On the K-Populations Problem *

Laxmi Parida Bud Mishraf
Computational Biology Center Department of Computer Science
IBM Thomas J. Watson Research Center Courant Institute, New York University
Yorktown Heights, NY10598, USA New York, NY10012, USA
Abstract

Given a set of m molecules, derived from K homologous clones, we wish to parti-
tion these molecules into K populations, each giving rise to distinct ordered restriction
maps, thus providing stmple means for studying biological variations. With the emer-
gence of single molecule methods, such as optical mapping, that can create individual
ordered restriction maps reliably and with high throughput, it becomes interesting to
study the related algorithmic problems. In particular, we provide a complete compu-
tational complexity analysis of the “K-populations” problem along with a probabilisitc
analysis. We also present some simple polynomial heuristics, while exposing the re-
lations among various error sources that the optical mapping approach may need to
cope with. We believe that these results will be of interest to computational biologists
wn devising better algorithms, to biochemists in understanding the trade-offs among the
error sources and finally, to biologists in creating reliable protocols for population study.

1 Introduction

Optical mapping [AMS97, Cai+95, GP96, Men+95, MP96, Sam+95, Sch+93, WHS95] pro-
vides a practical high-throughput approach to restriction-based genomic analysis. The or-
dered restriction maps from optical mapping provide actual physical distances between the
markers and possess unambiguous structural information, whose accuracy and resolution
can be actively controlled by increasing the number of restriction enzymes and the number
of individual molecules. Optical mapping finds applications in contiging (aligning overlap-
ping sets of cloned DNA or genomic DNA), identifying genetic loci, sequence anchoring and
verification, and in population genetic studies. Here, we explore some algorithmic and com-
plexity questions related to the use of optical mapping to study a population of homologous

*An extended abstract of this paper appeared in the Proceedings of the Second Annual Conference on
Computational Molecular Biology (RECOMB98) [PM98].
T The research presented here was partly supported by an NIH Grant: NIH R01 HG0025-07.



DNA fragments. In practice, the most interesting case involves just two populations (K = 2)
where one examines populations related to diploid DNA. However, there are other situations,
e.g., dealing with PCR products, several strains of a microorganisms, etc., where K could be
arbitrarily large. Computationally, it is also interesting to study how this generality (when
K is unconstrained) affects the problem.

We focus on a somewhat idealized model. We assume that we are given m molecules,
each one derived from one of K different clones. We wish to partition the m molecules into
K different disjoint classes (K “populations”), each class corresponding to a distinct clone.
We then wish to compute and output the K distinct ordered restriction maps (one for each
population) so that the dissimilarities among the ordered restriction maps can be quickly
distinguished. The output is given in a novel data structure that can quickly identify the
dissimilar regions in the maps.

In an ideal setting, if the correct ordered restriction map for each molecule can be made
available, then the resulting computational problem is rather trivial. In practice, however,
the single molecule restriction map that can be computed by the image processing algo-
rithm will be governed by several error processes: missing restriction cut sites due to partial
digestion (false negatives), spurious optical cut sites (false positive), sizing error, missing
fragments, error in assigning the orientation of the molecule, presence of other spurious
molecules etc.

Even though we ignore all but the first two error processes, the resulting computational
problem still poses many challenges from a purely algorithmic point of view. We characterize
these structural difficulties, propose an extension of an earlier heuristic and explore its power
empirically.

For the purpose of complexity analysis, we further simplify our model to expose the
underlying combinatorial structure. This simplification results in making the arguments
showing the SNP-hardness of the problem easier to follow. It is straightforward to note that
the more realistic model only makes the computational complexity worse. In our simplified
model, each molecule (m in total) is represented as a binary vector of length n:

Ai = (ail,aig,. .. ,am) € {0’ 1}17,,

and the set of m molecules is represented by an m x n 0-1 matrix. A 1 in location a;; is
meant to indicate a cut site at the location j in the i** molecule and may be a true restriction
cut or a false optical cut. Thus, if a;; = 1, then either it is a true restriction site and the
correct map for the corresponding clone has a restriction site at j or it is a false optical cut
and the correct map has no restriction site at j. Conversely, if a;; = 0, then either it is a
missing restriction site and the correct map has a restriction site at j or it is simply not a
restriction site and the correct map does not have a restriction site at 5. Our goal is to devise
an algorithm to find a partition of the molecules into K populations so that each restriction
site in the proposed map for a population is supported by “enough” restriction sites at the
corresponding location in the same population. We shall define a cost function that formalizes
this notion and examine the complexity of the resulting combinatorial optimization problem.

The paper is organized as follows: In the next section, we reformulate the problem in a



purely combinatorial setting and show that the resulting problem as well as computing an
arbitrarily good approximation is computationally infeasible (NP-hard). In Section 3, we
give a 0.756-approximation algorithm for a 2-populations problem. In Section 4 we give a
probabilistic analysis of the problem and in Section 5, we propose a simple heuristic assuming
an oracle that can create the complete all-population map and demonstrate experimentally
that the resulting simple polynomial time algorithm finds the maps correctly for reasonable
values of the parameters (partial digestion rate of 50%), negligibly small optical false cut rate,
upto 6 populations). In Section 6, we describe our empirical results based on the synthesized
data and explore its limitations. In a concluding section, we interpret the significance of our
results.

2 Complexity

For the sake of complexity analysis, we may assume that the only errors to be han-
dled are false negative and false positive errors (due to partial digestion and optical cuts,
respectively!). Given a set of molecules from K different populations, the task is to iden-
tify the different populations and the map of each of the population. The problem can be
formally stated as follows. We are given a m X n matrix [a;;] denoting m molecules and n
sites with p;, j = 1,2,...,n defined for each site j, which is a lower bound on the fraction
of the size of the population where the site j is a consensus cut?. The task is to maximize
the number of 1’s in the consensus cut columns and the number of 0’s in the non-consensus
cut columns in each population.

Let Y11, Yio, ..., Y1, Yor, Yoo, ..., Yau, ..., Yk1, Yko, ..., Yk, be the (nK) indicator
variables associated with each site (column) and population with the following connotation:

V.. 1, if 5 is a consensus cut site in pop k;
ki 0, if j is not a consensus cut site in pop k.

Pop (A;) = k where 1 < k < K, denotes that molecule ¢ belongs to population k. Let

Xy — { 1, if Pop(4;) = k;

0, otherwise.

'Recall that we may also model sizing errors or uncertainty in orientation or errors due to missing
fragments or spurious molecules, etc. However, these errors only result in higher worst-case complexity of
the problem and complicate the constructions used in the proof.

ZIn general, p; depends on the digestion rate, which cannot be always expected to be known a priori, and
may have to be estimated from the data (for instance, by an MLE method). A simple heuristic estimator
can be formulated by assuming that all the p;’s are equal and is given by

iy _, >, Fcuts inA;
p=(1- A)(P/m)ma

where p denotes the cutting efficiency (e.g., ~ 1/4,000 for a 6-cutter) and (1 — A) is a shrinkage factor that
compensates for the bias due to false optical cuts.



and my = Y ., Xi. The K-populations problem then can be formulated as a combinatorial
optimization problem; maximize the following function:

C(pj, [ay], Xik, Yij) =

> {Z > Vi Xikay —ijk]}- (1)

k=1 \j=1 i=1

and the cost of the configuration (given by optimizing the above function) is the total number
of 1’s in the consensus cut columns of each population. Note that the function given by
equation (1) is simply

K n m

DYDY XuYislay — ).

k=1 j=1 i=1

The cost function used here is a straightforward generalization of the “consensus with

data” cost function used for the 1-population problem described in [Par97b]. This is some-
what simplified by the fact that we include only those terms that model the false positive
and false negative errors. This cost function can also be heuristically justified by considering
its expected value over random m X n 0-1 matrices, where the entries of the matrix are
Bernoulli random variables with negligibly small false positive probability and with a false
negative probability determined by p;’s. The proofs of the following theorems are along
the lines of the SNP-hardness proofs of the Binary Flip Cut (BFC) problem and its variants
in [Par97a). However the proof here is self-contained and incorporates modifications required
for the K-populations problem.

Theorem 1 The K -populations problem is NP-hard. Further, there exists a constant € > 0
such that approximating the problem within a factor of 1 — € 1s NP-hard.

Proof Sketch. We will prove the result for a special case of the K-populations problem
with the following characteristics:

1. K =2. (A two-populations problem.)
2. Z,ﬁil Yy; =1 for all j. (Every cut belongs to exactly one population.)

3. The two populations are of the same size. Notice that without a constraint on the sizes
of the populations, we can obtain trivial configurations by assigning zero size to one
population. We further assume that we are also given the molecules in the following
order: the molecules come in pairs such that no two elements of the pair belong to the
same population.

4. pj =Y. a;;/2m for all j, where m is the total number of molecules.
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Figure 1: The graph for the MC problem is shown on the left. The corresponding graph for
the the BMC problem is shown on the right where an edge with positive weight is shown
as a solid line and the one with a negative weight is shown as a dashed line. The gadgets
corresponding to each of the vertices in the graph for the MC problem are enclosed in dotted
boxes.

To prove the inapproximability of this special case of the K-populations (KP) problem 3,
we use the recent technique of giving a gap-preserving reduction of a Max SNP-hard problem,
the Max-cut (MC) problem, to our problem [AL97].

The proof has three steps. In step 1 we show the reduction of an instance of the MC
problem to an instance of a bipartite Max-cut problem, with weights on the edges as 1 or —1
(BMC). In step 2 we show the reduction of an instance of the BMC problem to an instance
of the KP problem and in the final step we show that the reduction is gap-preserving.

Let C% denote the cost of the optimal solution and C'x denote the cost of an approximate
solution of the problem X.

Step 1. (MC to BMC reduction.)

Consider an MC problem on a graph with vertices and edges (V,E),n = |Vl],e = |E|.
Construct an instance of BMC with (V,E) as follows: For each v; € V, with de-

gree d;, construct 2(d; 4 1) vertices, Vjaager; = {¥ig> Vi1, - - »Vig,» Vigs Vi1, - - -, Vig, }- Further,
wit (v, vy;) = wt(vj, vj;) = wt(v;, vy) = —1,5 = 1,2,...,d;. Thus, v; gives rise to 3d; edges

with negative weight. Also if v1vs € E then wt(viyvy,) = wit(vhyvyy) = +1. It can be seen
that this construction gives a bipartite graph with V = V' UV" where vl e Vol € V. See
Figure 1 for an example.

Thus the BMC has 2n + 6e vertices, and, 2e edges with weights +1, and, 6e edges with
negative weights. Recall for any graph ). d; = 2e.

Let a solution be of size K, and, the partition of the vertices induced by this solution be
S1 and S5 in the MC problem. We make the following observations.

1.1 In a solution of the BMC, the two sets gl, 5'2, are such that V,44c, C 5'1 or 52, Vi. If
this does not hold, that is Vjs44er, € Si, then the solution can be modified that only

improves the solution. In a solution to the BMC, if vjv} is in the cut, so must v{v)

3The argument given here is similar to the Max SNP-hardness proof of the Exclusive Binary Flip-Cut
(EBFC) problem discussed in [Par97a].



(ycalled the image of vivh). This follows as Vjaiger; and Vjaaget, are in the sets 5'1 and

Sy respectively (without loss of generality). Hence, given a solution to the BMC, the
solution to the corresponding MC is constructed as follows: if vjvj (and its image) is

in the solution to the BMC, then v;v5 is in the solution to the MC.

1.2 We make the following claim:

Circ = Charcl?
Cuc > Cpuc/? (2)

This is easy to see from the construction of the instance of the BMC problem.

Step 2. (BMC to KP reduction.)

Consider a BMC ((Vi, V1), E), Vi = {v],v3,...,vL }, Vo = {v],v3,...,v2}. Define 1 = m +1.
Construct an instance of KP [M;;] with 2m rows and n columns as follows. If wt(v;v}) = 1,
then M;; = 1,M;; = 0. If wt(vjv}) = —1, then M;; = 0,M;; = 1. If vjv} is not an
edge in the BMC, then M;; = M;; = 0. See Figure 2 for an example. This construction
ensures that molecules/rows corresponding to i and 7 belong to different populations (this
also explains the third characteristic of the special KP problem). Also notice that, assuming
that the assignment of the rows/molecules to the populations have been made, a consensus
cut column is the one with the larger number of 1’s (this explains the fourth characteristic
of the special KP problem).

We make the following observations.

2.1 Given a a configuration (assignments of populations one/two to rows and cuts/no-cuts
to columns) for the KP problem, it can be shown that we can obtain a solution for
the BMC problem. We can further show that given an approximate solution for the
KP problem, we can construct an approximate solution for the BMC problem and any
solution is > 6e. Also the solution to the KP problem is such that the molecules/rows
and sites/columns corresponding to the vertices of a gadget of a vertex from the MC
belong to the same population. Thus the corresponding solution for the BMC (and
then the MC) can be obtained.

2.2 We make the following claim:
C:EMC = C:;(P — Ge
Cpuc > Ckp — Ge (3)

This holds since the number of edges with negative weights is 6e in the BMC instance.
(The reader may see [Par98, Par97a| for the details of the argument.)

Step 3. (Gap-preserving reduction.)
Finally, we show that the reduction is gap-preserving.
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voar | O 0 1 0 0 0 0 2
viar | 0 0 0 0 0 0 0 2
vo’ | 1 0 0 0 0 1 0 1
v | 0O 0 0 0 0 0 0 1
v | 0 0 0 0 0 0 0 1
vocr | 0O 0 1 0 0 0 0 2
vice | 0 0 0 0 0 0 0 2
voar | O 1 0 0 0 0 0 1
viar | 1 1 0 0 0 0 0 1
v | 0 0 0 1 1 0 0 2
v | 0O 0 1 1 0 0 0 2
veer | 0O 0 1 0 1 0 0 2
voc | 0 0 0 0 0 0 1 1
viee | 0 0 0 0 0 1 1 1
1 1 2 2 2 1 1 Pop

Figure 2: The input matrix corresponding to the bipartite graph (BMC problem) shown
in Figure 1. The population (1 or 2) the molecule belongs to is shown in the rightmost
column, and the bottom most row shows the consensus cut in population 1 or 2 in the
optimal configuration. Also notice that the solution to the KP problem is such that the
molecules/rows and sites/columns corresponding to the vertices of a gadget of a vertex of
the graph with the MC problem, belong to the same population. The partition suggested
by this solution for the MC problem (of Figure 1) is {B} and {4, C}.

For some ¢ > 0, let Cxp > (1 — €)Cip.

Cue > % (eqn (2))
> Crpzte (eqn (3))
> (1—€)C} p—6e
= 9
> (1—6)(031\504'66)—66 (eqn (3))
; (1—€)C§2Mc—6€€
> (1- e)% — 3ee
> (1—=€)Cio — (36)2Cc (Cire > €/2)
> (1-7€)Cie

This shows that given a polynomial time approximation scheme (PTAS) for KP, we can
construct a PTAS for MC, which is a contradiction; hence KP does not have a PTAS. This
concludes the proof of the inapproximability of the KP problem. O

Let 1 — T denote the upper bound on the polynomial time approximation factor of the
well-known max cut problem.

Corollary 1 Achieving an approzimation ratio 1 — Y /7 for the K -populations problem is
NP-hard.



Theorem 2 There does not exist a polynomial time algorithm (assuming P # NP) that
guarantees the estimation of (1 — T/7)pk . /pk.. of the total number of consensus cuts in
each population (k) where p*, and p* . are the minimum and mazimum of the digestion
rates in the population k of the given problem.

Proof Sketch: For convenience of notation, let us name the problem of maximizing the
number of consensus cuts in each population as the KP,,., problem (where a consensus cut,
7, in each population k is such that it has at least pfmk cuts in the position j and my, is the
size of the population k). We will show that if we have a PTAS for KP,,.,, we will have a
PTAS for the k-populations problem, KP, which would be a contradiction. Given a KP, let
pk. = min; pf, and p* = max; pf for each population k. Let X denote an approximate

solution and X* denote the optimal solution. Then if KP ., has a PTAS let % > ¢ for some

0 < € < 1 where N} is the number of consensus cuts in population k. Let Cr > NiPmin, then
Cr < NiPmax- Hence we have
Qﬁ Z Nljpmm 2 Epllfnin
Ck Nk- pmax pmax

Y

for each population k. Summing over all the populations, we get a PTAS for the KP problem,
which is a contradiction. Thus using corollary 1 we get the required result. O

Corollary 2 There does not exist a polynomial time algorithm (assuming P # NP) that
guarantees the estimation of (1—=_/7) of the total number of consensus cuts in each population
when the digestion rate at each site is the same. O

3 A 0.756-approximation algorithm for a
2-populations problem

We give a 0.756-approximation algorithm for a 2-populations problem using the semi-definite
programming based algorithm for the Max-cut problem [GW94], on appropriately pruned
data. This is similar to the construction presented in [Par97a, Par98]. Again, the con-
structions require important modifications which have been incorporated in the following
discussion.

Given the input, an m X n binary matrix, we assume we can trim the columns of the
input using thresholds A; and A;. Every column that has a number of 1’s larger than mA;
is a cut in both the populations and is removed. Similarly, every column that has a number
of 1’s smaller than mAs is not a cut in either of the populations, and is removed. After the
trimming, we are left with a version of the problem where every column is a consensus cut
either in population 1 or in population 2. We further assume that the digestion rate for
every column is 50%.

We first show that, under these conditions, the 2-populations (2P) problem can be re-
duced to a complete BMC problem and wvice-versa.



Figure 3: The graph for the BMC is shown on the left where an edge with negative weight
is shown as a dashed line. The optimal partition of the vertices is shown in the dotted
closed curves enclosing the vertices. The graph for the instance of the MC problem shown
on the right is constructed from the one on the left. Every edge with weight —1 has been
replaced with two edges and a vertex (shown as solid black rectangle to distinguish it from
the other vertices shown as hollow rectangles). The corresponding optimal solution for the
MC problem is shown by enclosing each vertex either in a solid circle or a dotted circle; the
solid circle enclosed vertices belong to one partition in the solution and the dotted circle
enclosed vertices belong to the other.

Given an instance of the 2-populations problem given by an m x n binary matrix [a;;], we

construct a complete BMC for a bipartite graph isomorphic to K, ,, with vertices v1, v3, ...,

v} in the first partition and v}, v3, ..., v2 in the second partition with the weights, wt(-,-),

defined as follows:
1, ifa; =1,
L2 = ’ g ’
wiv, v;) { —1, ifa; =0.
Notice that given an instance of a complete BMC, we can similarly construct an instance of
the 2-populations problem. As a result the following identity must hold:
a;; —p; = wt(v},v?)/?,
since p; = 1/2.

The correspondence between the solutions is as follows. Without loss of generality, let
rows (molecules) 1, 2, ..., m; belong to the first population and the remaining rows m; + 1,
my1 + 2, ..., m belong to the second. Thus X;; = 1 for i € [l.my] and X;» = 1 for
i € [m; + 1..m]. Again, without loss of generality, let columns (sites) 1, 2, ..., n; be the
consensus cut sites in the first population and the remaining columns ny + 1, n; + 2, ..., n
in the second. Thus Y;; =1 for j € [1..ny] and Y5; = 1 for j € [ny + 1..n]. Thus the cost of
this partition is simply:

2 n o m

Z Z Z XiwYislaij — pj]

k=1 j=1 i=1



ny ma

_ %@Zwt(vg,qgw YooY wtvle).

7=1 =1 7=n1+1li=mi1+1

The corresponding partition of the BMC problem is then as follows: the vertices of the

s 1,1 1 2 2 2 . :

first partition are {vy, v3, ..., vy, Vi 41, Vs 49, --- Up}, and the vertices in the second
s 1 1 T2 2 2 . .

partition are {v,, .1, U, 40y -5 Up, U3, V3, -, Vs }. Thus, it immediately follows that 2P

has a solution of size z iff BMC has a solution of size 22. Notice that
Cpmc = p1 — Iy, (4)

where p; is the number of edges with weight 1 and [; is the number of edges with weight
—1 in the cut. Let [, be the remaining number of edges with weight —1 and L be the total
number of edges with weight —1. Thus

L=1 41 (5)

Instead of counting only the 1’s in the consensus cut columns, let the cost function measure
all the “correct decisions” in the configuration. Notice that the optimal is obtained at the
same configuration for both the cost functions. Thus, let the cost function of the 2P problem
be the number of 1’s in the consensus cut columns and the number of —1’s in the columns
that are not consensus cuts in each of the two populations (p; +12). Thus using equations (4)
and (5), we have

C
Cop =L + BQMC- (6)

Given a BMC, we construct an instance of the MC problem (with weight on the edges as 1)
by replacing every edge with a negative weight by two edges and a vertex, each edge having
a weight of 1. See Figure 3 for an illustration. If L is the number of edges with weight —1,
then the MC instance has m + n/2 + L vertices.

Now, we give the correspondence between the solutions in each of the problem. Notice
that the edges introduced in the reduction come in pairs. Let the solution to the MC problem
include [; edges which are not paired, 2l paired edges and p of the original edges (which
had a weight of 1 in the BMC problem). Then

Cuc =p+ 11+ 2, (7)
and the cost of the BMC problem by the construction is,

C
BQ—MC p—1,. (8)

Since l; + Iy = L, we have from equations (7) and (8),

Cpumc
2

= Cye — 2L.

10



From equation (6) we have

Cop=Cuyec— L (9)

Finally, we use the algorithm presented in [GW94] to obtain a 0.878-approximation al-
gorithm for the MC problem. Let Cx denote an approximate solution and C'y denote the
optimal solution to problem X.

C~'2p éMC - L (from eqn (9))
0.878C%c — L (from [GW94])
0.878(C3p+ L) — L (from eqn (9))
0.878C5p — 0.122L
0.756C5p (from eqn (6))

AVAR IRV AVART

This concludes the argument.

4 A Probabilistic Analysis

We make use of the following notation:

# of populations = K

# of molecules per population = m/

# of molecules over all populations = m = Km/

# of singleton cuts per population = k

# of non-singleton cuts over all populations = £’
# of cuts over all populations = Q = Kk + k', and
Digestion rate = p.

In this analysis we shall assume that there is no sizing error and false cut rate ¢ = 0.
Note that a cut site is called a “singleton” if that site belongs to one population; otherwise,
it’s a “non-singleton” cut site with a multiplicity of o > 2 (i.e., it appears in «a different
populations). Note that the number of cuts in a map for any single population is bounded
by k + k.

The analysis technique is very similar to the one provided in [AM98], but requires
some important modifications. Many of the details are intentionally omitted as they can be
inferred from the earlier analysis applied to the single population case.

4.1 False Negative Errors: Partial Digestion

Let us postulate an experiment, where the desired normalized ordered restriction map is
observed, subject to partial digestion error where any particular restriction site is observed
with some probability p < 1. We assume no other error sources; thus no other spurious sites
(false restriction cuts) are included in the observation; the observed restriction map appears
in the correct orientation; and there is no sizing error.

11



We claim that if %
m > —[c+ In(Kk + k')]
b

(where k > 1 and ¢ > 1) then the result of a straightforward algorithm that simply includes
every observed cut site is correct with probability greater than e~¢ “e~(¢77)/2Q Note that
the probability that a cut site does not appear in any particular observation is (1 — p)
and thus the probability that it does not appear in any of the m’ independent observations
corresponding to its population is (1 — p)m'. Thus, we see that the probability that every
true cut site appears in the final result is [I — (1 — p)™]. Note that

(1= p)" < K g emed -

and
—C

1—(1—p™>1-¢

J— J— p = J— .
Q

Thus the probability that all () true cut sites show up in the final map is given by

1= (1= p)™)0 > e~ e

4.2 Eliminating Non-singleton Cuts

In the next phase, we shall identify a cut site to be a non-singleton cut, if it appears in more
than 1—70m'p molecules. Assume that

49K
p

Note that if a cut site is a “singleton,” then the probability that it will be accidentally labeled
as a non-singleton is bounded by the following application of Chernoff’s bound [ASE92]:

3
Pr [S(m',p) > (1 + ?> m'p]
S e—(3/49)1n'p < e—c—ln(Kk) — ;{k
Thus the probability that none of the singleton cut site will be mislabeled is bounded by

e ¢ Kk 2

Now in the other direction, we see that a non-singleton cut site with a multiplicity a > 2
will go undetected is bounded by the following application of Chernoff’s bound [ASE92]:

Pr [S(am',p) < (1 — %) 2m’p]

—C

m >

c+1nk c+lnk-|—an}

max ,
{ 4 3

—C

< e—(4/49)m'p < e—c—In(k) _ F

12



Thus the probability that all of the non-singleton cut sites will be correctly labeled is

bounded by
—e\ ¥
(1 — ek, ) > e e (T,

4.3 Grouping Singleton Cuts

In the third phase, we will group the singleton cuts in to K groups where the i*" group
contains those and only those singleton cuts that belong to one distinct population. In order
to do this, we proceed as follows: Define a graph G = (V, E), where V. = {v1, v, ...,
vy} corresponds to the singleton cuts and e = [v;,v;] € E if and only if the singleton cuts
associated with v; and v; appear in one single observation.

Assume that
m p? "\k—mk—c/"

It is easy to see that if v; and v; are not two singleton cuts belonging to the same population,
then there can be no edge between them. On the other hand, if in fact they do belong to
the same population, then the probability that this edge does not occur is

/ 2. 1 k—Ink —c Ink ¢
1— 2\m < e Pm < —In(k/k—=Ink—c) — =1 e
(I=p)" serm se k k)

and the edge probability is

—1-qa 2)n>111k_{_c
pe - p - ]{: k'
Thus by the well-known result on the connectivity in random graphs [Spe87], we see that
with p, > % + #, and the subgraph induced by the k singleton cut vertices belonging to
the same population is connected with probability e*°, in the limit as k — oo.
Thus almost surely, we will be able to group the singleton cuts.

e—

4.4 Grouping Non-singleton Cuts

Finally, we need to associate each non-singleton cut to all the populations that it belongs to.
Consider a particular non-singleton cut and an arbitrary observation from the population
containing the non-singleton cut. If that particular observation contains the non-singleton
cut and at least one non-singleton cut, then we can assign the non-singleton cut site to the
correct population.

Assume that

K (c+lnk’—|—1nK>

m>; (1—e—Pk)

Note that the probability of failure for any given observation is
(L=p)+p(l—p)" <1—p(1—e).

13



The probability that this occurs for all of the m' observations in that population is bounded
by:

1— p(1— e Py —m'p(1—e~PF) —c—In Kk _ e_c‘
( p( € )) <e <e 7Y

As aresult the probability that we can group all the non-singleton cuts with the singleton
cuts belonging to a particular population is given by

—e\ ¥
1
()
Thus the probability that the non-singleton grouping can be done for all the populations

correctly is bounded by
o=\ K¥
_ —e ¢ _—(e72¢)/2KK
(1 i% k’) >e e .

At this point we have all the population based maps, and it is straightforward to parti-
tion the complete set observations into K classes. Note, however, that certain observations
(roughly me=?* observations) containing only non-singleton cut sites cannot be unambigu-
ously associated with any one distinct population. However, this does not pose a serious
problem as any straightforward rule for disambiguation leaves the computed individual maps
unaffected.

In summary, we have

Theorem 3 Let € be a positive constant and ¢ > 1 be so chosen that 1 — e (E+9e™" = ¢
Then for
49K (1 +e7°) N c+InKE 1 k
m>TmaX C+111(Kk+k),m,§ln m y

(k > ¢+ Ink), with probability at least 1 — €, the correct ordered restriction map can be
computed 1n O(m(k2 + Kk + k') time. O

5 An algorithm for the K-populations problem

Here we present a set of heuristics to detect the different populations in a sample of molecules.
In our experiments, we have modeled the false positive, false negative, orientation and sizing
errors in the input. Let

p be the digestion rate (true positive),

q be the false positive rate,

m be the sample size, and,

Mmin be the smallest sample size for any population.

Thus

MpinK < m.

14



\M }HIVH‘I‘I\
il

|

1

Y

. ==

5

W ’H

M\ |

|

(f)

\WIIHIII\I <

(9 (h) 0)

Figure 4: Illustration of step 2 (merging and error correction): (a) The correctly aligned
molecules with the computed consensus cuts. In (b) to (i), each cut is shown by a small
horizontal bar. (b) This shows only the consensus cuts in the population aligned in (a).
(c) For the very first merging, all those cuts that appear in all the populations have been
filtered. (d) to (i) show each step of the merge; the polyline on top denotes the two columns
with identical population map being merged. Notice the “darkening” of the merged column
due to the error correction. In (i) the two columns to be merged actually have population
maps that are complements of each other.
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The population detection is carried out in three major steps: First we detect the physical
map which is the union of the map of all the populations. Next, we merge identical consensus
cuts (characterized by their presence or absence in a population, defined by the population
map). At this step we also carry out a certain amount of error correction which makes the
next step more robust. In the final step, we use the merged consensus cut columns of the
last step to separate the populations. We give the details of each step below.

(Step 1) Common physical map detection. Obtain the physical map, which is the union
of the physical maps of all the populations. This step eliminates the orientation, sizing and
false positive errors. Here we must assume that the false positive rate is low enough not to
be confused as a true positive of a “small” population; thus the following must hold:

mg < mmp > Kg< ——q < p. (10)
In our experiments, we use the EBFC-based algorithm (Exclusive Binary Flip Cut) presented
in [MP96].

(Step 2) Merging consensus cuts and error correction. Given a consensus cut j, define a
population map for j as follows: let the number of populations be K, then the population
map is a K length vector of 0’s and 1’s, where a 1 at position ¢ denotes j is a consensus cut
in population 7 and a 0 denotes 7 is not a consensus cut in population .

Let jpmy, Jpmss - - - » Jpm; be [ cuts that have the same population map. We replace all these
[ consensus cut columns by a single representative column. In addition, we also carry out
false negative error correction in the merged (representative) column as described below.

(Step 2.1) Identifying the consensus cuts for merging. Recall that at this stage of the
algorithm we do not know what the populations are (nor how many of them). We will
identify the consensus cuts with identical population maps by simultaneously looking at ¢
consensus cuts for the presence of at least ¢ pairwise true positives. The reader may verify
that in the worst case,

c> [%1 and t = Mmy,p-

Thus for p > 0.5, it suffices to consider pairwise cuts (i.e., ¢ = 2). The merging is carried
out iteratively until no more columns can be merged. A weight wt is associated with every
merged column which is the number of consensus cut columns that were merged.

(Step 2.2) Error (false negative) correction. We give the details for the case where ¢ = 2,
the other cases are similar. Once we recognize that two consensus cuts j; and j, have the
same population map, it is easy to make the error correction: if j; and j, do not agree in
molecule ¢, we place a consensus cut for molecule ¢ in the merged column. Assuming that
the population map of j; and js is correct, this consensus cut in molecule ¢ is correct with
probability p and wrong with probability ¢ (recall that ¢ << p). See Figure 4 for an example.

(Step 3) Separating the populations. Let the number of representative columns be n,.. The
reader may verify that

log K <n, <n.
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Routine Separate-Populations

Set T'ol = pmmin.
Initialize every molecule, 7, to be in population py.
For each column, j, in the descending order of wt do {
For each population, p, with size > T'ol, do {
Compute NJ¥, the number of molecules with 0 at

Compute N{p , the number of molecules with 1 at
It (NZ? > Tol and N > Tol) {

Split the population by the 0’s and 1’s.
Renumber the new populations as p’ and p”.

A similarity tree.

Figure 5: The algorithm to separate the populations using the representative columns, and
an example of a tree based on the decisions taken at the “if” statement. The physical map
of each population is at the leaf node of this tree.

17



The pseudocode for the algorithm to detect the different populations is presented in Figure 5.
This algorithm splits the molecules into different populations and also gives a tree, based on
the iterative splitting of the sample, to give rise to a similarity tree. The common structure
of the maps of the different populations is captured in this tree.

6 Experimental Results

This section has two parts. In the first part, we use the algorithm presented in the last section
to obtain the population map of upto 6 populations. In the second part, we experimentally
verify the smallest number of molecules required to compute the correct population maps.

Part I: We carried out several experiments using simulated data on upto six populations
data. We present the results of a two, a four and a six population sample in Figures 6
through 10. We observed in our experiments that as the number of populations increase,
we need to increase the digestion rate to detect the different populations. In the figure each
molecule is represented by a row with a black dot denoting a cut in the molecule. For ease
of visualization of the output, in the synthesized data, the molecules from each population
are placed close to one another (the algorithm neither knows nor uses this information). As
can be seen, the algorithm separates the populations with about 20% error (picking a wrong
molecule or missing out a molecule), but gathers sufficient information to infer the right
population maps.

Part Il: We also use the algorithm of the last section to check the number of molecules
required to correctly compute each of the population maps. In our experiments we have
considered two populations. For each data set and a fixed number of molecules, we generated
50 random data samples and plotted the fraction of the data sets solved correctly against
the number of molecules in the data set. Here we assume that either the algorithm gives
the two population maps correctly or it does not. Ideally, this could be a value between 0
and 1, but for our purposes we assign a (non-forgiving) value of 0 to any map that errs even
on a single cut. As can be seen in Figures 11, 12 and 13, there is a cut-off point beyond
which the algorithm always gives the correct populations maps which is in agreement with
the calculations in Section 4. In all the experiments we used a digestion rate of 0.2, no false
positive, sizing and orientation errors. The size of the two populations are roughly (though
not exactly) equal in all the data sets.

7 Conclusion

We have presented our initial complexity analysis and some heuristics for identifying K
(K > 2) distinct populations from a set of corrupted ordered restriction map data. Our
main results are the following: (1) The problem (even under a forgiving idealized model) is
computationally infeasible. (2) We give a guaranteed 0.756-approximation algorithm for a
special class of the 2-populations problem. (3) We give a probabilistic analysis of the model
along with experimental verification. (4) However, for the general K-populations problem,
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when certain assumptions are made regarding the errors in the input data (e.g., false positive
error probability is negligible compared to false negative error probability), we have been
able to empirically obtain very promising results. It remains open whether using better
prior models of the data as well as variations on the heuristics presented here we can devise
algorithms with better performance for this problem while accounting for many other error
sources.
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2 — populations data.
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Population 1. Population 2.

Figure 6: An example of a 2-populations problem. The false negative rate is 50%; the
false positive rate is 5%; the orientation is incorrect 50% of the time; small sizing error;
the number of consensus cuts is around 15 for each population and the the maps of each
population are very similar. The second row shows the aligned molecules of each population
(as detected by the algorithm) and the computed physical maps. The algorithm makes an
error of about 17% in assigning population to each molecule, but picks up the right map for
each population as shown.
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1

4 — populations data.

Figure 7: An example of a 4-populations problem. The false negative rate is 50%; the false
positive rate is 5%; the orientation is incorrect 50% of the time; small sizing error; the
number of consensus cuts is around 10-15 for each population and the the maps of each
population are very similar (as can be seen in the next figure).
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Figure 8: The 4-populations Problem: The algorithm makes an error of about 20% in
assigning population to each molecule, but picks up the right map for each population as
shown.
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6 — populations data.

0 N N O
Population 1. Population 2.

Figure 9: An example of a 6-populations problem. The false negative rate is 30%; the false
positive rate is 5%; the orientation is incorrect 50% of the time; small sizing error; the
number of consensus cuts is around 10-15 for each population and the the maps of each
population are very similar. We also show two of the populations and their physical maps
that the algorithm detects, in the second row (the remaining four are shown in the next

figure).
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Population 5.

Figure 10: The 6-populations Problem: Four of the six populations detected by the algorithm
are shown here (the other two are shown in the previous figure). The algorithm makes an
error of about 20% in assigning population to each molecule, but picks up the right map for

each population as shown.
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Population 6.
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Number of cuts in each population= 1, digestion rate = 0.2
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Figure 11: Experimental results using number of cuts in each population as 1 and 2 respec-

tively.
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Number of cuts in each population= 4, digestion rate = 0.2
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Figure 12: Experimental results using number of cuts in each population as 4 and 8 respec-
tively.
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Number of cuts in each population= 15, digestion rate = 0.2
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Figure 13: Experimental results using number of cuts in each population as 15 and 20

respectively.
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