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Abstract. The author examines the connection between classical dif-
ferential algebra of Ritt and Kolchin and differential algebraic models of
biochemical systems—in particular, the models generated by S-system of
Savageau. Several open problems of both biological and mathematical
significance are proposed.

1 Introduction

Unprecedented advances in genomics have made it possible for the first time
for a biologist to access enormous amounts of information at the genomic level
for a number of organisms, including human, mouse, arabidopsis, fruit fly, yeast
and E. coli. These developments are at the heart of the many renewed ambi-
tious attempts by the biologists to understand the functional roles of a group
of genes using powerful computational algorithms and high-throughput micro-
biological protocols. The freshly emerging field of systems biology and its sister
field of bioinformatics focuses on creating a finely detailed picture of biology at
the cellular level by combining the part-lists (e.g., genes, regulatory sequences,
and other objects from an annotated genome), with the observations of tran-
scriptional states of a cell (using Microarrays) and translational states of the
cell (using new proteomic tools). In the process it has become self-evident that
the mathematical foundations of these systems need to be explored exhaustively
and accurately. In this paper, we describe the basic structure of the underlying
differential-algebraic system and the mathematical and computational problem
they naturally lead to.

1.1 Outline

1. S-systems: Section two gives a short biological introduction and then
describes Savageau-Voit approach to model bio-chemical reactions based on
S-systems. (See [11,10].)



2. Canonical Forms: Section three provides a canonical description of
an S-system in terms of a system of differential binomial equations and set
of linear equality constraints. This formulation suggests that a biological
system can always be described as a differential system evolving on a linear
subspace of a high-dimensional embedding space.

3. Differential Algebra: Section four describes the elimination theoretic
approaches from Ritt-Kolchin differential algebra that can be used in this
context to understand the input-output behavior of a bio-chemical system.

4. Open questions: The paper concludes with a short description of the
open questions.

2 S-Systems

The genome of an organism is a collection of its genes, encoded by four chem-
ical bases in its DNA (Deoxyribo Nucleic Acid), and forms the genetic core of
a cell. The genes ultimately encode for the protein (a chain of amino acids)
and in turn, the genes are regulated by transcription factors and other oper-
ons, many of which are proteins. The sequence of amino acids, specified by the
DNA through transcription and translation processes, determine the three di-
mensional structure and biochemical properties of the proteins as well as the
nature of their interactions. Furthermore, mRNA stability, protein degradation,
post-translational modifications and many other bio-chemical processes tightly
regulate the time-constants involved in the resulting bio-chemical machinery.
Proteins also associate in complexes to form dimers (pair of proteins), trimers
(triplets) and multimers. An isoform of a protein is a slightly different protein
with closely related sequence, and often share similar functional properties, e.g.,
enzymatic reactions, but are regulated differently.

An enzyme, E, is a protein which can enhance the activity of a chemical
reaction by attaching to a substrate, A, and making the formation of the product,
P, energetically easier.

E+ASFEA—-E+P

In general, equations of these kind take the form
A+B=k* C+D,

and the rate of change of A’s concentration is given by the difference of the
“synthesis rate” (K_[C][D]) and the “degradation rate” (K [A][B]).
d[A]
A8 = K_[C)D] - K, [4][B). (1)
Using a system of first order differential equations (in explicit form), one can
construct a general model of a rather complex biochemical reaction involving
many genes and proteins. One such model is Savageau-Voit S-system, whose
ingredients are n dependent variables, denoted X1, ..., X, and m independent
variables X, 41,...,Xm with Dq,..., Dyt being the domains where these n +



m variables take value. In addition the differential equations may need to be
constrained by algebraic equations corresponding to stoichiometric constraints,
or conserved rates for concentrations.

The basic differential equations of the system are of the form:

Xi(t) = Vi (X1 (t), - X (8) = Vi (X0 (8), -, Xngm(2)), (2)

for each dependent variable X; (see [11]). The functions VT and V~ are arbitrary
rational functions over R. The set of algebraic constraints take the form

3 Canonical Forms

However, one can rewrite (recast) the system of equations as the one shown
above in a much more simpler manner. We show that every such system admits a
canonical form involving first order ordinary differential equations with binomial
terms and linear constraints.

Theorem 1  Every bio-chemical system arising from an S-system model can

be expressed in a canonical form involving v > n + m variables Z1, Zs, ..., Zy:
(2] [mi(Z)—m; ()
Zy my (Z) —mj; (Z)
= : ; (4)
L Z.]  Lmf(Z) —m;(Z)
aip ar2 ---arr | [ Z1] [0
az1 22 - Gzp Zs 0
= ) (5)
As1 Qg2 * -+ Qgp _Z’r_ _0
where m7 ’s and m} ’s are ratios of monomials and a;;’s are constants in R[Z;,

.., Zy] with positive coefficients.
PROOF:

Starting from the original description, one can derive a description in the
canonical form by repeated applications of the following rules:

1. Assume that an equation is given as

where the right hand side of the explicit form is a rational function.

p=aimi +---+apm}i — fim; + -+ Bm;
g=aimit + -+ apmit = BimT + -+ Bm),



where m™’s and m~’s are power-products with arbitrary powers and positive
valued coefficients a’s and 3’s.
Replace the above equation by the following system:

X =pX(&)yt)~"
¢ =q(X(t) —yt)~"
Cc1 = 0.

2. An algebraic constraint of the form
r(X(t) =mmi+ - +yemi =0,
is replaced by

& =r(X (1))

02:0.

3. Finally, an equation of the form

X(t) =a1m1"+---+akmk+—ﬂ1m1_ —---—ﬁlml"'
= [arm} = (/BW @] + -+ [ogmit — (1/k)W (2)
—[Bimy — (/W ()] = -+ = [Bm" — (/)W (2)]

is replaced by

L(t) = aymf — (/)W (), 1<i<k,
B3(t) = Bemi — (W), k+1<i<k+l,
X(@) = I1(t) = = Tk(®t) + Ler (B) + - + Tpa(t) = 0.

Repeated applications of these three rules to any S-system of equations not
in the canonical form terminates after finitely many steps and results in the

—

desired final canonical form. ZE

4 Differential Algebra

The semantics for a bio-chemical reaction then can be given by the evolution
equations in the explicit form, or more geometrically, by the trajectory seman-
tics where all possible evolution paths of the system are explicitly represented.
A more compact geometric picture can be given in terms of the distributions,
e.g., the classical phase portraits represented as a vector field. For instance, a
simple model of a circadian clock can be represented in terms of the mRNA
level of per, M, and corresponding protein levels of PER at various degrees of
phosphorylation, Py, P, and P», and in terms of its location inside the nucleus



Py or cytoplasm:
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Its phase portrait then can be analyzed to determine if the system has a stable
and robust limit-cycle (e.g., by applying “Bendixon criteria,” etc.).

Another approach is to describe the system in terms of an automaton, whose
state can be represented as a finite-dimensional vector S(t) and its transition
from S(t) and S(t + At) can be determined by following the trajectory starting
at state S(t):

t+ At
/t F(S(r)) dr,

subject to the constraints on the system. Wherever an appropriate numerical
integrator is available, such an automata can be numerically described by the
“traces” of the numerical integrator. In order to keep the complexity of such
an automaton simple one can obtain “approximate versions” of the automaton
by discretization and collapse operations that hide all or some of the “internal
states.”

An ultimate example of collapsing involves hiding all the internal state vari-
ables and just describing the evolution of outputs in terms of its input. Here, one
describes the system in terms of its input-output relation that describes only the
relation between the control inputs and the output variables starting from a re-
dundant state-space description. From an algebraic point of view, this is exactly
the problem of variable elimination and comes under the subject of elimination
theory. Thus all the theories related to standard bases, characteristic sets and
differential-algebraic resultants play important roles.

Assume that the system (SISO) is described as shown below:

1'71 =p1(X,u,u,...,u(k))

Ty =pT(X,u,u,...,u(k))
0= ql(Xau)



0= QS(Xau)
y = h(X,u)

Consider the following differential ideal I in the differential ring R{ X, u,y}:

I= [jjl _pla"'vj:T_pT7q17"'7QS7y_h]'

The input-output relation is then obtained by finding the contraction I°¢ of the
ideal I to the ring R{u,y}. The generators of I° = INR{u, y} give the differential
polynomials involving u and y. However, the underlying algorithmic questions
for differential algebraic elimination remain largely unsolved.

Example Consider the following system (adapted from Forsman [4]):

A - B,
with the following kinetic equations:
[B] = [A]"® - [B]"*.

The input u controls the concentration [A] as follows:

[A] = u[A]7? = [A] 7,
and the output y is simply [B]:
y =[B].

We can simplify the above system to a polynomial system by following transfor-
mations:

z] =[A] and z3 =[B].

Thus,
I =[2238; + 21 — u, 2200y + T2 — 21,22 — Y.

After eliminating 1 and z2, we obtain the following input-output relation:

(205%y> — 45'% — 405°%y® + 40y y* — 209°y° + 49%)§°
+ (4ugPy — 49%y — 209*y? + 40ugPy® + 209°y® + 20ugy® + 4y*)ij
— 92y® + 59%y* — 109593 + 20ugyBy® + 1093y + y? — 8%y + 10uy®y

—

—wly + 2ugy — 9%y — 590y + 1% + 8%y + 2ugy® = 0. E

5 Open Questions

Several interesting questions remain to be further explored.

1. Reactions Models: = We have primarily focused on a simple ODE model
(Differential Algebraic Equations, DAE) and narrowed this even further to
a model based on S-systems. Does this imply that there is a significant de-
viation from reality? How can a stochastic model representing small number
of molecules interacting pair-wise and randomly be incorporated?



2. Hybrid Systems: Certain interactions are purely discrete and after each
such interaction, the system dynamics may change. Such a hybrid model
implies that the underlying automaton must be modified for each such mode.
How do these enhancements modify the basic symbolic model?

3. Spatial Models: The cellular interactions are highly specific to their
spatial locations within the cell. How can these be modeled with symbolic
cellular-automata? How can we account for dynamics due to changes to the
cell volume? The time constants associated with the diffusion may vary from
location to location; how can that be modeled?

4. State Space (Product Space): A number of interacting cells can be
modeled by product automata. In addition to the classical “state-explosion
problem” we also need to pay attention to the variable structure due to i)
Cell division, ii) Apoptosis and iii) Differentiation.

5. Communication: How do we model the communication among the cells
mediated by the interactions among the extra-cellular factor and external
receptor pairs?

6. Hierarchical Models: Finally, as we go to more and more complex
cellular processes, a clear understanding can only be obtained through mod-
ularized hierarchical models. What are the ideal hierarchical models? How
do we model a population of cells with related statistics?

7. Simulation : If a biologist wishes to obtain a visualization based on
numerical simulation, how can we take advantage of the underlying symbolic
description?

8. Symbolic Verification: If a biologist wishes to reason about the system
with logical queries in an appropriate query language (e.g., temporal logic),
what are the best query languages? What are the best algorithms that take
advantage of the symbolic structures? What are the correct way to solve
problems associated with i) Model Equivalence, ii) Experimental Analysis,
and iii) Reachability Analysis?
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