in nature. Hence, a better
understanding of biology is hinged on a deep information-
theoretic study of evolving genomes and their roles in gov-
erning metabolic and regulatory pathways.

Various biochemical and cellular processes — including
point mutation, recombination, gene conversion, replication
slippage, DNA repair, translocation, imprinting, and hori-
zontal transfer — constantly act on genomes and drive the
genomes to evolve dynamically. These alterations in the
genomic sequences can further lead to the corresponding
changes in the higher-level cellular information (transcrip-
tome, proteome, interactome), and are crucial in explaining
the myriads of biological phenomena in the higher-level cel-
lular processes.

We have created a parsimonious mathematical model to
explain various observations on the statistical structure of
genomes (e.g., mer-frequency distribution in genomes) and
its implications to the topology of the regulatory processes.
Our model, based on the “evolution by duplication” theory
originally proposed by S. Ohno in 1970’s [86], is an extension
of Polya’s urn model [62], and considers genome evolution
as a stochastic process with three main events: substitution,
deletion, and duplication. A simpler model, based on evolv-
ing Eulerian graphs, fits nicely with real-world data for mer-
frequency distributions. These results suggest that despite
the highly diversified evolutionary environment for differ-
ent organisms, the essential composition of the evolutionary
dynamic, metabolic, and regulatory processes is commonly
shared.

3.2.1 Genome Evolution Processes

Ohno’s theory is well supported by molecular biology. There
are various molecular mechanisms that can cause gene du-
plication. These include (a) unequal crossing over , (b) DNA
polymerase slippage, and (c) heterologous recombination. If
we assume that the target gene of every duplication is ran-
domly chosen from the genes that are already in the genome,
then we have a realization of Polya’s urn model. Therefore,
under the “evolution by duplication” theory, genome evolu-
tion can be viewed as a stochastic duplication process that
leads to a highly correlated structure in the genomes and
repeated motifs in the regulatory network topologies.

In our Eulerian graph model, each mer species of a par-
ticular length is represented by a node. Whenever two non-
overlapping mers are immediately adjacent to each other in
the genome, they are connected by a directed edge. There-
fore, the in- and out-degree of a node indicates the copy
number of the corresponding mer in the genome. Genome
evolution is modeled by graph evolution, which is composed
of three possible processes (see Figure 2).

This simple model possesses enough expressive power to
explain the genome structures in many species as well as
how they can be connected in a phylogeny. Furthermore, es-
sentially the same structures lead to higher level models for
protein-protein interaction and regulatory networks, with-
out obscuring the essence and parsimony of the evolution
processes.

3.2.2 Genome Grammar

In order to study the evolution processes of the kind just
described in more detail, we have also developed an efficient
backend for low-level simulation tasks in genomic evolution.
The current system can be easily enhanced to also model
and derive statistics for protein-protein interaction and path-
way structure. The simulated genomes and their statistical
analysis also play a central role in designing and validating
bioinformatics tools as well as in population studies in re-
lation to linkage analysis. Our simulation environment uses
advanced programming techniques such as lazy computation,
efficient indexing , meta-data manipulation, and determinis-
tic randomization to achieve a spectacular improvement over
similar naive implementations. This environment addresses
the following concerns:

◦ Large data sizes: The sequences we deal with are huge,
ranging from a few hundred mega-bases (a single chromo-
some) to a few giga-bases (multiple genomes). Furthermore,
when performing population simulation studies, we deal with
multiple (potentially, a few billion) copies which change at
every generation.
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A. Deletion B. Duplication C. Substitution

Figure 2: The three processes during graph evolution: dele-
tion, duplication, and substitution. In each process, the tar-
get node (clear circle) is chosen with preference for nodes
with larger degrees: if the i-th node has degree ki, the prob-
ability of it being chosen is proportional to ki

P

N
j=1

kj
. In dele-

tion (A), a pair of edges of the target node (thick black
arrows), one incoming and one outgoing, is randomly chosen
and deleted, and a new edge (thick black arrow) is added
between the ascendent and descendent nodes (black filled
circles). In duplication (B), new edges are added between
the target node and the ascendent/descendent nodes (black
filled circles) of an edge (thick black arrow) randomly cho-
sen to be deleted. In substitution (C), a randomly chosen
pair of edges of the target node (thick black arrows), one
incoming and one outgoing, is rewired to a randomly chosen
substitute node (gray filled circle with a thick boundary).
Note that all the processes during graph evolution preserve
the equality of the in-degree and out-degree of each node.

◦ Large data movements: The mutations we consider
(transpositions, deletions, etc.) are expensive to simulate
in a naive way. This is a serious problem, which forces
researchers to abandon detailed simulation at a base-pair
resolution, and opt instead to simulate the changes in the
positions of just a few markers on the sequence.

Genome evolution, using the simulation engine described
above, is studied through an “abstract machine” (the genome
grammar, see Figure 3) that provides a quick means of speci-
fying sequences with specific statistical properties. This sim-
ple programming language, with basic types consisting of se-
quences, transformations (i.e., mutations), numbers (encod-
ing both deterministic and probabilistic events), and primi-
tive operations, allows one to generate sequences with very
specific probability distributions.

n = | sequence |;

fragment_len = poisson(1000);

fst_pos = uniform(n - fragment_len + 1);

lst_pos = fst_pos + fragment_len - 1;

repeat_num = poisson(5);

t = #(fst_pos, lst_pos, repeat_num);

sequence@t;

n = | sequence |;

pos = uniform(n);

mut = point_mutation(pos, {!});

sequence@mut[0.3];

In this simple Genome Grammar script, ‘sequence’ is a vari-
able of type sequence and is imported into the grammar from
the outside. The first block of statements defines a trans-
formation ‘t’ which is either a repeat or a delete, depending
on the value of a Poisson variable of mean 5. If the result
of the Poisson sampling is 0, the transformation is a delete,
otherwise it is a repeat. The fragment that gets deleted
or repeated is chosen uniformly from the sequence and its
length is a Poisson variable of mean 1000. The symbol ‘#’
denotes a repeat or a delete with exactly the meaning above;
and the symbol ‘@’ denotes application of a transformation
to a sequence. In the second block of statements, we apply
a point mutation with a probability of 0.3.

Figure 3: A genome grammar example.

3.2.3 Language for Interaction

The genome of an organism admits a simple mathematical
description and a convenient representation in a computer
(with augmented annotation). In contrast, there is no sim-
ple way of describing the cell, either statically or temporally
(dynamically). We have been creating a formalism of com-
binatorial and numerical (entropic) structures on spaces of
sequences which reflect, to some degree, the organization and
functions of DNA and proteins. This formalism, called geno-
plex, distinguishes specific subsets of segments (e.g., exons
within an ORF or CIS-regulatory elements) and assigns to
each subset labels indicating the nature of the relationship
among the elements within that subset.

3.2.4 Open Questions

Several interesting questions remain to be further explored:
• Models of Biochemical Processes involved in Evo-
lution: The key genome duplication processes and their bi-
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ology remain poorly understood. How can we accurately
model such processes as (a) unequal crossing over , (b) DNA
polymerase slippage, and (c) heterologous recombination? Do
the evolution dynamics drive the statistical structures of the
genomes to a limit distribution? Or do they themselves ac-
quire other derived dynamic properties? How do these pro-
cesses interact with processes involved in selection? How are
they modified in a disease? For instance, in a polyclonal tu-
mor, oncogenes tend to acquire higher copy numbers, while
tumor suppressor genes tend to be deleted. How can we un-
derstand these processes in the disease state or in mutants?

• Evolutionary Selection at Proteome Level: Our
genome models and genome grammar need to be further
modified to model duplications of the protein domains. How
can we use these properties to create a precise understanding
of the protein-protein interaction data obtained from “two-
hybrid” experiments?

• Evolutionary Selection at Interactome Level: How
can we take our models to the next level to understand
the relations among the transcription factors, regulatory el-
ements, and genes? These models will be essential for in-
terpreting gene-expression profiles obtained from microarray
experiments.

• Motifs and their Robustness: What are the common
motifs in regulatory pathways? Why is there a preponder-
ance of a few motifs, and not all the possible ones? What
are the common modules? How are they organized? Are
topological descriptions of these motifs sufficient for under-
standing their functions? How can we study pathways, such
as RAS/PKC/MAPK or the ones involved in cell cycle, to
understand their multiple modes? Why are these motifs and
their modes so robust?

• Hierarchical Organization: How can we design a lan-
guage for describing, modifying, and transforming biological
models that can take advantage of these intriguing but el-
egant structures? Can we use these properties to design
mutants, double-mutants, “knock-outs,” and other experi-
mental systems to validate and understand our models?

3.3 Advanced Tool Architectures

In the domain of most immediate interest, namely, post-
genomic biology, the conventional concept of a distributed
set of tools, made available through a web-browser interface,
fails to adequately respond to the challenges, complexity,
and exponentially-growing demands. Thus, we aim at ap-
plying our expertise to create a tool architecture that has
the following properties: (a) Flexibly composable software-
modules, (b) Supports for multiple scripting languages, soft-
ware libraries, and multiple computer architectures, (c) Free-

format databases, inter-operating between multiple formats,
(d) Capabilities for rapid prototyping to handle new exper-
iments, and (e) Easy integration of domain-knowledge.

Below, we describe some of the tools that address a few of
the issues described above.

3.3.1 Valis

Valis is an environment for exploring problems in bioinfor-
matics. The core components of the Valis project are the
underlying database structure and the algorithmic develop-
ment platform. The Valis database allows the user to ana-
lyze very large genetic sequences. Data structures that allow
fast string matching to support analyses like mer-frequency
analysis have been limited to sequences of approximately 100
million base pairs (Mbp). The Valis database allows for the
creation of annotated sequences that are much larger than
this limit. Many similar database systems rely on large bi-
nary object support in standard relational databases and on
fixed formats of limited varieties to represent the necessary
annotations for this analysis. It is our experience, however,
that in exploring genetic data, annotations are often of arbi-
trary size and format. The underlying Valis database allows
the use of sets, types, and reference counting in the annota-
tion scheme while keeping both the storage requirements and
the run-time cost of manipulating the annotated sequences
low. The algorithmic development platform is another inno-
vative area of the Valis system.

The Valis environment can be viewed as a novel cross-
language scripting platform. Algorithms implemented by
a research group in one language can be utilized as build-
ing blocks in scripts by others. Valis currently supports
scripting in many languages: Perl, Python, ECMAScript
(JavaScript), Visual Basic, R (public domain S-plus), and
Octave. Scripts can leverage one of the many public domain
software libraries that we have incorporated into Valis. It
also incorporates the Gnu Scientific Library (GSL) for ad-
ditional support with standard numerical algorithms. Valis
provides numerous visualization tools that allow the user
to quickly display sequences, maps, microarray data, tables,
graphs, and annotations. These widgets can be customized
from the scripts.

3.3.2 Simpathica

Simpathica and the related XS-system allow the user to de-
scribe and interact with biochemical reactions. The system
consists of three major components: the frontend, used for
describing the model concisely; the core, used for creating in-
ternal representations of the model; and the backend, used
for deriving the properties of the model of interest.
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Using a simple graphical or textual representation like
SBML (Systems Biology Markup Langauge) or MDL
(Model Description Language), a mathematical description
in terms of DAE (differential algebraic description), ODE,
PDE, SDE, or Stochastic interactions is implemented in a
Gillespie-like algorithm. Simpathica also creates an alter-
nate description of the system and related data. When the
system consists of many modules, they are represented in-
dividually, at many levels of abstraction, nd with rules for
compositionality.

The system supports a wide range of analysis tools:
model checking with a propositional branching-time tempo-
ral logic, time-frequency analysis tools with wavelets, lin-
ear discriminant bases, Karhunen-Loeve analysis, cluster-
ing using wavelet-bases, information-theoretic approaches to
measure the significance of the system components, and ap-
proaches based on statistical learning theory.

3.3.3 NYUMAD

We have also developed a system to maintain and analyze
biological abundance data (for example, microarray expres-
sion levels or proteomic data) along with the associated
experimental conditions and protocols. The prototype sys-
tem is called the NYU MicroArray Database (NYUMAD)
and is in the process of being expanded to deal with many
other related experiments. It uses a relational database
management system for data storage and has a flexible
database schema that has been designed to store any type
of abundance data along with general research data, such
as experimental conditions and protocols. The database
schema is defined using standard SQL (Structured Query
Language) and is therefore portable to any SQL database
platform. NYUMAD supports the MAGE-ML standard
(http://www.mged.org/Workgroups/MAGE/mage-ml.html)
for the exchange of gene expression data, defined by the
Microarray Gene Expression Data Group (MGED), and is
accessible via the web.

NYUMAD is a secure repository for both public and pri-
vate data. Users can control the visibility of their data, so
that initially the data might be private, but after the pub-
lication of the results the data can be made visible to the
larger research community. Data analysis tools are supple-
mented with visualization tools. The goal is to not only
provide a set of existing techniques but to continually incor-
porate increasingly sophisticated and mathematically robust
methods in data analysis and to provide links and integra-
tion with our other tools, such as the Valis system.

3.3.4 Further Development

Other areas that need to be further developed in our tool
architecture include:
• Extension of the Database: As the systems described
here evolve to encompass more complex and general mod-
els, they must acquire abilities to integrate other novel data
sources: e.g., proteomic data, ChIP (Chromatin Immuno-
Precipitation) data, and mass-spectroscopic data. In re-
sponse to these demands, the database schemas must be
generalized and new XML-based formats introduced. Both
Valis and Simpathica systems must be able to integrate new
sources of experimental data as well as provide more cogent
forms of visualization.
• Integration: We expect new bioinformatics systems to
become continually available either in the public domain or
from our collaborators. We need to develop a framework to
integrate them into the larger system effortlessly.
• Dissemination: Finally, there are many issues involved
in how other users and developers can access and improve
the system collaboratively.

3.4 Experimental Research

A computational system developed for biological sciences
and biotechnology will fail to be relevant if it does not recog-
nize the observational and experimental nature of its sister
fields since its very conception. “Experimentation without
imagination and imagination without recourse to experimen-
tation,” would yield either myopic anecdotes or barren the-
ories.

We also note that the current demands from industrial and
governmental applications (e.g., homeland security, rational
drug discovery, population studies, etc.) cannot simply rely
on in silico tools without concomitant trials on real biological
substrates. Our experience with such trials on real biological
systems will inspire confidence (from the other practitioners
in the community) that the toolkit being made available by
our team has indeed been field-tested.

3.4.1 Time-course in vitro and in vivo Data

The most interesting data points for our study will be time-
course data, describing the genome, transcriptome, and pro-
teome within a single cell, or an even more detailed picture,
if the technology to perform compartmentalized single cell
analysis becomes available. In the absence of such technol-
ogy, we have to make do with mRNA collected from a small
population of cells, where individual cells within the popula-
tion may be moving through the cell cycle in an unsynchro-
nized manner. Of course, without the proteomic data, tran-
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scriptomes tell less than half the story. The dynamics within
the cell cannot be adequately described by the abundance
data. We need to know all the important “time-constants,”
taking into account such effects as mRNA-stability, protein
degradation, multi-merization, and modification. Nonethe-
less, the experimental systems considered here can be easily
extended with further technological improvements.

• Microarray and Mass-Spectrometry Data: Microar-
ray and gene-chip technologies provide an approach (to mon-
itor the whole genome on a single chip) for studying in-
teractions among thousands of genes simultaneously under
many different experimental conditions. However, in many
applications the key problem has been statistical noise in
the data, attributable to non-specific hybridization, cross-
hybridization, competition, diffusion of the target on the
surface, base-specific structural variations of the probe, etc.
A better understanding of this noise will come from the ki-
netic analysis of the base-pairing, denaturing, and diffusion
processes; these processes are extensively studied by us, in
order to deconvolve the transcriptional dynamics associated
with cellular functions.

One can replace the hybridization-based gene expression
analysis by any technology that allows rudimentary pro-
cesses for “resequencing,” i.e., checking whether a particular
DNA strand is composed of a given known sequence of bases.
Sequenom has developed one such gene expression technol-
ogy using their mass-spectroscopy based approach to “rese-
quencing.” The technology has many advantages: it creates
less noisy data as it does not suffer from various kinds of
error processes listed earlier for microarrays; it could po-
tentially calibrate for mRNA stability; and finally, as more
and more genes are identified, it could be easily adapted to
account for the new transcriptomes.

It is quite obvious to us that our tools can be used in
other applications too: (a) Gene discovery, (b) Disease di-
agnosis, (c) Drug discovery (Pharmacogenomics), (d) Tox-
icological research, etc.; hence, they are developed with a
flexible structure.

3.4.2 Experimental Systems

Below, we describe two representative experimental systems
that we are studying at length. Additional systems we
are exploring include whole-genome ChIP assays, processes
involved in apoptosis, circadian clocks, RAS/PKC/MAPK
pathways, cell cycle models, the immune system, positional-
information based models and their effects on patterning and
segmentation, processes involved in developmental biology,
processes involved in DNA replication, repair, and recombi-
nation, and many others.

• Co-cultivation Experiments: Cells have a complex sys-
tem of interacting signal transduction pathways by which ex-
ternal stimuli, such as hormones, growth factors, or cell-cell
and cell-matrix contacts, direct the function of intracellu-
lar proteins and gene expression. Until recently it has been
impossible to view as an ensemble the complex responses
cells make to these various stimuli. However, with the ad-
vent of DNA microarrays and because of the development
of inducible gene expression systems and short interfering
RNA systems, it is now possible to perturb the expression of
one specific gene at a time in the cell and measure the cell’s
response.

For instance, in order to obtain a clearer picture of how the
RAS oncogene (a gene that, when mutated, can contribute
to cancerous growth) behaves, we can study how it induces
various transcriptional changes. RAS is a central component
of many signal transduction pathways, and the induction of
RAS causes a large number of changes within cells, the exact
changes depending on the host cell in which it is induced.
We can ask whether the changes in gene expression induced
by RAS are the indirect consequence of the production of
extracellular factors, which then act upon the cell producing
them and its neighbors. One way of differentiating direct
from indirect changes is by their temporal order, with early
responses being direct, and some later responses being indi-
rect. To examine this hypothesis more clearly, we look at the
response of mixed populations of cells. One cell component
is engineered to induce RAS expression following stimulation
with an artificial insect hormone. The other component is
of the same cell type, but not RAS inducible. After induc-
tion, the two populations are separated, and their responses
examined by the analysis of microarray data. This may be
a generally applicable technique to discover the existence of
factors involved in cell-cell communication.

• Stem-Cell Experiments: The dynamics of stem-cell
proliferation are poorly defined, yet stem cells are vital for
growth, healing, and the general homeostasis of many an-
imal and plant tissues. Thus, studies to address the basic
biology of stem cells are paramount. The nematode C. ele-
gans provides a convenient and well-characterized system to
study stem cells.

The adult C. elegans germ line is a polarized tissue with
a distal stem-cell population at the end of the tube-like go-
nad and differentiated cells located further proximally. Cell
division in the distal zone gives rise to germ cells that enter
the meiotic pathway and eventually form gametes (eggs and
sperm). Actively dividing cells (a mitotic process) are ob-
served some 20–25 cell-diameters away from the distal tip,
despite the membrane-bound nature of the ligand hypoth-
esized to be responsible for signaling through a Notch-like
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pathway. A plausible model for such zone-division between
mitotic and meiotic cells in the gonad has not been experi-
mentally confirmed and has remained elusive.

We are building and testing a rigorous computational
model with analysis tools for C. elegans germ line stem-cell
growth, based on real observations of cell division patterns
in the distal mitotic zone. For each possible hypothesis, a
probabilistic model capturing the “spatio-temporal, hybrid,
and stochastic” nature of this problem is created and can be
verified through the Simpathica system and in vivo experi-
ments involving wild types and several mutants.

3.4.3 Further Development

Other areas that need to be further developed include:
• A Taxonomy of Models and Experiments: Clearly,
the example experiment systems that we, as a group, can
adequately address represent only a small fraction of the
many diverse systems that biologists are interested in. We
must pay special attention to educating current and future
generations of biologists in how to extend these examples.
In particular, we must show by example how experiments
and theories can coevolve in biology.
• Novel Experimental Systems: We must expect the bio-
chemical techniques to continue to make significant improve-
ments in the coming decades, perhaps enabling very fast
whole-genome sequencing, high-throughput measurements
of transcriptional and translational profiles, and even real-
time monitoring of activities of single cells in a population.
How can these new experimental systems be interfaced to
our project seamlessly?
• Generating Falsifiable Experiments: As we gather
many isolated models addressing different aspects of biol-
ogy, a coherent picture will emerge, and yet, it will point
to new mysteries and paradoxes. These can be resolved by
proposing experiments that will either strengthen hypothe-
ses consistent with the existing theories or falsify certain be-
liefs. Thus, a major component of our work must also focus
on creating a knowledge-base that can allow the researchers
to access our current knowledge and quickly assess if there
are inconsistencies.
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ear Control Theory , Linköping Studies in Science and Tech-
nology, Dissertation, No. 261, Department of Electrical En-
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