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Abstract

We describe the theoretical basis of an approach using microarrays of probes and
libraries of BACs to construct maps of the probes, by assigning relative locations
to the probes along the genome. The method depends on several hybridization
experiments: in each experiment, we sample (with replacement) a large library of
BACs to select a small collection of BACs for hybridization with the probe arrays.
The resulting data can be used to assign a local distance metric relating the arrayed
probes, and then to position the probes with respect to each other. The method
is shown to be capable of achieving surprisingly high accuracy within individual
contigs and with less than 100 microarray hybridization experiments even when the
probes and clones number about 10°, thus involving potentially around 10!° individual
hybridizations.

This approach is not dependent upon existing BAC contig information, and
so should be particularly useful in the application to previously uncharacterized
genomes. Nevertheless, the method may be used to independently validate a BAC
contig map or a minimal tiling path obtained by intensive genomic sequence deter-
mination.

We provide a detailed probabilistic analysis to characterize the outcome of a single
hybridization experiment and what information can be garnered about the physical
distance between any pair of probes. This analysis then leads to a formulation of a
likelihood optimization problem whose solution leads to the relative probe locations.
After reformulating the optimization problem in a graph-theoretic setting and by
exploiting the underlying probabilistic structure, we develop an efficient approxima-
tion algorithm for our original problem. We have implemented the algorithm and
conducted several experiments for varied sets of parameters. Our empirical results
are highly promising and are reported here as well. We also explore how the prob-
abilistic analysis and algorithmic efficiency issues affect the design of the underlying
biochemical experiments.

Keywords: mapping, microarray, gene copy numbers, sequence validation, graph algorithm

1 Introduction

Genetics depends upon genomic maps. The ultimate maps are complete nucleotide sequences of
the organism together with a description of the transcription units. Such maps in various degrees
of completion exist for many of the microbial organisms, yeasts, worms, flies, and now humans.
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Short of this, genetically or physically mapped collections of objects derived from the genome
under study are still of immense utility, and are often precursors to the development of complete
sequence maps. These objects may be markers of any sort, DNA probes, and genomic inserts in
cloning vectors.

We have been exploring the use of microarrays to assist in the development of genomic maps.
We report here one such mapping algorithm, and explore its foundation using computer simula-
tions and mathematical treatment. The algorithm uses unordered probes that are microarrayed
and hybridized to an organized sampling of arrayed but unordered members of libraries of large
insert genomic clones.

In the foregoing we assume some knowledge of genome organization, DNA hybridization,
repetitive DNA, gene duplication, and the common forms of microarray. In this setting, one
sample at a time is hybridized to microarrayed probes, and hybridization is measured as an
absolute quantity. We assume probes are of zero dimension, that is, of negligible length compared
to the length of the large genomic insert clones. Most importantly, we assume that hybridization
signal of a probe reflects its inclusion in one or more large genomic insert clones present in the
sample, and negligible background hybridization. Our analysis is general enough to include the
effects of other sources of error. The novelty of the results reported here is in their ability to
deal with ambiguities, an inevitable consequence of the use of massive parallelism in microarrays
involving many probes and many clones. Similar algorithms are reported in the literature, but
assume the knowledge of clone-probe inclusion information for every such combination and suggest
different algorithms [4].

One important application of our method is in measuring gene copy number in genomic DNA
[5]. Such techniques will eventually have direct application to the analysis of somatic mutations
in tumors and inherited spontaneous germline mutations in organisms when those mutations
result in gene amplification or deletion. In contrast, low signal-to-noise ratios, due to the high
complexity of genomic DNA, make the direct application of standard DNA microarray methods
highly problematic.

2 Mathematical Definitions

Given a set of P probes listed as {p1, p2, . ..,pp} and contained in some contiguous segment of the
genome we define a probe map to be a pair of sequences, ordering = {p,(1), Px(2),- - -, Px(p)} and
position = {x1, 23, ..., zp}. The position sequence infers the positions of the probes and the
ordering sequence is determined by the permutation? 7 € Sp that sorts the given list of probes
by position.

However the underlying correct position of each probe remains unknown. We infer probe
maps approximating the correct positions as best as possible from an experimental set of data
which is stochastic. Experimental data sets are represented by graphs; given a set of probes
{p1,p2,-..,pp}, let V be the set of indices. Then a pairwise distance graph is an undirected graph
G =(V,E), E CV xV where each edge e; ; maps to a distance d; ; between probe ¢ and probe j.

We model various experimental errors arising from the hybridization experiment used to mea-
sure prob to probe distance. With the model we can understand the distribution of pairwise
distance graphs as a random variable. Under certain parameters we can implement Bayes formula
to build a Maximum Likelihood Estimator (MLE) for probe map reconstruction. With the MLE
established we attempt to optimize the computation involved for practical implementation.

2We denote the permutation group on P indices as Sp
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2.1 Experimental procedure

Consider a genome represented by the interval [0, G]. Take P random short sub-strings (about
200bps) which appear on the genome uniquely. Represent these strings as points {z1,...,zp}.
Assume that the probes are i.i.d. with uniform random distribution over the interval [0, G]. Let
S be a collection of intervals of the genome, each of length L (usually ranging from few 100kbs
to Mbs). Suppose the left-hand points of the intervals of S are i.i.d. uniform random variables
over the interval [0, G]. Take a small, even in number sized subset of intervals S’ C S, chosen
randomly from S. Divide S’ randomly into two equal-size disjoint subsets S’ = S U S(;, where R
indicates a red color class and G indicates a green color class. Now specify any point z in [0, G|
and consider the possible associations between xz, and the intervals in S’

e 1 is not covered by any interval in S’.
e 1 is covered by at least one interval of S% but no intervals of Sg.
e 1 is covered by at least one interval of S; but no intervals of S%.

e 1 is covered by at least one interval of S% and at least one interval of Sg.

If we perform a sequence of M such experiments then for each x we get a sequence of M outcomes
represented as a color vector of length M. We are interested in observing sequences of such
outcomes on the set {xy,...,2p}.

For DNA the short sub-strings can be produced with the use of restriction enzymes, or syn-
thesized as oligoes. The collection of covering intervals may be provided by a BAC or YAC clone
library. The division of a random sample taken from the clone library may be done with phospho-
rescent molecules added to the DNA and visible with a laser scanner. Hybridization microarrays
allow us to observe such an outcome sequence for each of the 100,000 probes in a constant amount
of time.

Consider an example with human. To make a set of Human Oligoe Probes we may use
restriction enzymes to cut out P probe substrings of size 200bp to 1200bp from the genome
and choose a low complexity representation (LCR) as discussed in [5,6]. We may arrange for a
sequence of M random samples from the BAC library, suppose each sample has K BACs and
coverage ¢ = % Samples are then partitioned into two color classes ¥ = {R, G}, and then
hybridized to a microarray, arrayed with P probes. If we pick one probe p;, then the possible

outcomes for one experiment are:

e p; hybridizes to zero BACs. We say the outcome is ‘B’ (blank).

e p; hybridizes to at least one red BAC and zero green BACs. We say the outcome is ‘R’
(red).

e p; hybridizes to at least one green BAC and zero red BACs. We say the outcome is ‘G’
(green).

e p; hybridizes to at least one green BAC and at least one red BAC. We say the outcome is
Y’ (yellow).

We call these events i, g, g, and iy respectively. We use M random samples to complete the
full experiment. The parameter domain for the full experiment is (P, L, K, M), where P is the
number of probes, L is the average length of the genomic material used (for BACs, L = 160kb),
K is the sampling size, and M is the number of samples. The output is a color sequence for each
probe. The sequence corresponding to probe p; is s; = (s; )., with s;, € {B,R,G,Y}.
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2.1.1 How the distances are measured

With the resulting color sequences s; we can compute the pairwise Hamming distance. Let

H,; # places where s; and s; differ ,
Ci; = # places where s; and s; are the same but s; # B,
T;; = # places where s; and s; are B.

The Hamming distance defines a distance metric on the set of probes.

Lemma 2.1 Consider an ezperiment with parameters (P, L, K, M), and ¢ = % If ©,7 are

arbitrary indices from the clone set and x;; is the actual distance ( in number of bases ) separating
probe p; from probe p; on the genome, then:

2¢elZ) min T;i, L )
455 L} 0(min (g, 2)?)

Cij ~ Bin(M,1—e*+ g(e—c — 2¢~5) min {z;;, L} + O((min {1, L})?))

min {zij,L}
L

Hz',j ~ Bin (M,

~  Bin (M, (e~ )

Proof. See appendix.
These computations for small z lead to an accurate estimator:

Corollary 2.2 The estimator of z;; given by T;; = H 2L s good in the sense that there are

43 2cM
values of ¢ so that:

(d—miz-)z

1 B 2022, f T < L

76 %] Z .. .

P(Zi; =d) — ¢ V2rovEi A

L e
V2roVL

, as M — oo.
_ (d—=45)

207L if x5 > L;

with 0% = (é>

2c

Proof. Is a standard approximation. In the full paper we develop Chernoff bounds to analysis
the give and take relation of parameters K (determining ¢ ), and M. For z < % one can show
that for nearly any value of ¢ the above convergence in distribution convergence occurs rapidly in
variable M O

. . - H: » Hy j+2C,
In the full paper we develop an estimator of z;; given by Z;; = L

— W) aM 1 1-
i, QCMG L this esti
mator takes into account the variation of sample coverage over the genoie.

Lemma 2.3 The distribution for distance d is a function of x and is approximated by

—(d—x)?/202%x —(d—L)%/202L

€ €

d|z) = Togper—— + icpeq—
f( |) 0<z<L \/%0' L<z<G \/Q’IT—LO'
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Proof. Simple restatement of corollary 2.2 O
Since we have assumed that any given probe is distributed uniformly randomly over the
genome, the density function for the probe’s position is:

1

f(x)za

Our next lemma is an application of Bayes’ formula to compute f(z|d) from f(x) and f(d|x)
computed above.
Lemma 2.4 If f(d|z) = Ly<z<r

e—(d—2)2 /2022 e—(d—1)2/202L

\/271'71‘0 + ]ILS.’ESG \/mo_ . Then

J I ef(wfd) /202d I I 1
f(l"‘ )N d<LW+ d>1 lr<z<c <m>

Proof. See appendix 0O.
With conditional f(z|d) we can now define the Maximum Likelihood Estimation problem:
Given an arbitrary pair-wise distance edge weighted complete graph G of P vertices, repre-
senting probes, and each edge (i, j) labeled with d; j, a sampled value of a random variable with
the distribution f(d||z; — x;|), we would like to choose an embedding of G (or more precisely, an
embedding of the vertices of G) into the real line:
{Z1,%s,...,Zp} C [0,G],
that maximizes a likelihood function
H FUa: — 5| dig).
1<i,j<P
Equivalently, we can minimize a related cost function
> —Inf(lE — 4l ldi).
1<4,j<P
Lemma 2.5 The Optimization problem of finding T; to minimize f(Z;[{Z;: 1 < j},{dij i < j})
1s approximated by solving the following optimization problem:
minimize Z I/szufz — .f?]‘ - dij)Q,
1<i<j<P

where W;;’s are positive real valued weight functions:

1
——  ifd;; < L;
I/Vij = 20‘2dij Zf I
€ otherwise,
and e = O ((G_IL)Q)
Proof
(= A (Varde) ifd<L
~ 7 +1n i :
—In f(z|d) ~ { 242d rao ’
In(G—L)—Inl;<,<c otherwise.
Hence
Z —In f(|z; — 2[|dy;) = Z Wij(|2: — 35| — dij)*.
1<i,j<P 1<i<j<P
Note that € = 20?; < 20121\4 - < Q(G_lL)2L as oy being the maximum variance is bounded by
(G-L1L) o
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2.2 Simple Algorithm

The simplest algorithm to place probes proceeds as follows: Initially, every probe occurs in just
one singleton contig, and the relative position of a probe ; in contig C; is at the position 0. At
any moment, two contigs Cp = [Zp,, Tp,, - - -, Tp] and Cy = [Zq,, Ty, - - -, Tq,,) May be considered
for a “join” operation: the result is either a failure to join the contigs C},, and C, or a new contig
C, containing the probes from the constituent contigs. Without loss of generality, assume that
|Cp| > |Cy|, and that the probe corresponding to the right end of the first contig (x,,) is closet
to the left end of the other contig (x,,). That is the estimated distance d,, ,, is smaller than all
other estimated distances: d,, 4,, dp, 4,. and dp, 4,.-

Let 0 < # < 1 be a parameter to be explored further later, and L' = L0 < L. If dp, 4, > L'
then the join operation fails. Otherwise, the join operation succeeds with the probes of C, placed
to the left of the probes of Cj, with all the relative positions of the probes of each contig left
undisturbed. We will estimate the distance between the probes in C, and the probe z, by
minimizing the function:

Z (:qu - ji - di,q1)2

202di’q1 ’

minimize
1€{p1,e-spr}idi gy <L/

where Z;’s (i € {p1,...,p}) are fixed by the locations assigned in the contig C,. Thus taking a
derivative of the expression above with respect to z,, and equating it to zero, we see that the
optimal location for z,, in C, is

~ ) 29
Zie{pl,...,pl}:di’ql <L' ('/LIZ + dZ,Ql) /0 dlyql
2.
Zie{pl,...,pl}:di,ql <L’ 1/0- d'l7111

Once the location of x4, is determined in C) at d*, the locations of all other probes of C; in the
new contig C, are computed by shifting them by the value d*. Thus

. -
d* = max | Zp,,

Cr = [Tpyy ooy Ty Tppyys oy Trpy]s
where r; = p; and I, = Iy, for 1 <¢ <; r; = ¢; and T, , = d* + Iy, for 1 <7 < m. Note that
when the join succeeds, the distance between the pair of consecutive probes Z,, and Z,,,, is
O S i.TH_l - i.Tl S L,’

and the distances between all other consecutive pairs are exactly the same as what they were in
the original constituent contigs. Thus, in any contig, the distance between every pair of consec-
utive probes takes a value between 0 and L’. Note that one may further simplify the distance
computation by simply considering the k nearest neighbors of Z, from the contig C),: namely,

‘rL‘pl—IH—l’ cey Ty
= ' 27
Zie{plflﬂ—lv---’pl}:di,ql <L'! (xz + dl,(h) /(7 dZ,QI

2.
ZiE{Pl—k+1,---,p1}1di,q1 <L’ ]‘/O- dzvql

. -
d, = max | Z,,,
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In the greediest version of the algorithm £ =1 and
di = Zp, + dpa1

as one ignores all other distance measurements.
At any point we can also improve the distances in a contig, by running an “adjust” operation
on a contig C, with respect to a probe Z,,, where

Cp = [xpu""xpj—laxpj’xpjﬂ’“"xpz']

Zp; adjust

Tpy -’Epj Lpy

We achieve this by minimizing the following cost function:

minimize Z (|1Zp;, — 3| = di,pj)z
202di,pj ’

i€{p1,-pi P\ {pj }rdi p; <L

where Z;’s (i € {p1,...,p} \ {p;}) are fixed by the locations assigned in the contig C,.
Let:

L = {ine{p,...,pjm1} 1 diyy, < L'}
L = {is€{pjrr--sm}: digy, < L'}

. Zileh (jil + dil,pj) /UQdilapj + Zi2€[2 (iiz - diz,pj) /UQdiz,pj
Zhell 1/0%d;; 4 + Z’igeb 1/02diz,pj .

At this point, if % # I,,, then the new position of the probe Z,, in the contig C), is z*. As
before, one can use various approximate version of the update rule, where only k& probes from the
left and k£ probes from the right are considered and in the greediest version only the two nearest
neighbors are considered. Note that the “adjust” operation always improves the quadratic cost
function of the contig locally and since it is positive valued and bounded away from zero, the
iterative improvement operations terminate.

3 Implementation of the k—neighbor algorithm

INPUT

The input domain is a probe set V', and a symmetric positive real-valued distance weight matrix
D € RY*”, where P = |V|.

PRE-PROCESS
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Construct a graph G’ = (V, E'), where E' = {e, = (z;,2,)|d;; < L'}. The edge set of the graph
G' is sorted into an increasing order as follows: ey, e, ..., g, with @ = |E'| such that for any
two edges ey, = [z, 2;,] and ey, = [y, Tj,], if k1 < ko then d;, ;, < d;, j,. G' can be constructed
in O(|V|?) time, and its edges can be sorted in O(|E’| log(|V])) time. In a simpler version of the
algorithm it will suffice to sort the edges into an “approximate” increasing order by a parameter
H; ; ( related to d;; ) that takes values between 0 and M. Such a simplification would result in
an algorithm with O(|E’|log M) runtime.

MAIN ALGORITHM

Data-structure: Contigs are maintained in a modified union-find structure designed to encode
a collection of disjoint unordered sets of probes which may be merged at any time. Union-find
supports two operations, union and find | Tarjan |, union merges two sets into one larger set, find
identifies the set an element is in. At any instant, a contig is represented by the following:

e Doubly linked list of probes giving left and right neighbor with estimated consecutive neigh-
bor distances.

e Boundary probes: each contig has a reference to left and right most probes.

In the kth step of the algorithm consider edge e; = [z;, z;]: if find(x;) and find( z; ) are in
distinct contigs C, and Cj, then join C, and C,, and update a single distance to neighbor entry
in one of the contigs.

At the termination of this phase of the algorithm, one may repeatedly choose a random probe
in a randomly chosen contig and apply an “adjust” operation.

OUTPUT

A collection of probe contigs with probe positions relative to the anchoring probe for that contig.

3.1 Time Complexity

First we estimate the time complexity of the main algorithm implementing the k—neighbor version:
For each e € E' there are two find operations. The number of union operations cannot exceed
the number of probes P = |V, as every successful join operation leading to a union operation
involves a boundary vertex of a contig. Any vertex during its life time can appear at most twice
as a boundary vertex of a contig, taking part in a successful join operation. The time cost of a
single find operation is at most y(P), where v is the inverse of Ackermann’s function. Hence the
time cost of all union-find operations is at most O(|E'|y(P)). The join operation on the other
hand requires running the k—neighbor optimization routine which is done at a cost O(k). Thus
the main algorithm has a worst case time complexity of:

O(IE'(V) + k1)
The Full Algorithm including preprocessing is:
O(|Elog(IV]) + V)
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In a slightly more robust version the contigs may be represented by a dynamic balanced binary
search tree which admit find and implant operations. Each operation has worst case time com-
plexity of O(log(|V])). Thus after summing over all |E’| operations the worst case runtime for the
main algorithm is:

O(|E|1og([V1) + kV)

and for the full algorithm is:
O(|E' log(IV]) + |V ?)

4 What the simulations tell?

4.1 Simulation: observed distance

The sample mean and variation of the distance function are computed with a simple simulation
done in-silico. BACs are 160Kb in length, we generate 1,200 BACs and place them randomly on
a genome of size G = 32, 000Kb, This gives a 6 x BAC set. In this experiment 100 random points
are chosen on the genome and for each point we compute the Hamming distance compared to
points 10, 20, 30, ...300 Kb to the right on the Genome. Color sequences are computed by using
20 samples of 130 randomly chosen BACs of which half are likely to be red and the other half
green.

mean d(x) of 100 samples when I(BAC)=160 var d(x) of 100 samples when I(BAC)=160

14

s R

10
12

10

variance

4.2 Simulation: full experiment

Below we describe an in-silico experiment for a problem with 150 probes. On a Genome of size
5,000 Kb we randomly place 150 probes, there positions are graphed as a monotone function in the
probe index. Next we construct a population of 500 randomly placed BACs. From the population
we repeat a sampling experiment using a sample size of 32 BACS 16 are colored red, and 16 are
colored green. Each sample is hybridized in-silico to the probe set. Here we assume a perfect
hybridization so there are no cross hybridizations or failures in hybridizations associated with the
experiment. We repeat the sample experiment 130 times. This produces the observed distance
matrix, whose distribution we modeled earlier. This is the input for the algorithm presented in
this paper. In the distance vs observed data plot we see that using a large M = 130 ( suggested
by the Chernoff Bounds ) has its benefits in cutting down the rate of the false positives. The
11

observed distance matrix is input into the ( 10—neighbor, § = 3 ) algorithm without the use of
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the adjust operation, the result is 7 contigs. The order within contigs had five mistakes. We look

at the the 4th contig and plot the relative error in probe placement.

probe pair-wise observed distance vs
positions probe distance distance observed
5000 s s 200
4000 6000 200
© 150
4000
-§ 3000 100 - 100
8 2000 '
2 2000 3
04 oL 50
1000 200 200
. 200 . 200
o . 100 100 - 100 100
0 100 200 index g g index index g g  index 0 5000
index X
inferred inferred inferred order difference in relative
probe positions contig structure given contig order positions for largest contig
2000 7 150 100
6 50
<
1500 2
x5 £ 100 0
c S o)
8 £ B ol
‘g 1000 24 5 g -50
& g B
o3 = 50 -100
500 E
2 -150
0 1 0 —200
0 100 200 0 100 200 0 100 200 0 50 100
index inferred index probe index index

5 Conclusions

In the full paper, we will address several issues: The more robust variation of the algorithm based
on a dynamically balanced binary search tree will be presented with more details. A comparison
with Traveling Salesman TSP heuristics, and an investigation of an underlying relation to the
heat equation will show why this algorithm works well. Probabilistic analysis for the statistics of
contigs shall be presented. A model incorporating failure in hybridization and cross hybridization
shall be suggested. We are able to prove that if errors are not systematic then a slight modification
of the presented Chernoff bounds can be applied to ensure the same results. We shall also consider
the choice of probes to limit the cross-hybridization error and a choice of melting points to further
add to the goal of decreasing experimental noise. A set of experimental designs will be presented
for the working biologists. More extensive simulations, and results on real experiments shall report
the progress of what appears to be a promising algorithm.
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6 Appendix
A  Proof of Lemma 2.1

Lemma A.1 H;; ~ Bin (M, w + 0(2?)),C;j ~ Bin (M,1 —e°+ £(e™® —2e %)z +
O(z?)), T;; ~ Bin (M, (e~*1F1))) with parameters (P, L, K, M) as above and ¢ = ££, 4, j are
arbitrary indices from the Clone Set and x is the actual distance as number of bases separating
the probe positions on the Genome.

Proof. Since the M samples are done independently the proof reduces to showing that when M =
1 the probabilities are Bernoulli with respective parameters. Let us define events T' = (ig A jg) ,
C = ((’LR /\jR) V (’LG /\jg) V (’Ly /\jy)), and H = (_|T/\ _|C)

Given a set of K BACs on a genome [0, G] the probability that none start in an interval of
length [ is (1 — a)' ~ e~ where o = £.

Shown below is a diagram that is helpful in computing the probabilities for events
C,H, T when z < L. The heavy dark bar labeled a represents a set of BACs which cov-
ers probe p; but not p;; the bar labeled b represents a set of BACs that covers probe

p; and p;; finally, the bar labeled c represents a set of BACs that covers p; but not p;.

Cc

e L-z pi r pj

Hence we derive:

P(T|x <L) = exp(—(agr+ag)(L+x))
P(ig Ajrlz < L) = e @cEF0 (] — e arla)) 4 (1 — ¢ ar?)(g ar(L-2))(] _ g arT)}
e—ac(L+m){1 — e @rL e—aR(L+z)}
P(ig AN jglz < L) = e orUIFD[] _ 9e—acl 4 gmac(l+a)}
P(iy Ajylt < L) = (1 =2 2rL 4 emorlA2))(1 _ g¢70cL 4 omac(l+a))
P(Clz <L) = P(irAjrlz <L)+ Plic A jelz < L) + Pliy A jy|z < L)
P(H[z <L) = 1—[P(T|z <L)+ P(Clz < L)]

When z > L the probabilities are:
) = exp(—(agr+ag)(2L))
) = emeelhy( :
P(ZG /\jg‘ﬁ Z L) = 6_aR(2L){(
)
)

1- e_“RL) }
1— 6—agL)2}
= (1—eorb)2(1 - gmo0l)?

August 2000 Probe Distance o 11



P(Hlz>L) = 1-[P(Tla>L)+P(Clz> L)

Because ap = ag, agl = agl = £ = 5£. Let ¢ = q(z) = P(H) and p = p(z) = P(C). In
general ¢(z) and p(x) are complicated function of z, below we derive a first order approximation
of z(q) to be used as a biased estimator.

_ 2cexp(F)z

PH) = (1-(1—-2e7 +2e>1+1))?) T + O(z?)
P(T) = (e="1)
P(C) = 1—-€e“+ g(efc —2¢ %)z + O(2?)
With independent sampling:
P(H;;) ~ Bin (M, w + 0(z?%))
P(Cij) ~ Bin (M,1—e "+ g((fc — 2 )z + 0(z?))
P(T;) ~ Bin (M, (e~ 1)) O

B Proof of Corollary 2.2

C Proof of Lemma 2.3 using Bayes’ formula

o= (d—2)2 /2022 e—(@—1)2/2521
2n Lo

Lemma C.1 If f(d|z) = Lo<z<r ——— + l1<s<c . Then

4 I e—(w—d)2/2o’2d I I 1
f(z]d) ~ d<LW+ d>L li<a<a <m>a
Proof.
f(dz)f(z)
flald) =
D= ) (o) da

e—(d—2)2/2022 e—(d—L)2/20-2L>

1
G (HOSKLW +licece™— 7,

1 G e—(d—2)2/202z e—(d—1)2/202L
a o (HOSKL Virze T lLge<c™ mr— ) du

For small values of o2 the denominator in the above expression can be approximated as follows?:

1 L —(d—x)%/20%x G-—1L —(d—L)?/202L
0

G 2rx0 G 27 Lo
1 L
~ Slger+|1— =) 0d=r-
e (12 b
3The Dirac Delta Function is distribution defined by the equations { (}“”250 :c?m —1 ifx#0 }
z V=0 -
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Thus, we make further simplifying assumptions and choose the following likelihood function:

o~ (@—d)?/20%d

z|d) & ljep—F——

1
I I S
+ lo>r lp<z<a (G—L)’ O

D How good are the results?

D.1 False Positives, False Negatives

We treat the problem of false positives, and false negatives with Chernoff’s tail bounds. We
find upper bounds on the probability of getting a false positive or false negative in terms of the
parameters 0, M, c = %, 0<6<1,L'=LHLL.

A false positive is a pair of probes that appear to be close by the Hamming Distance but are

actually far apart on the genome. We denote the event as:
FP. =d<L)YA(z>1L)

A false negative is a pair of probes that appear to be far by the Hamming Distance but are actually
close on the genome. We denote the event as:

FN. =(z < L')A(d> L)

In the following picture the volume of data which are false positives and false negatives are
indicated by the squares noted F.P. and F.N. respectively.

d
‘Q\X _\4
= EN
- \%
L
L "_"_"_"_"_“"_";F"'W/é
=l —
i //l/__ _/ >
L L (&

We develop a Chernoff Bound to bound the probability that the volume of false positive data
is greater than a specified size.
The Chernoff Bounds for a Binomial Distribution with parameters (M, g) are given by:

v

Mgq
—Mq(1-6)2 .
P(H<0Mq) <e : with0 <6 <1

Let H(M) be the Hamming distance when M phases are complete. Let ¢(L) = P(H|z > L) ~
2:‘—51“ = :—g We start by noting equivalent events:

(d<0Llz>L) = (6*H(M) <Lz > L)
= (HM)< H%M > L)
c (HM) < 922];”)

= (H(M) <0Mq(L))
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Using the Chernoff bound we have:

—Mc(1—9)2
[

P(d<6Ljz>L) < P(HM)<60Mqr) <e -2
For the False Negatives we begin by noting that:
(d>Llx <L) = (o*H(x)> Lz <L)
1
= (¢*H(z) > (14+v)L'|z < L') where v = (5 —1)

— (H(z) > %\x < 1)

C (H(z)>(1+v)Mq(x))

The last event inclusion is because:

2eMzx 2eM I/
<

<) = (ot < 505) = (Ma(@) < 1)

Applying the Chernoff bound we get:

ev Mq(z) L_1yaly s 1_4 1M2—§
P(FN.)< P(H > (1+v)Mq(z)) < | ———— < (ela™Dga)Mar = (ela=Dgs) " o5
(14 v)(+v)
Chernoff bounds are:
—Mc(1-9)2
C
P(FP.) < e e
1 1 M-=¢
P < (elaVga)" 3
The Chernoff bounds for typical parameters are shown below.
Chernoff F.P. Chernoff F.N. F.P. Chernoff F.N. Chernoff
Bound contour Bound. contour upperbound 6=.7 upperbound 6=.7
a -
aso0 aso 4 o.o}l -
a00 a00 4 o.s} -
350 350 - o.7 -
300 300 % o.e -
= 250 250 g 0.5 -
200 200 ag oO.4a -
=
150 150 - 0.3 -
100 100 - o.2 - -
50 50 = o.1 -
500 OO 500
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