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Abstract

Background. An important problem in molecular biology is to determine the complete transcrip-
tion profile of a single cell, a snapshot that shows which genes are being expressed and to what
degree. Seen in series as a movie, these snapshots would give direct, specific observation of the cell’s
regulation behavior. Taking a snapshot amounts to correctly classifying the cell’s ∼300 000 mRNA
molecules into ∼30 000 species, and keeping accurate count of each species. The cell’s transcrip-
tion profile may be affected by low abundances (1-5 copies) of certain mRNAs; thus, a sufficiently
sensitive technique must be employed. A natural choice is to use atomic force microscopy (AFM)
to perform single-molecule analysis. Reed et al. (“Single molecule transcription profiling with
AFM.”, Nanotechnology, 18:4, 2007) developed such an analysis that classifies each mRNA by first
multiply cleaving its corresponding synthesized cDNA with a restriction enzyme, then constructing
its classification label from ratios of the lengths of its resulting fragments. Thus, they showed the
transcription profiling problem reduces to making high-precision measurements of cDNA backbone
lengths — correct to within 20-25 bp (6-7.5 nm).

Contribution. We developed an image processing and length estimation pipeline using AFM that
can achieve these measurement tolerances. In particular, we developed a biased length estimator
using James-Stein shrinkage on trained coefficients of a simple linear regression model, a formulation
that subsumes the models we studied.

Methods. First, AFM images were processed to extract molecular objects, skeletonize them,
select proper backbone objects from the skeletons, then compute initial lengths of the backbones.
Second, a linear regression model was trained on a subset of molecules of known length, namely
their computed image feature quantities. Third, the model’s coefficients underwent James-Stein
shrinkage to create a biased estimator. Fourth, the trained and tuned model was applied to the
image feature quantities computed for each test molecule, giving its final, corrected backbone length.

Results. Training data: one monodisperse set of cDNA molecules of theoretical length 75 nm.
Test data: two monodisperse sets of cDNA molecules of unknown length. Corrected distributions
of molecular backbone lengths were within 6-7.5 nm from the theoretical lengths of the unknowns,
once revealed.

Conclusions. The results suggest our pipeline can be employed in the framework specified by Reed
et al. to render single-molecule transcription profiles. The results reveal a high degree of systematic
error in AFM measurements that suggests image processing alone is insufficient to achieve a much
higher measurement accuracy.
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1 Introduction

1.1 Motivation

An important problem in molecular biology is to determine the complete transcription profile of a
single cell, a snapshot that shows which genes are being expressed and to what degree. Seen in series
as a movie, these snapshots would give direct, specific observation of the cell’s regulation behavior.
Taking a snapshot amounts to correctly classifying the cell’s ∼300 000 mRNA molecules into ∼30
000 species, and keeping accurate count of each species. The cell’s transcription profile may be
affected by low abundances (1-5 copies) of certain mRNAs; thus, a sufficiently sensitive technique
must be employed. A natural choice is to use atomic force microscopy (AFM) to perform single-
molecule analysis. Reed et al. [28] developed such an analysis that classifies each mRNA by first
multiply cleaving its corresponding synthesized cDNA with a restriction enzyme, then constructing
its classification label from ratios of the lengths of its resulting fragments. Thus, they showed the
transcription profiling problem reduces to making high-precision measurements of cDNA backbone
lengths — correct to within 20-25 bp (6-7.5 nm).

1.2 Problem statement

Given a high resolution (< 1 nm
pixel ) AFM image produced under real experimental conditions (noisy,

tip dilation and thermal drift effects present), containing arbitrary short DNA molecules (e.g.,
cDNAs, mitochondrial DNAs or short fragments of genomic DNAs), compute estimates of their
backbone contour lengths that are accurate to within a specified tolerance, e.g., an estimation error
with a standard deviation of 7.5 nm.

1.3 Related work

For more than a decade, researchers have investigated the problem of how to accurately measure
DNA contour length by computer analysis of AFM images. This work falls into three broad
categories: manual methods, where human operators hand-draw piecewise linear backbones over
objects extracted from the image background1; semi-automated methods [26] that involve human
interaction with image processing and object segmentation algorithms; and automated methods
[33, 34, 11, 29, 30, 14, 16, 15, 13, 5] that perform their analysis and measurement unsupervised.
For reasons of speed and reproducibility, we focused our investigation on automated methods.

The problem breaks down into two steps: image processing, then length estimation. Image
processing takes as input an AFM image of high resolution (say, 1024× 1024 pixels representing a
microscopic area of 1000 × 1000 nm) and outputs a set of one-dimensional, eight-connected pixel
paths in a transformed image that form the discrete representation of the continuous molecule
backbone contours. Length estimation assigns to these backbones numerical values that purport
to measure the true end-to-end length of the molecules.

All of the automated processing methods employ a pipeline of image processing steps. In com-
mon are steps that remove noise, extract foreground objects, iteratively erode each two-dimensional
object into a joined one-dimensional line structure (tree), and finally prune each tree’s branches
from its trunk — the backbone contour to be measured next. The erosion (alternatively called
thinning or skeletonizing) algorithms employed are surveyed in [24]. Some of the automated meth-
ods [33, 34, 14, 16, 15, 13] insert a step after erosion that uses a line-continuity heuristic to decide
whether to recover tip pixels that were eliminated during the erosion step. One of the automated

1For example, by using a tool like NIH Image (http://rsbweb.nih.gov/nih-image/).
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methods [5] innovates the last, tree-pruning step by transforming it from a strict image processing
problem to a graph optimization one, where instead of eliminating branch pixels until the trunk
is encountered, the tree is represented as a graph. In this scheme, a node is a pixel at the point
of path bifurcation or path termination; an arc is a pixel path whose weight is given by a linear
combination of two types of distance, determined by the relative orientations of consecutive pixel
pairs: unit distance for horizontal and vertical,

√
2 for diagonal; the longest path traversal through

this graph represents the trunk.
For nearly 50 years, since Freeman’s pioneering work in the image analysis of chain-encoded

planar curves [19], the study of contour digitization has received much attention. Namely, what is
the most accurate estimator of the end-to-end length of an arbitrary continuous contour that under-
lies its discrete representation as a one-dimensional pixel path? The literature contains numerous
estimators, and frameworks to evaluate their relative performance [9, 10, 42, 25, 32, 23, 18, 6, 21].
All of the automated processing methods mentioned above employ a pipeline of length estimation
steps chosen from this set of estimators. These pipelines’ approaches vary, from those that simply
traverse the chain-code to yield a linear combination of unit and

√
2 distances [33, 34, 11, 5], to

those that use one of a variety of parametric estimators [29, 14, 16, 15, 13], to one that takes a
signal processing approach based on fast-Fourier transformation followed by Gaussian filtering and
normalization [30].

A related focus of investigation involves estimating the intrinsic curvature of DNA from AFM
images [45, 17]. Intrinsic curvature of DNA is a function of the nucleotide sequence, independent
of dynamic components of curvature brought on by thermal agitation. This work may eventually
improve DNA backbone contour length estimates by inputting accurate estimates of curvature to
a length estimator that models the DNA contour as a sequence of straight lines and circular arcs
[42, 32, 21].

1.4 Our contribution

Our software system uses the image processing pipeline of Cirrone [5] and extends the length
estimation pipeline in a novel way. First, we fit each backbone pixel path with a sequence of cubic
splines, one for each five-pixel subpath, where the last pixel of a given subpath is the first pixel of
the next (i.e. all subpaths share one extremity pixel). A tailing subpath, T , having p < 5 pixels is
handled by fitting a cubic spline to the subpath formed by prepending to T the prior 5− p pixels,
then counting the spline’s length from its closest approach to the first and last pixels in T . The
resulting summed length of the cubic splines gives the initial backbone length estimate, LCS .

We correct LCS by a linear combination of various features, some examined in the literature,
some of our own design, such as: number of horizontal pixel pairs, number of vertical pixel pairs,
number of diagonal pixel pairs, number of corner pixel triplets, mean backbone intensity value
(height in an AFM image analysis setting), standard deviation of backbone intensity value, mean
backbone thickness measured at each pixel, and standard deviation of backbone thickness. The
true length, L, is thus modeled as LCS plus a linear combination of the feature terms plus an
error term, ε, where the feature term coefficients derive from an overdetermined system of linear
equations obtained from a set of calibrating molecules of known length. We assume ε ∼ N(0, σ2)
represents a Gaussian noise, thus satisfying the Gauss-Markov condition.

We were less concerned with estimation bias because we trained on a large population of cali-
brating molecules. In terms of mean squared error (MSE), we hoped to improve our length estimates
by trading off a small amount of bias for a substantial reduction in variance. To accomplish this, we
applied two types of James-Stein shrinkage [20, 35] to the trained feature term coefficients: spher-
ical (uniform) [31] and truncated [8] (selective) shrinkage, the latter tested over the admissible
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range of degrees of freedom. Our results showed marginal improvements after shrinkage, perhaps
indicating the absence of multicollinearity in our bundle of feature variables. Regardless, we believe
our system implements a meta-approach to the problem of feature-based length estimation. Those
features that are less informative to backbone length prediction will have more variance; conse-
quently, their coefficients will shrink to zero in a biased fashion. Thus, any number of image-based
features may be incorporated into our simple linear model in an easily extensible way, giving rise
to backbone length estimates whose error is not necessarily constrained by geometric lower bounds
in terms of, for example, pixel density [9, 10, 32] or multigrid convergence [23, 6]. In this way, our
approach subsumes those length estimation formulations comprised in small, fixed sets of backbone
chain code parameters cited above.

The allegory of the seven blind mice inspired our meta-approach; it is captured by the proverb
“Knowing in part may make a fine tale, but wisdom comes from seeing the whole.” [43]. Each
image-based feature provides limited predictive power for backbone contour length. But integrated
into a properly chosen model, with each feature contributing according to its demonstrated infor-
mativeness during training, in principle, the collective result should be superior to any rendered
by strict subsets, provided there is no over-fitting. Moreover, outside of computational complexity
considerations, there should be no bound on the number of features one applies to the problem.
The more features, the more potential to drive down the error. Each will tell its tale.

1.5 Problem status

In our experiments on monodisperse unknown length fragments, we achieved backbone contour
length estimates accurate within 7 nm.

What more can be done?
First, all the approaches under review, including ours, make use of half of the AFM data

available. For each point (x, y) in the area under inspection, the AFM instrument in tapping mode
takes two measurements: the displacement in the z-direction for height (the typical AFM “image”),
and the change in oscillation frequency for softness. Second, none attempt to model tip convolution
effects directly and appropriately deconvolve the image, though the problem is widely acknowledged
[22, 38, 7, 37, 40] and algorithms designed precisely for this purpose exist [39]. Third, none attempt
to model thermal drift directly and perform the appropriate deblurring of the image, though this
problem too is widely acknowledged [4, 41, 27, 44] and an assortment of well-suited algorithms for
this exist, namely the work of Carasso [2, 3]. Fourth, experimenters can use closed-loop scanning
settings in their protocols, to reduce the effects of thermal drift by spending the majority of scan
time on just the objects of interest. These last three are sources of systematic error that can, in
principle, be removed, and should lead to more accurate length estimates. In addition, there are
problems implicit to the chemistry, namely, it is not well understood how a three-dimensional DNA
or RNA molecule adsorbs onto a substrate like mica, and under what conditions uniform binding
to the surface occurs, let alone how to ensure this. We expect better models will emerge that will
eventually lead to reduction in these kinds of experimental error.

In terms of learning feature values from the data, we would like to explore alternatives to linear
regression. For instance, AdaBoost with decision stumps. In terms of biased estimation, we would
like to explore alternatives to James-Stein shrinkage. For instance, principal component regression,
ridge regression, and LASSO — subjects for a follow-up study.
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2 Methods

Cirrone [5] implemented an application called AFM Explorer, using the wxWidgets2 and OpenCV 3

libraries. It provides a graphical user interface (GUI) that allows the user to adjust image processing
parameters (e.g. select from a set of intensity value thresholding methods and values), adjust
the nm

pixel image density factor, process an AFM image, and save the image at different steps of
processing. Loading an AFM image places it in central view. Once the application runs the
image through the image processing pipeline, it displays in separate tabbed views the skeletonized
molecules and the final backbone contours, and in a separate area it lists the computed backbone
contour lengths. The user can click on list entries to highlight the associated molecules in each
image view, or vice-versa, allowing the user to establish a clear correspondence between visual and
numerical results.

2.1 AFM Explorer image processing pipeline

AFM Explorer uses the image processing pipeline schematically presented in Figure 1. We outline
the steps below (refer to [5] for full algorithmic detail).

The pipeline has three phases:

2.1.1 Filter

This is implemented as five calls to the OpenCV library. We begin with a 24-bit RGB image,
presumably generated by the AFM apparatus image capture software. (Figure 2a). We first
convert it into an 8-bit grayscale image (cvCvtColor), and then perform intensity level histogram
equalization (cvEqualizeHist), to increase the local contrast in the image. We next smooth
the image by setting the intensity level of a given pixel to the median intensity level of a 5 × 5
pixel window about it (cvSmooth). To create a binary image from the smoothed grayscale one,
we first suppress pixels that have an intensity level below an empirically derived static threshold
(cvThreshold). In a second pass, we adaptively promote to the maximum intensity level a given
pixel if it is brighter than the mean intensity level of a 31× 31 pixel window about it, and suppress
it otherwise (cvAdaptiveThreshold).

2.1.2 Erode

To obtain a one-dimensional representation of the molecular backbone contours, we employ the
erosion algorithm given in [12, 1], that applies a set of eight 3 × 3 pixel kernels as structuring
elements to iteratively erode the binary regions of 8-connected pixels, halting when there is no
change in the images of present and prior iterations. This process results in a set of 8-connected
component edge pixels having unit thickness. (Figure 2b).

2.1.3 Select

The image is now a collection of 8-connected component edge pixels. We recursively traverse each
component, labeling distinct branches, scoring them according to Euclidean distance from one pixel
to the next: {N,S,E,W} = 1, {NW,NE,SW,SE} =

√
2. This results in a collection of weighted

edge tree graphs. Finally, we identify the longest path through each edge tree graph, amounting
to pruning branches from the trunk. The longest path represents the molecular backbone contour.

2http://www.wxwidgets.org/
3http://opencvlibrary.sourceforge.net/
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Start

Convert RGB to grayscale image 
(cvCvtColor)

Equalize image intensity level histogram 
(cvEqualizeHist)

Smooth image
(cvSmooth)

dst(x,y) = median(5x5 neighborhood about src(x,y))

Suppress pixels that are too dim
(cvThreshold)

dst(x,y) = src(x,y), if src(x,y) > τ; 0, otherwise

Promote pixels that are locally bright enough, and suppress the rest
(cvAdaptiveThreshold)

dst(x,y) = 255, if src(x,y) > mean(31x31 neighborhood about src(x,y)); 0, otherwise

Iteratively erode binary regions, resulting 
in 1-D 8-connected edge pixels

(using custom 3x3 kernels)

Recursively traverse 8-connected edge pixels, labeling distinct 
branches, scoring them according to Euclidean length ({N,S,E,W} = 1, 

{NW,NE,SW,SE} = √2), resulting in weighted edge tree graphs

Identify the longest path through 
each weighted edge tree graph, 
pruning side branches from trunk

AFM RGB image

Molecular 
backbone 

candidate image

Molecular 
backbone
final image

Stop

Filter

Erode

Select

Figure 1: AFM Explorer image processing pipeline. An AFM image undergoes three phases of processing: (I) filter the
noise using adaptive, local thresholding, yielding a set of two-dimensional binary image objects, (II) erode these into a set of
one-dimensional binary image objects, and (III) select the longest path through each graph representation of the 8-connected
component — the final backbone image object.
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Since we implemented a simplified algorithm from the one given in [5], we define it in Algorithms 1
and 2. Our algorithm is two consecutive breadth-first traversals across the 8-connected pixel graph.
First, initiated from any extremity (deg = 1) pixel, e1, a set of end-to-end pixel paths (with their
associated computed lengths), Pe1 , is constructed through a breadth-first traversal, branching at
pixels having more than one unseen neighbor. Second, taking the terminal pixel, e2, of the longest
path from Pe1 , another breadth-first traversal is initiated from e2, constructing its respective set of
end-to-end pixel paths, Pe2 , in the same fashion. Upon completion, the longest path in Pe1 ∪ Pe2
is the longest path in the whole 8-connected pixel graph. (Figure 2c).

2.2 AFM Explorer length estimation pipeline

AFM Explorer uses the length estimation pipeline schematically presented in Figure 3. We outline
the steps below.

2.2.1 Initial estimation using straight line segments

Let B be the set of all backbone pixel vectors in the image. After image processing, we compute
the initial estimate of contour length for each ~b ∈ B as the sum of its consecutive pixel-to-pixel
straight line segments, given by

LLS(~b) =
∑

bi,bj∈~b,j=i+1

{ √
2 for |bix − bjx | = 1 ∧ |biy − bjy | = 1
1 otherwise

}
. (1)

We then admit a subset B′ ⊂ B of backbone pixel vectors that meet two criteria, defined by

B′ = {~b′ | LLS(~b′) ∈ [min,max] ∧ |
~b′|
|c|

>
1
2
}, (2)

where min and max are set to some mode-dependent values, described below, and c is the 8-
connected component from which ~b′ is extracted. The second criterion is a heuristic to restrict
intersecting backbones. The intuition is that in terms of numbers of pixels, ~b′ should be at least
half the size of c. This is built upon the following reasoning. Assume the average length per pixel
of ~b′ is equal to that of c. Suppose some pixel path ~q ∈ c\~b′ intersects ~b′. Clearly ~q cannot intersect
~b′ at its extremities, otherwise ~q would extend ~b′, and that would contradict our assumption that
~b′ is the longest path through c. So ~q must intersect ~b′ in its interior. Further, the closer that
intersection is to the midpoint of ~b′, the longer ~p can be without contradiction. Thus, |~p| < |~b′|

2 .
Now suppose Q is a family of pixel paths, such that c\~b′ =

⋃
~q∈Q

. Q may take many configurations,

but under the constraint that |
~b′|
|c| >

1
2 , there can be at most two pixel paths, ~q1, ~q2 ∈ Q, stemming

from the midpoint of ~b′ having combined size |~q1 ∪ ~q2| < |~b′|. This seems to us to be a reasonable
upper bound on the tolerance for total intersection size, since at this size, ~q1 and ~q2 may still be
reasonably classified as branch artifacts instead of overlapping molecules.

2.2.2 Secondary estimation using cubic spline fitting

Then, for each ~b′ ∈ B′, we compute a sequence of cubic splines fitted to each consecutive 5-pixel
subsequence, where the last pixel of a given subsequence is the first pixel of the next (i.e. all
subsequences share one extremity pixel). A tailing subsequence, ~b′t, having p < 5 pixels is handled
by fitting a cubic spline to the subsequence formed by prepending to ~b′t the prior 5− p pixels, then
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(a) The original 24-bit RGB AFM image.

(b) The image after filtering and iterative erosion.

(c) The image after graph translation and backbone selection.

(d) A backbone (red) in the filtered and eroded image.

(e) A backbone (white) with other backbones (black) in the orig-
inal image.

Figure 2: Results of the AFM Explorer image processing pipeline.
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Algorithm 1 Find-Backbones : T → B

Let T be a set of 8-connected pixels forming an n-ary tree (i.e. an image object resulting from
an iterative erosion algorithm).

Let deg : t ∈ T → N∩[1, 8] ≡
∑

dx∈{−1,0,1},dy∈{−1,0,1},dx 6=0∨dy 6=0

{
1 for (tx + dx, ty + dy) ∈ T
0 otherwise

}
be the degree function that sums the number of pixels in T that are 8-connected with a given
pixel in T .

Let E = {e | e ∈ T , deg(e) = 1} be the set of extremity pixels in T .

Let adj : ta, tb ∈ T → {true, false} ≡ |tax − tbx | < 2 ∧ |tay − tby | < 2 be the adjacency function
that logically determines if two pixels in T are 8-connected with each other.

Let P = {p | p = 〈p1, p2, ..., pn〉, pi ∈ T , 1 ≤ i ≤ n, pj ∈ E , j ∈ {1, n}, pk 6∈ E , 1 < k <
n, adj(pa, pb), 1 ≤ a < n, b = a+ 1} be the set of end-to-end simple paths through T .

Let len : p ∈ P → R ≡
∑

pa,pb∈p,b=a+1

{ √
2 for |pax − pbx | = 1 ∧ |pay − pby | = 1
1 otherwise

}
be the

length function that sums the straight line pixel transition distances in an end-to-end simple
path through T .

Let B = {b | b ∈ P, len(b) = max
p∈P

len(p)} be the set of longest end-to-end simple paths through

T (i.e. a backbone contours).

1: pid← 0
2: S ← ∅
3: pinit.len← 0
4: pinit.pix← ∅
5: Pe1 ← {pinit}
6: Find-Paths-From(e1 ∈ E , ∅, T , ~Pe1 , ~S, ~pid, pid)
7: pid← pid+ 1
8: Be1 ← {b | b ∈ Pe1 , len(b) = max

p∈Pe1
len(p)}

9: e2 ← b.pix[last], where b ∈ Be1
10: S ← ∅
11: pinit.len← 0
12: pinit.pix← ∅
13: Pe2 ← {pinit}
14: Find-Paths-From(e2, ∅, T , ~Pe2 , ~S, ~pid, pid)
15: Be2 ← {b | b ∈ Pe2 , len(b) = max

p∈Pe2
len(p)}

16: B ← {b | b ∈ Be1 ∪ Be2 , len(b) = max
b′∈Be1∪Be2

len(b′)}

17: return B
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Algorithm 2 Find-Paths-From : pix× dir × T × ~P × ~S × ~pid× root pid→ ∅

Let dir : pa, pb ∈ p ∈ P → {N,S,E,W,NW,NE, SW,SE} ≡

N for dx = 0 ∧ dy = 1
S for dx = 0 ∧ dy = −1
E for dx = 1 ∧ dy = 0
W for dx = −1 ∧ dy = 0

NW for dx = −1 ∧ dy = 1
NE for dx = 1 ∧ dy = 1
SW for dx = −1 ∧ dy = −1
SE for dx = 1 ∧ dy = −1


be the direction function that gives the orientation

of pb with respect to pa.

1: if pix ∈ ~S then
2: return
3: ~S ← ~S ∪ {pix}
4: if dir ∈ {N,S,E,W} then
5: ~P[root pid].len← ~P[root pid].len+ 1
6: else if dir ∈ {NE,NW,SE, SW} then
7: ~P[root pid].len← ~P[root pid].len+

√
2

8: ~P[root pid].pix← ~P[root pid].pix ∪ {pix}
9: N ← ∅

10: for dx ∈ {−1, 0, 1} do
11: for dy ∈ {−1, 0, 1} do
12: if dx = 0 ∧ dy = 0 then
13: continue
14: n pix← (pixx + dx, pixy + dy)
15: if n pix ∈ ~S then
16: continue
17: n.pix← n pix
18: n.dir ← dir(dx, dy)
19: N ← N ∪ {n}
20: for n ∈ N do
21: if |N | > 1 then
22: ~pid← ~pid+ 1
23: ~P[last+ 1]← ~P[root pid]
24: Find-Paths-From(n.pix, n.dir, T , ~P, ~S, ~pid, pid)
25: if |N | > 1 then
26: ~P[root pid]← ∅
27: return

10



Start

Create horizontal / vertical and 
diagonal transition length vector:
LLS(b)= ∑<...,1,√2,1, √2, √2,...>

Fit a cubic spline to each 5-pixel subsequence, 
consecutively arranged, sharing 1 end pixel,

and create a vector of these lengths:
LCS(b'q)= ∑< LCS₁,..., LCSk>,

k=⎣(|b'q|-1+∆2)/4⎦, ∆2<4

Train on a monodisperse set of calibration 
molecules of known length, ℒ,
acquiring features from each:

<...,{n_, n|, n×, n⊥, n⊛, n∢}b'i
,...>, i∈[1,q], q≥#coeff

Solve N⋅a = ℓ, a possibly overdetermined linear system, 
where:

N is the feature matrix,
a is the correction coefficient vector to solve for,

ℓ is the length estimate error vector:
 <...,(ℒ - Lcs(b'i)),...>, i∈[1,q], q≥#coeff

Apply spherical and truncated James-Stein Shrinkage to the 
correction coefficients vector:

those terms introducing too much variance (systematic error) 
or too much dependence (model error) shrink to zero

Derive a length correction function from the 
finalized correction coefficient vector:

ℒ ' : {Lcs, n_, n|, n×,  n⊥, n⊛, n∢} ⟶ ℝ ∩ (0,∞)

Apply length correction function, ℒ ', to each new 
backbone, b', and its characteristic feature set,

{Lcs, n_, n|, n×, n⊥, n⊛, n∢}b',
to estimate its true length

Set of all backbone
pixel vectors, B:

b∈B ≔
<(x1,y1),...,(xn,yn)>

Saved 
state of 
trainer

Stop

while
q<#coeff:
acquire
another

b'

if desired:
acquire
another

b'

Display 
LLS(b)

Display 
LCS(b')

Display 
ℒ '(b')

All backbones

Subset of calibrator 
backbone pixel 
vectors, B'⊂B ≔

{b'∈B' | b' ¬crossover 
⋏

LLS(b') = (ℒ +∊)±∆1}

Train

Shrink

Apply

Saved 
state of 
trainer

Figure 3: AFM Explorer length estimation pipeline. Length estimation undergoes three phases of processing: (I) train the
coefficients of a simple linear regression model on a flexibly sized set of calibrating molecule backbones, each with its cubic
spline length and set of features, (II) shrink the model coefficients according to how much variance they introduce, collectively
(entailing spherical shrinkage) and individually (entailing truncated shrinkage), and (III) apply the trained and tuned model to
correct the cubic spline length of novel backbones according to their individual features.
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counting the spline’s length from its closest approach to the first and last pixels in ~b′t. The resulting
summed length of the cubic splines gives the second estimate of contour length, given by

LCS =
k∑
i=1

CSLi, (3)

where k is the number of cubic splines that fit the |~b′| pixels, given by

k = b |
~b′| − 1 + δ

4
c, δ < 4, (4)

and

CSLi = tiβ − tiα , (5)

where α and β are the first and last pixels in the ith 5-pixel subsequence being fit with a cubic
spline, and tiα and tiβ are the respective values of the length parameter t that satisfy, respectively

d

dt

[√
(αx − x(t))2 + (αy − y(t))2

]∣∣∣∣
t=tiα

= 0 (6)

and

d

dt

[√
(βx − x(t))2 + (βy − y(t))2

]∣∣∣∣
t=tiβ

= 0, (7)

(i.e. the values of t where the cubic spline makes its closest approach to the first and last pixels),
where

x(t) = a3t
3 + a2t

2 + a1t+ a0 (8)

and

y(t) = b3t
3 + b2t

2 + b1t+ b0 (9)

form the parametric equations of the cubic spline, and are solutions to the respective overdetermined
systems 

t31 t21 t1 1
t32 t22 t2 1
t33 t23 t3 1
t34 t24 t4 1
t35 t25 t5 1



a3

a2

a1

a0

 =


x1

x2

x3

x4

x5

⇐⇒ T~a = ~x (10)

and 
t31 t21 t1 1
t32 t22 t2 1
t33 t23 t3 1
t34 t24 t4 1
t35 t25 t5 1



b3
b2
b1
b0

 =


y1

y2

y3

y4

y5

⇐⇒ T~b = ~y, (11)

where
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t1
t2
t3
t4
t5

 =


LLS(

[
(x1, y1)

]
)

LLS(
[
(x1, y1) (x2, y2)

]
)

LLS(
[
(x1, y1) (x2, y2) (x3, y3)

]
)

LLS(
[
(x1, y1) (x2, y2) (x3, y3) (x4, y4)

]
)

LLS(
[
(x1, y1) (x2, y2) (x3, y3) (x4, y4) (x5, y5)

]
)

 , (12)

and thus ~a and ~b can respectively be evaluated analytically by

~a = (T TT )−1T T~x (13)

and

~b = (T TT )−1T T~y, (14)

using the Tikhonov regularization of (T TT + λI)−1, where λ = 1 × 10−5, in the case where no
inverse exists for (T TT ), for an arbitrary 5-pixel subsequence. To visualize how the spline fitting
looks, in simulated and real situations, refer to Figure 4.

The pipeline has three phases (or rather, operates in three distinct modes): train, shrink, and
apply.

2.2.3 Train

When the application runs in train mode, each admissible backbone pixel vector, ~b′ ∈ B′, its cubic
spline contour length estimate, LCS(~b′), and its computed feature values (described below) form
the data of a possibly overdetermined linear system. We assume the images used to train represent
a monodisperse set of molecules having known theoretical length L. Accordingly, the values of min
and max should reflect reasonable expectations for a spread of LLS(~b′) values observed for these
molecules. For example, in one of our experiments, we trained on images of monodisperse cDNAs
having theoretical length 75 nm. Since we have empirically observed at least +10 nm translation
of the mean due to systematic errors, we chose a mean of 85 nm and a spread of ± 15 nm — thus,
we set min to 70 nm and max to 100 nm.

Claim 1. Since each fit cubic spline locally minimizes the sum of squares error in its 5-pixel window,
then our conjoined cubic spline fitting across the whole backbone contour is a best linear unbiased
estimator (BLUE), and that any further correction to the estimate is systematic error,

L − LCS(~b′) = ε~b′ , (15)

that can be derived from backbone-length-dependent feature values we learn from the data.

Claim 2. Given an increasingly large training sample and an increasingly rich feature set, our
estimator will approach the optimal estimator.

The features. We considered 8 features for our modeling of the systematic error. Given ~b′ ∈ B′:

Definition 1. The number of horizontal pixel pairs, nhorz : ~b′ → N ≡∑
bi,bj∈~b′,j=i+1

{
1 for |bix − bjx | = 1 ∧ |biy − bjy | = 0
0 otherwise

}
.

13



(a) (b) (c)

(d) (e) (f)

(g)

Figure 4: Simulated molecules as n-pixel, nonoverlapping random walk sequences (red) fitted by bn−1+δ
4
c, δ < 4, consecutive

cubic splines (blue). Each cubic spline fits to a 5-pixel subsequence; consecutive cubic splines share end points. (4a, 4b, 4c):
21 pixels fitted by 5 cubic splines. (4d, 4e, 4f): 41 pixels fitted by 10 cubic splines. (4g): 401 pixels fitted by 100 cubic splines
[LLS = 479.94 nm, LCS = 480.09 nm].
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(a) (b)

Figure 5: (5a): Real cDNA molecule as a 70-pixel sequence (red) fitted by 18 consecutive cubic splines (blue). (5b): A detail
view of the last 3 spline fits. Each cubic spline fits to a 5-pixel subsequence; consecutive cubic splines share end points. Note
that in 5b, since the last subsequence to fit has only 2 pixels, the prior 5 − 2 = 3 pixels are prepended to it to fit the spline,
and then only the relevant section of that spline is used. [L = 75 nm, LLS = 79.92 nm, LCS = 79.78 nm.]

Definition 2. The number of vertical pixel pairs, nvert : ~b′ → N ≡∑
bi,bj∈~b′,j=i+1

{
1 for |bix − bjx | = 0 ∧ |biy − bjy | = 1
0 otherwise

}
.

Definition 3. The number of diagonal pixel pairs, ndiag : ~b′ → N ≡∑
bi,bj∈~b′,j=i+1

{
1 for |bix − bjx | = 1 ∧ |biy − bjy | = 1
0 otherwise

}
.

Definition 4. The number of perpendicular pixel triplets, nperp : ~b′ → N ≡

∑
bi,bj ,bk∈~b′,j=i+1,k=j+1



1 for


(|bix − bjx | = 1 ∧ |biy − bjy | = 0)

∧
(|bjx − bkx | = 0 ∧ |bjy − bky | = 1)


∨

(|bix − bjx | = 0 ∧ |biy − bjy | = 1)
∧

(|bjx − bkx | = 1 ∧ |bjy − bky | = 0)


∨

(|bix − bjx | = 1 ∧ |biy − bjy | = 1)
∧

(|bjx − bkx | = 1 ∧ |bjy − bky | = 1)


0 otherwise



.

Definition 5. The mean backbone height, nhtav : ~b′ → R ≡ 1

|~b′|

∑
b∈~b′

Igry(b), where

Igry : b→ N ∩ [0, 255] gives the intensity value for pixel b in the grayscale image.

Definition 6. The standard deviation of backbone height, nhtsd : ~b′ → R ≡

15



√
1

|~b′|

∑
b∈~b′

(Igry(b)− nhtav(~b′))2.

Definition 7. The mean backbone thickness, ntkav : ~b′ → R ≡ 1

|~b′|

∑
b∈~b′

M(b), where

M : b→ R ≡ min



∑
{p | px=bx−1,bx−2,...∧py=by∧Ibin(p)=255}

1+∑
{p | px=bx+1,bx+2,...∧py=by∧Ibin(p)=255}

1,

∑
{p | px=bx∧py=by−1,by−2,...∧Ibin(p)=255}

1+∑
{p | px=bx∧py=by+1,by+2,...∧Ibin(p)=255}

1,

∑
{p | px=bx−1,bx−2,...∧py=by−1,by−2,...∧Ibin(p)=255}

√
2+∑

{p | px=bx+1,bx+2,...∧py=by+1,by+2,...∧Ibin(p)=255}

√
2,

∑
{p | px=bx−1,bx−2,...∧py=by+1,by+2,...∧Ibin(p)=255}

√
2+∑

{p | px=bx+1,bx+2,...∧py=by−1,by−2,...∧Ibin(p)=255}

√
2


gives the minimum of four pairs of linear distances that radiate in opposite directions from the origin
at pixel b until they reach the edge of the binary object, thereby covering the 8 cardinal directions
connecting the pixels in the binary object, where Ibin : p → {0, 255} gives the intensity value for
pixel p in the binary image.

Definition 8. The standard deviation of backbone thickness, ntksd : ~b′ → R ≡√
1

|~b′|

∑
b∈~b′

(M(b)− ntkav(~b′))2.

The model. We train a linear regression model on q ≥ 5 calibrating molecule backbones, ~b′ ∈ B′,
having known theoretical length L, using values from 5 of these 8 features (for reasons discussed
below): {nhorz, nvert, ndiag, nperp, ntkav}, giving

nhorz(~b′1) nvert(~b′1) ndiag(~b′1) nperp(~b′1) ntkav(~b′1)
nhorz(~b′2) nvert(~b′2) ndiag(~b′2) nperp(~b′2) ntkav(~b′2)
nhorz(~b′3) nvert(~b′3) ndiag(~b′3) nperp(~b′3) ntkav(~b′3)
nhorz(~b′4) nvert(~b′4) ndiag(~b′4) nperp(~b′4) ntkav(~b′4)
nhorz(~b′5) nvert(~b′5) ndiag(~b′5) nperp(~b′5) ntkav(~b′5)

... ... ... ... ...

nhorz(~b′q) nvert(~b′q) ndiag(~b′q) nperp(~b′q) ntkav(~b′q)




a1

a2

a3

a4

a5

 =



l1
l2
l3
l4
l5
...
lq


⇐⇒ N~a = ~l, (16)

where N is the q× 5 feature matrix, ~a is the correction coefficient 5-vector to solve for, and ~l is the
length estimate error q-vector [..., (L−LCS(~b′i)), ...], where i = 1, ..., q. The model has the analytic
solution

~a = (NTN)−1NT~l, (17)
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using the Tikhonov regularization of (NTN + λI)−1, where λ = 1 × 10−5, in the case where no
inverse exists for (NTN).

Once q ≥ 5, the application will solve for ~a and save its values to disk so that the trained model
can be applied to test data before it undergoes James-Stein shrinkage. This facilitates comparisons
against results associated with shrunken coefficient values, to interpret the effectiveness of the next
phase, or mode, of processing.

2.2.4 Shrink

In our modeling of estimation error above, one or more features in training may introduce too
much variance (systematic error) or dependence (model error). We would like our model to have
an extensible and adaptive structure, where any number of features may be used, and proceed with
confidence, knowing that noisy or dependent features will have a contribution to the estimate that
shrinks to zero. In shrink mode, the application simply applies one of the following patterns of
shrinkage to the correction coefficients, ~a, without applying the resulting backbone contour length
estimator to test data — the task of apply mode, described below.

2.2.5 James-Stein shrinkage

In 1961, James and Stein published their seminal paper [20] describing a method to improve es-
timating a multivariate normal mean, ~µ = [µ1, ..., µk], under expected sum of squares error loss,
provided the degree of freedom k ≥ 3, and the µi are close to the point to which the improved
estimator shrinks.

Spherical shrinkage. Let ~a = [ai, ..., ak] have a k-variate normal distribution with mean vector ~µ
and covariance matrix σ2I, which we measure empirically in train mode. We would like to estimate
~µ using an estimator

δ(~a) = [δ1(~a), ..., δk(~a)] (18)

under the sum of squares error loss

L(~µ, δ) =
k∑
i=1

(µi − δi)2 (19)

In terms of expected loss,

R(~µ, δ) = Eµ[L(~µ, δ(~a))], (20)

the result of [20] shows that when k ≥ 3, an improved estimator is obtained by a symmetric (or
spherical) shrinkage in ~a given by

δ(~a) =

1− κ(q − k)s2

q∑
i=1

(N~a)2
i

~a, (21)

where

κ =
(k − 2)

(q − k + 2)
, (22)
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and s2 is the empirical estimate of variance, σ2, given by

s2 =
1

(q − k)

q∑
i=1

(L − LCSi − (N~a)i)2. (23)

Shortly afterward, Stanley Sclove published a modified form of this estimator that treats negative
coefficient values as zero, given by

δ(~a) =

1− κ(q − k)s2

q∑
i=1

(N~a)2
i


+

~a, (24)

where [x]+ ≡ max{0, x}.

Truncated shrinkage. When extreme µi are likely, then spherical shrinkage may give little
improvement. This may occur, for instance, when the µi arise from a prior distribution with a long
tail. A property of (24) is that its performance is guaranteed only in a small subspace of parameter
space [8], requiring that one select an estimator designed with some notion of where ~µ is likely to
be, such that the estimator shrinks toward it. An extreme µi will likely be outside of any small
selected subspace, implying a large denominator and so little, if any, shrinkage in ~a, thereby giving
no improvement. To address this problem, Stein [35] proposed a coordinate-based (or truncated)
shrinkage method, given by

δ
(f)
i (~a) =

1−
(f − 2)s2min{1, z(f)|ai| }

q∑
j=1

(N ~m)2
j


+

ai, (25)

where f is a “large fraction” [8] of k, zi = |ai|, i = 1, ..., k, z(1) < z(2) < ... < z(f) < ... < z(k) forms
a strictly increasing ordering on z1, ..., zk, s2 is the empirical estimate of variance, σ2, given by

s2 =
1

(q − k)

q∑
i=1

(L − LCSi − (N~a)i)2, (26)

and ~mi = min{ai, z(f)}, i = 1, ..., k. The result in [35] shows this estimator is minimax if f ≥ 3.
Observe that the denominator is small even when (k − f) of the µi are extreme.

Once the application has trained the model, and saved the correction coefficients, ~a, to disk, the
application may then separately apply spherical or truncated James-Stein shrinkage, and save the
appropriate shrunken correction coefficients, δ(~a) or δ(f)

i (~a), i = 1, ..., k, to disk for later comparison
and use against test data — the task of apply mode, described below.

2.2.6 Apply

When the application is in apply mode, the model correction coefficients are locked — either they
are unadjusted from training, or have been adjusted by the spherical or truncated shrinkage method
— and are loaded from disk. In this mode, min and max are set to admit all molecules having a
reasonable backbone contour length as first estimated by LLS . So min = 40 nm and max = 1000
nm makes for a good range in most test situations. Then each ~b′ ∈ B′ obtains its final estimate,
L′, from the correction function
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C : B′ → R

: ~b′ 7→

a1nhorz(~b′) + a2nvert(~b′) + a3ndiag(~b′) + a4nperp(~b′) + a5ntkav(~b′),

(27)

and is given by

L′(~b′) = LCS(~b′) + C(~b′). (28)

We presently discuss the experimental results of our model’s performance (L−L′), and related
factors, on a large set of training and test images.

3 Results

An early version of AFM Explorer reported LLS for all existing fragments in the image. Comparing
these automatically computed values with the length estimates of hand-drawn backbones (Figure
6) gave us reason to believe that while an image processing pipeline can bring us close to the
apparent length of DNAs and RNAs, more would be required. Namely, bridging the gap between
apparent and true length would first require using a better length estimator (LCS), and then from
that, modeling the systematic error intrinsic to the problem.

Figure 6: Early comparative results. Monodisperse pUC19 plasmids were linearized with EcoRi and digested with RsaI
restriction enzymes. Fifty AFM images were taken of the resulting fragments, from which about 100 fragments were selected
and tagged. The lengths given by AFM Explorer (version 0.20, producing piecewise line segment lengths, LLS) were compared
against those of hand-drawn backbones using NIH Image. Note that as length increased, automatically computed LLS (labeling
the y-axis as “AE 0.20”) progressively underestimated fragment backbone length. Note too the proximity of clustering (and
theoretically given cleavage points induced by RsaI) around 90 (75), 275 (223), and 580 (584) nm; the clustering around 800
nm suggested failed digestion (an intrinsic experimental error).

Here we explain a number of results, beginning with three regression models we attempted to
use, but failed because of overfitting during the training phase; then we present the current model
we used to obtain close estimates, which did not suffer from overfitting.
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3.1 Inadmissible models

The following three models overfitted the training data.

3.1.1 Quadratic 8-feature

We trained a quadratic regression model on q ≥ 36 calibrating molecule backbones, ~b′ ∈ B′, having
known theoretical length L, using values from all 8 features defined above:
{nhorz, nvert, ndiag, nperp, nhtav, nhtsd, ntkav, ntksd}, giving


nhorz(~b′1)2 ... ntksd(~b′1)2 nhorz(~b′1)nvert(~b′1) ... ntksav(~b′1)ntksd(~b′1)

... ... ... ... ... ...

nhorz(~b′36)2 ... ntksd(~b′36)2 nhorz(~b′36)nvert(~b′36) ... ntkav(~b′36)ntksd(~b′36)
... ... ... ... ... ...

nhorz(~b′q)
2 ... ntksd(~b′q)

2 nhorz(~b′q)nvert(~b
′
q) ... ntkav(~b′q)ntksd(~b

′
q)


 a1

...
a36

 =


l1
...
l36

...
lq


⇐⇒ N~a = ~l,

(29)

where N is the q × 36 feature matrix, ~a is the correction coefficient 36-vector to solve for, and ~l is
the length estimate error q-vector [..., (L2 − LCS(~b′i)

2), ...], where i = 1, ..., q. The model has the
analytic solution

~a = (NTN)−1NT~l, (30)

using the Tikhonov regularization of (NTN + λI)−1, where λ = 1 × 10−5, in the case where no
inverse exists for (NTN). Then each ~b′ ∈ B′ obtains its final estimate, L′, from the correction
function

C : B′ → R

: ~b′ 7→

a1nhorz(~b′)2 + a2nvert(~b′)2 + a3ndiag(~b′)2 + a4nperp(~b′)2+

a5nhtav(~b′)2 + a6nhtsd(~b′)2 + a7ntkav(~b′)2 + a8ntksd(~b′)2+

a9nhorz(~b′)nvert(~b′) + a10nhorz(~b′)ndiag(~b′) + a11nhorz(~b′)nperp(~b′) + a12nhorz(~b′)nhtav(~b′)+

a13nhorz(~b′)nhtsd(~b′) + a14nhorz(~b′)ntkav(~b′) + a15nhorz(~b′)ntksd(~b′) + a16nvert(~b′)ndiag(~b′)+

a17nvert(~b′)nperp(~b′) + a18nvert(~b′)nhtav(~b′) + a19nvert(~b′)nhtsd(~b′) + a20nvert(~b′)ntkav(~b′)+

a21nvert(~b′)ntksd(~b′) + a22ndiag(~b′)nperp(~b′) + a23ndiag(~b′)nhtav(~b′) + a24ndiag(~b′)nhtsd(~b′)+

a25ndiag(~b′)ntkav(~b′) + a26ndiag(~b′)ntksd(~b′) + a27nperp(~b′)nhtav(~b′) + a28nperp(~b′)nhtsd(~b′)+

a29nperp(~b′)ntkav(~b′) + a30nperp(~b′)ntksd(~b′) + a31nhtav(~b′)nhtsd(~b′) + a32nhtav(~b′)ntkav(~b′)+

a33nhtav(~b′)ntksd(~b′) + a34nhtsd(~b′)ntkav(~b′) + a35nhtsd(~b′)ntksd(~b′) + a36ntkav(~b′)ntksd(~b′),

(31)

(i.e. the set of
(

8
1

)
= 8 quadratic feature terms and

(
8
2

)
= 28 linear pairwise feature interaction

terms, totaling 36 model terms) and is given by

L′(~b′)2 = LCS(~b′)2 + C(~b′). (32)
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Table 1: Inadmissible (overfitted) feature and length estimation results for the Quadratic 8-feature model.

Train
Knowns
L = 75 nm
0.97 nm

pixel
LLS ∈ [70, 100] nm

5 images
275 cDNAs

Test
Knowns
L = 75 nm
0.97 nm

pixel
LLS ∈ [70, 100] nm

14 images
782 cDNAs

Test
Unknowns A
L = 223 nm
0.97 nm

pixel
LLS ∈ [70, 100] nm

44 images
22 cDNAs

Test
Unknowns B
L = 584 nm
0.97 nm

pixel
LLS ∈ [70, 100] nm

101 images
139 cDNAs

Mean SD Mean SD Mean SD Mean SD

nhorz 18.96 11.10 19.82 9.74 26.54 10.63 20.19 11.90
nvert 21.04 12.27 20.56 11.21 14.13 10.38 19.06 11.53
ndiag 33.39 5.31 34.68 5.43 28.95 4.83 31.94 6.30
nperp 1.42 1.30 1.54 1.24 2.13 1.76 2.19 1.80
nhtav 242.72 2.29 244.03 2.24 247.80 3.16 248.65 4.11
nhtsd 4.92 0.85 4.66 0.83 5.03 1.09 4.18 1.79
ntkav 5.15 1.30 6.13 1.32 8.65 1.95 8.72 4.39
ntksd 1.84 0.72 1.95 0.78 3.60 0.86 3.52 1.92
LLS 85.19 6.81 87.34 7.22 79.71 6.99 82.45 8.30
LCS 85.23 6.81 87.36 7.22 79.73 6.98 82.46 8.30

L′
train 74.99 0.33 74.88 0.63 75.07 1.08 76.05 1.93

L′
spherical 75.00 0.33 74.90 0.63 75.08 1.07 76.06 1.93

L′
truncated(f = 36) 75.00 0.33 74.90 0.63 75.08 1.07 76.06 1.93

L′
truncated(f = 35) 75.00 0.33 74.90 0.63 75.08 1.07 76.06 1.93

L′
truncated(f = 34) 75.02 0.33 74.92 0.63 75.08 1.07 76.06 1.91

L′
truncated(f = 33) 75.03 0.33 74.94 0.63 75.09 1.07 76.07 1.91

L′
truncated(f = 32) 75.06 0.33 74.97 0.63 75.11 1.06 76.09 1.91

L′
truncated(f = 31) 75.06 0.33 74.97 0.63 75.11 1.06 76.10 1.91

L′
truncated(f = 30) 75.19 0.35 75.13 0.63 75.20 1.03 76.21 1.91

L′
truncated(f = 29) 75.23 0.36 75.18 0.63 75.22 1.02 76.24 1.92

L′
truncated(f = 28) 75.38 0.40 75.37 0.65 75.33 1.00 76.38 1.93

L′
truncated(f = 27) 75.38 0.42 75.39 0.66 75.34 0.98 76.39 1.94

L′
truncated(f = 26) 75.34 0.43 75.36 0.66 75.30 0.98 76.36 1.95

L′
truncated(f = 25) 75.29 0.44 75.32 0.67 75.25 0.97 76.31 1.96

L′
truncated(f = 24) 75.24 0.44 75.26 0.67 75.20 0.97 76.26 1.96

L′
truncated(f = 23) 75.02 0.45 75.05 0.67 75.00 0.96 76.05 1.98

L′
truncated(f = 22) 74.90 0.45 74.94 0.67 74.90 0.95 75.94 1.99

L′
truncated(f = 21) 74.78 0.46 74.82 0.67 74.79 0.95 75.82 2.00

L′
truncated(f = 20) 73.98 0.53 74.05 0.71 74.03 0.94 75.06 2.09

We trained this model on 275 cDNA molecules, in 5 images, having known theoretical length of
75 nm, using min = 70 and max = 100, assuming a mean of 85 nm, given our prior observation of
a +10 nm mean translation due to tip dilation effects and thermal drift. We then tested the trained
model on three datasets: (1) 782 cDNA molecules, in 14 images, having known theoretical length
of 75 nm, using min = 70 and max = 100; (2) 22 cDNA molecules, in 44 images, having unknown
theoretical length, using min = 70 and max = 100; and (3) 139 cDNA molecules, in 101 images,
having unknown theoretical length, using min = 70 and max = 100. For each test we obtained
mean and standard deviation values for all features, LLS , LCS , L′train, L′spherical, and L′truncated for
a range of f values. These results are summarized in Table 1 and presented graphically in Figure
7.

Our methodological flaw was in applying trained and trained-shrunken models to min = 70 and
max = 100. As the data attest, in this range of cDNA sizes, the error rates look promisingly low.
Had we opened up the range to, say, min = 40 and max = 1000, then we would have immediately
recognized the problem of overfitting, as all mean L′ values were 75 nm, with a standard deviation
of 1 nm, irrespective of corresponding values of LLS and LCS . Now that we could properly identify
when overfitting was occurring, we tried three more models. The first two failed in nearly the
identical fashion, both computing mean L′train values of 75 nm, with standard deviation of 1 nm,
for all admitted molecules — we did not bother to compute L′spherical or L′truncated. The third
succeeded in computing all mean L′ values without overfitting the training data, discussed below.
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Figure 7: Inadmissible (overfitted) length estimation results for the Quadratic 8-feature model.

3.1.2 Linear 8-feature

We were first suspicious that the quadratic terms, and quadratic magnitudes of the linear pairwise
terms, of the Quadratic 8-feature model were responsible for overfitting, so we created a linear
8-feature one to exclude them.

We trained a linear regression model on q ≥ 8 calibrating molecule backbones, ~b′ ∈ B′, having
known theoretical length L, using values from all 8 features defined above:
{nhorz, nvert, ndiag, nperp, nhtav, nhtsd, ntkav, ntksd}, giving



nhorz(~b′1) nvert(~b′1) ndiag(~b′1) nperp(~b′1) nhtav(~b′1) nhtsd(~b′1) ntkav(~b′1) ntksd(~b′1)
nhorz(~b′2) nvert(~b′2) ndiag(~b′2) nperp(~b′2) nhtav(~b′2) nhtsd(~b′2) ntkav(~b′2) ntksd(~b′2)
nhorz(~b′3) nvert(~b′3) ndiag(~b′3) nperp(~b′3) nhtav(~b′3) nhtsd(~b′3) ntkav(~b′3) ntksd(~b′3)
nhorz(~b′4) nvert(~b′4) ndiag(~b′4) nperp(~b′4) nhtav(~b′4) nhtsd(~b′4) ntkav(~b′4) ntksd(~b′4)
nhorz(~b′5) nvert(~b′5) ndiag(~b′5) nperp(~b′5) nhtav(~b′5) nhtsd(~b′5) ntkav(~b′5) ntksd(~b′5)
nhorz(~b′6) nvert(~b′6) ndiag(~b′6) nperp(~b′6) nhtav(~b′6) nhtsd(~b′6) ntkav(~b′6) ntksd(~b′6)
nhorz(~b′7) nvert(~b′7) ndiag(~b′7) nperp(~b′7) nhtav(~b′7) nhtsd(~b′7) ntkav(~b′7) ntksd(~b′7)
nhorz(~b′8) nvert(~b′8) ndiag(~b′8) nperp(~b′8) nhtav(~b′8) nhtsd(~b′8) ntkav(~b′8) ntksd(~b′8)

... ... ... ... ... ... ... ...

nhorz(~b′q) nvert(~b′q) ndiag(~b′q) nperp(~b′q) nhtav(~b′q) nhtsd(~b′q) ntkav(~b′q) ntksd(~b′q)





a1

a2

a3

a4

a5

a6

a7

a8


=



l1
l2
l3
l4
l5
l6
l7
l8
...
lq


⇐⇒ N~a = ~l,

(33)

where N is the q× 8 feature matrix, ~a is the correction coefficient 8-vector to solve for, and ~l is the
length estimate error q-vector [..., (L−LCS(~b′i)), ...], where i = 1, ..., q. The model has the analytic
solution

~a = (NTN)−1NT~l, (34)
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using the Tikhonov regularization of (NTN + λI)−1, where λ = 1 × 10−5, in the case where no
inverse exists for (NTN). Then each ~b′ ∈ B′ obtains its final estimate, L′, from the correction
function

C : B′ → R

: ~b′ 7→

a1nhorz(~b′) + a2nvert(~b′) + a3ndiag(~b′) + a4nperp(~b′)+

a5nhtav(~b′) + a6nhtsd(~b′) + a7ntkav(~b′) + a8ntksd(~b′),

(35)

and is given by

L′(~b′) = LCS(~b′) + C(~b′). (36)

3.1.3 Linear 6-feature

We were next suspicious that the nhtsd and ntksd standard deviation feature terms of the Linear
8-feature model were responsible for overfitting, so we created a linear 6-feature one to exclude
them.

We trained a linear regression model on q ≥ 6 calibrating molecule backbones, ~b′ ∈ B′, having
known theoretical length L, using values from 6 of the 8 features defined above:
{nhorz, nvert, ndiag, nperp, nhtav, ntkav}, giving



nhorz(~b′1) nvert(~b′1) ndiag(~b′1) nperp(~b′1) nhtav(~b′1) ntkav(~b′1)
nhorz(~b′2) nvert(~b′2) ndiag(~b′2) nperp(~b′2) nhtav(~b′2) ntkav(~b′2)
nhorz(~b′3) nvert(~b′3) ndiag(~b′3) nperp(~b′3) nhtav(~b′3) ntkav(~b′3)
nhorz(~b′4) nvert(~b′4) ndiag(~b′4) nperp(~b′4) nhtav(~b′4) ntkav(~b′4)
nhorz(~b′5) nvert(~b′5) ndiag(~b′5) nperp(~b′5) nhtav(~b′5) ntkav(~b′5)
nhorz(~b′6) nvert(~b′6) ndiag(~b′6) nperp(~b′6) nhtav(~b′6) ntkav(~b′6)

... ... ... ... ... ...

nhorz(~b′q) nvert(~b′q) ndiag(~b′q) nperp(~b′q) nhtav(~b′q) ntkav(~b′q)





a1

a2

a3

a4

a5

a6

 =



l1
l2
l3
l4
l5
l6
...
lq


⇐⇒ N~a = ~l,

(37)

where N is the q× 6 feature matrix, ~a is the correction coefficient 6-vector to solve for, and ~l is the
length estimate error q-vector [..., (L−LCS(~b′i)), ...], where i = 1, ..., q. The model has the analytic
solution

~a = (NTN)−1NT~l, (38)

using the Tikhonov regularization of (NTN + λI)−1, where λ = 1 × 10−5, in the case where no
inverse exists for (NTN). Then each ~b′ ∈ B′ obtains its final estimate, L′, from the correction
function

C : B′ → R

: ~b′ 7→

a1nhorz(~b′) + a2nvert(~b′) + a3ndiag(~b′)+

a4nperp(~b′) + a5nhtav(~b′) + a6ntkav(~b′),

(39)
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and is given by

L′(~b′) = LCS(~b′) + C(~b′). (40)

3.2 Admissible model

3.2.1 Linear 5-feature

We were lastly suspicious that the nhtav term of the Linear 6-feature model was responsible for
overfitting, so we created a linear 5-feature one to exclude it, and found it did not overfit the
training data. This model was defined in Section 2 (Methods). Although we implicated the nhtav
feature in the overfitting, we are not clear why this happened, but continue investigating.

3.3 Experiments

Our experiments had three datasets:

1. 19 images comprising a monodisperse set of 1,034 admissible (LLS ∈ [70, 100] nm) cDNAs
having known theoretical length 75 nm

2. 44 images comprising a monodisperse set of 15,477 admissible (LLS ∈ [10, 1000] nm) cDNAs
having unknown theoretical length (hereafter “Test Unknowns A”)

3. 101 images comprising a monodisperse set of 54,093 admissible (LLS ∈ [10, 1000] nm) cDNAs
having unknown theoretical length (hereafter “Test Unknowns B”)

We partitioned the first dataset (Table 2) into the first 5 images for training (263 admissible
cDNAs, LLS ∈ [70, 100], hereafter “Train”) and the last 14 images for testing (2,452 admissible
cDNAs, LLS ∈ [10, 1000], of which 771 have LLS ∈ [70, 100], hereafter “Test Knowns”) — an
arbitrary choice (see discussion below). Upon acquiring LCS and the 5-feature vector, ~n, for each
of the 263 Train backbones, we trained our linear regression model by solving for the feature
correction coefficients, ~a. These are given in the “ai” row of Table 3. We computed in-sample
training residual error by plotting the histogram of |L − L′train| (Figure 8a). We then tested our
L′train estimator on the Test Knowns, Test Unknowns A, and Test Unknowns B datasets. The
respective residual errors for these are the plotted histograms in Figures 9a, 10a, and 11a.

Following this, we applied spherical James-Stein shrinkage to ~a. The spherical shrinkage factors
and resulting coefficients are given in the “spherical” and “δi(~a)” rows of Table 3. We computed
in-sample training residual error by plotting the histogram of |L − L′spherical| (Figure 8b). We
then tested our L′spherical estimator on the Test Knowns, Test Unknowns A, and Test Unknowns
B datasets. The respective residual errors for these are the plotted histograms in Figures 9b, 10b,
and 11b.

Lastly, we applied truncated James-Stein shrinkage to ~a using f = 5, 4, 3. The truncated
shrinkage factors and resulting coefficients are given in the “truncated (f = 5, 4, 3)” and “δ(5,4,3)

i (~a)”
rows of Table 3. Since the truncated shrinkage factors were all so close to 1 (within 10−4), they
gave estimators that were essentially the trained model without shrinkage, and so we did not plot
residual error histograms for these.

The feature and length estimation data for Train, Test Knowns, Test Unknowns A, and Test
Unknowns B are summarized in Table 4. Note that these are the values for all admissible cDNAs.
For example, the Test Unknowns A mean value of L′train is 18.52 nm, as one might expect from a
set of 15,477 alleged cDNAs in the range [10, 1000] nm, most of which are short noisy objects. To
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Table 2: Number of admissible cDNAs in two LLS ∈ [min,max] nm ranges for 19 training images.

Image [70, 100] nm [10, 1000] nm

1 47 207
2 53 199
3 50 219
4 55 227
5 58 207
6 50 241
7 44 222
8 46 234
9 43 219

10 47 242
11 57 145
12 56 143
13 52 142
14 57 138
15 63 138
16 61 151
17 66 147
18 67 149
19 62 141

Table 3: Shrinkage factors and resulting feature correction coefficients for the Linear 5-feature model.

i 1 2 3 4 5

train 1.000000 1.000000 1.000000 1.000000 1.000000
ai -0.258699 -0.316009 -0.197179 -0.742293 1.637360

spherical 0.997422 0.997422 0.997422 0.997422 0.997422
δi(~a) -0.258037 -0.315201 -0.196675 -0.740394 1.633170

truncated (f = 5) 0.997422 0.997422 0.997422 0.997422 0.997422

δ
(5)
i

(~a) -0.258037 -0.315201 -0.196675 -0.740394 1.633170

truncated (f = 4) 0.999108 0.999108 0.999108 0.999108 0.999596

δ
(4)
i

(~a) -0.258468 -0.315727 -0.197003 -0.741631 1.636700

truncated (f = 3) 0.999655 0.999655 0.999655 0.999853 0.999933

δ
(3)
i

(~a) -0.258610 -0.315900 -0.197111 -0.742184 1.637250

focus on the areas of interest, around the theoretical known lengths of the data, we produced the
feature and length estimation data for Train, Test Knowns, Test Unknowns A, and Test Unknowns
B summarized in Table 5. Note that this is a small subset of the data summarized in Table 4. Here
the selection criterion was L′ ∈ [L− 15,L+ 15] nm. Our motivation was to evaluate the mean and
standard deviation of L′ estimated lengths in the band 2σ nm away from the theoretical known
lengths of each monodisperse dataset. We assumed σ = 7.5 nm from our problem statement. The
theoretical known lengths of Test Unknowns A (223 nm) and Test Unknowns B (584 nm) were
revealed to us after our experiments by our collaborator who provided us with the image data,
allowing us to perform this retrospective analysis.

The residual error histograms showed that for each test dataset, there was clearly one high
frequency area of interest, near zero (i.e. when the L′ estimates were close to the known theoretical
lengths, L, of the monodisperse cDNAs in each test dataset). Looking at the 2σ band about L in
Table 5, we found L′train had mean values of: 74.62 nm (5.29 nm SD) for Train, 76.95 nm (7.10
nm SD) for Test Knowns, 229.22 nm (6.03 nm SD) for Test Unknowns A, and 578.77 nm (7.57 nm
SD) for Test Unknowns B — all within the tolerance of the problem statement. The mean and SD
results for L′spherical and the f = 5, 4, 3 versions of L′truncated gave no improvement over L′train (as
evinced by their shrinkage factors being so close to 1, in Table 3). i.e. The James-Stein shrinkage
process suggested our Linear 5-feature model was a good fit, and not an overfit, to the training
data.
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Table 4: Admissible feature and length estimation results for the Linear 5-feature model.

Train
Knowns
L = 75 nm
0.97 nm

pixel
LLS ∈ [70, 100] nm

5 images
263 cDNAs

Test
Knowns
L = 75 nm
0.97 nm

pixel
LLS ∈ [10, 1000] nm

14 images
2,452 cDNAs

Test
Unknowns A
L = 223 nm
0.97 nm

pixel
LLS ∈ [10, 1000] nm

44 images
15,477 cDNAs

Test
Unknowns B
L = 584 nm
0.97 nm

pixel
LLS ∈ [10, 1000] nm

101 images
54,093 cDNAs

Mean SD Mean SD Mean SD Mean SD

nhorz 18.74 11.16 12.87 11.60 5.64 7.84 6.53 12.45
nvert 21.30 12.40 14.44 13.47 2.84 6.33 3.97 16.34
ndiag 33.55 5.22 22.90 16.57 7.36 10.28 8.48 21.10
nperp 1.40 1.31 1.07 1.22 0.77 1.14 0.75 1.48
nhtav 242.67 2.29 242.73 3.85 239.33 3.75 240.33 4.61
nhtsd 4.92 0.84 4.63 1.20 4.24 1.41 4.48 1.58
ntkav 5.11 1.31 5.45 2.08 2.73 2.06 3.22 2.09
ntksd 1.82 0.73 2.02 0.94 1.69 0.75 1.76 0.75
LLS 85.45 6.71 58.31 40.77 18.45 26.29 21.98 54.12
LCS 85.48 6.72 58.32 40.78 18.44 26.30 21.97 54.14

L′
train 74.62 5.29 54.04 33.18 18.52 22.50 22.07 43.14

L′
spherical 74.65 5.29 54.05 33.20 18.52 22.51 22.07 43.16

L′
truncated(f = 5) 74.65 5.29 54.05 33.20 18.52 22.51 22.07 43.16

L′
truncated(f = 4) 74.63 5.29 54.05 33.19 18.52 22.51 22.07 43.15

L′
truncated(f = 3) 74.63 5.29 54.05 33.19 18.52 22.51 22.07 43.14

Table 5: Admissible feature and length estimation results for the Linear 5-feature model, a subset view within 2σ = 15 nm of
the theoretical known lengths.

Train
Knowns
L = 75 nm
0.97 nm

pixel
LLS ∈ [70, 100] nm
L′ ∈ [75± 15] nm

5 images
263 cDNAs

Test
Knowns
L = 75 nm
0.97 nm

pixel
LLS ∈ [10, 1000] nm
L′ ∈ [75± 15] nm

14 images
860 cDNAs

Test
Unknowns A
L = 223 nm
0.97 nm

pixel
LLS ∈ [10, 1000] nm
L′ ∈ [223± 15] nm

44 images
74 cDNAs

Test
Unknowns B
L = 584 nm
0.97 nm

pixel
LLS ∈ [10, 1000] nm
L′ ∈ [584± 15] nm

101 images
65 cDNAs

Mean SD Mean SD Mean SD Mean SD

nhorz 18.74 11.16 19.14 9.66 74.06 19.72 113.89 76.06
nvert 21.30 12.40 20.66 11.21 55.02 19.41 227.87 77.34
ndiag 33.55 5.22 34.11 5.93 104.66 8.82 289.09 20.12
nperp 1.40 1.31 1.52 1.23 6.45 3.06 16.86 5.67
nhtav 242.67 2.29 244.16 2.47 250.84 0.90 252.82 0.84
nhtsd 4.92 0.84 4.67 0.85 4.05 0.81 2.05 0.60
ntkav 5.11 1.31 6.28 1.63 12.55 1.13 10.17 1.19
ntksd 1.82 0.73 2.04 0.87 3.54 0.91 2.28 0.58
LLS 85.45 6.71 85.99 9.71 270.61 9.36 733.01 13.79
LCS 85.48 6.72 86.01 9.70 270.64 9.34 733.10 13.74

L′
train 74.62 5.29 76.95 7.10 229.22 6.03 578.77 7.57

L′
spherical 74.65 5.29 76.98 7.10 229.21 5.99 578.73 7.68

L′
truncated(f = 5) 74.65 5.29 76.98 7.10 229.21 5.99 578.73 7.68

L′
truncated(f = 4) 74.63 5.29 76.97 7.10 229.27 6.03 578.63 7.64

L′
truncated(f = 3) 74.63 5.29 76.96 7.10 229.24 6.03 578.83 7.57
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(a) |L − L′train| (red) vs |L − LCS | (blue)

(b) |L − L′spherical| (red) vs |L − LCS | (blue)

Figure 8: Residual error distributions before (8a) and after (8b) spherical shrinkage for the Linear 5-feature model upon Train.
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(a) |L − L′train| (red) vs |L − LCS | (blue)

(b) |L − L′spherical| (red) vs |L − LCS | (blue)

Figure 9: Residual error distributions before (9a) and after (9b) spherical shrinkage for the Linear 5-feature model upon Test
Knowns. Although LLS ∈ [10, 1000] nm were admitted, only LLS ∈ [70, 1000] are shown here, to filter the noise of so many
short objects.
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(a) |L − L′train| (red) vs |L − LCS | (blue)

(b) |L − L′spherical| (red) vs |L − LCS | (blue)

Figure 10: Residual error distributions before (10a) and after (10b) spherical shrinkage for the Linear 5-feature model upon
Test Unknowns A. Although LLS ∈ [10, 1000] nm were admitted, only LLS ∈ [70, 1000] are shown here, to filter the noise of so
many short objects.
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(a) |L − L′train| (red) vs |L − LCS | (blue)

(b) |L − L′spherical| (red) vs |L − LCS | (blue)

Figure 11: Residual error distributions before (11a) and after (11b) spherical shrinkage for the Linear 5-feature model upon
Test Unknowns B. Although LLS ∈ [10, 1000] nm were admitted, only LLS ∈ [70, 1000] are shown here, to filter the noise of
so many short objects. Note, however, the apparent bimodal distribution. We suspect the Unknowns B dataset is not truly
monodisperse.
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4 Discussion

4.1 Main Message

In this problem, there are two principal sources of error: bias from the method of estimation (the
extrinsic factors), and systematic error (the intrinsic factors). We have given a BLUE estimator for
molecular backbone contour length, namely the piecewise cubic spline fitting measure, LCS . But
this gets us only part way to the answer, since systematic error underlies all such measurements.
In our experiments, this was visible in the residual error distributions (Figures 8, 9, 10, and 11),
especially in Test Unknowns A and Test Unknowns B, where the divergence between LCS and L′
was clear. Various sources of systematic error are discussed below.

Accordingly, we were motivated by the following claim:

Claim 3. Systematic error in this problem can be characterized by a set of detectable and measurable
image features whose values depend on the length of molecular backbone contours. i.e. Systematic
error can be estimated from the data by training the correct model.

We improved on LCS by training a linear regression model to estimate the systematic error
and thereby correct LCS , yielding a superior estimator, L′train. This was trained on 5 of the 8
features we developed for our method. Further, we developed a James-Stein shrinkage procedure,
in spherical and truncated forms (giving potentially further improved estimators, L′spherical and
L′truncated), that trades off bias for variance in the model coefficients, effectively throttling those
introducing too much variance into the estimation. One consequence of such a design is an inherent
adaptability and extensibility: a researcher may compose any number and arrangement of features
into the estimation. We believe our approach will help ameliorate the model selection problem in
this context.

4.2 Critical Assessment

4.2.1 Methods

We are not clear that our way of evaluating the quality of the L′ estimators presented in Table 5
uses a proper methodology. While the L′ estimators decisively clustered near L in each test dataset
(giving high frequencies near zero residual error), the spread in the values outside of the 2σ = 15
nm band might exceed the σ = 7.5 nm tolerance. We chose what seemed a reasonable band around
the theoretical known lengths, whose L′ values therein spread roughly half of that quantity. But
this needs more work.

In terms of learning feature values from the data, we would like to explore alternatives to linear
regression. For instance, AdaBoost with decision stumps. In terms of biased estimation, we would
like to explore alternatives to James-Stein shrinkage. For instance, principal component regression,
ridge regression, and LASSO — subjects for a follow-up study.

4.2.2 Cross validation to select model terms

In terms of the model selection problem, we could be more exhaustive to improve our results.
For example, we could employ the leave-one-out cross validation method to prune model terms.
Combining this with a similar scheme for data cross validation would require a large number of
experiments. If a model has p terms and a test dataset has q admissible molecules, then this would
require pq training and testing regimes to find the best model using the original one as a template.
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4.2.3 Cross validation to measure test error

Two obvious choices for this are leave-one-out cross validation (mentioned above) and k-fold cross
validation. In the crudest configuration, given our datasets (now with all three monodisperse
theoretical lengths known to us), we could design the following training and testing regimes to
round out our results:

1. Train on a subset of the 75 nm; test on the complimentary Train subset and the {223, 584}
nm knowns [completed and discussed here]

2. Train on a subset of the 223 nm; test on the complimentary Train subset and the {75, 584}
nm knowns

3. Train on a subset of the 584 nm; test on the complimentary Train subset and the {75, 223}
nm knowns

4. Train on a subset of the {75, 223} nm; test on the complimentary Train subset and the 584
nm knowns

5. Train on a subset of the {75, 584} nm; test on the complimentary Train subset and the 223
nm knowns

6. Train on a subset of the {223, 584} nm; test on the complimentary Train subset and the 75
nm knowns

7. Train on a subset of the {75, 223, 584} nm; test on the complimentary Train subset and any
novel and truly unknown data

Of course, within each of these one can also employ k-fold cross validation.

4.3 Comparison with Other Studies

The other studies we found took the image processing aspect of the problem to the limit. The
approach taken by Ficarra, et al. [13] is a good example. These studies also use simple length
correction methods to address the errors that pixel quantization imposes upon the smooth and
continuous molecular backbone contours whose lengths are to be estimated. Regarding systematic
error estimation, these studies all use an image processing step to thin two-dimensional objects into
one-dimensional 8-connected pixel paths, and some approaches reclaim pixels at the ends, while
others argue this is unfounded. But this is as far as they go to address the tip convolution problem,
discussed below; rather, they assume the dilation effects are symmetric and uniform, while this
may not be the case. And none of these studies address the problem of thermal drift, discussed
below.

We give a meta-approach to the problem of backbone contour length estimation that learns to
characterize the systematic error from the data, namely, image features whose values depend on
the lengths of backbone contours. While we do not explicitly model tip convolution and thermal
drift, for example, these effects are presumably measured by the collection of features employed by
the selected model.

4.4 Conclusions

Our meta-approach showed promise in our experiments, meeting our tolerance requirement, but it
needs wider experimental validation, in terms of model design and variations in monodisperse test
data.
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5 Future Work

At this juncture, we would like to briefly mention some of the intrinsic problems that generate
systematic error. These are open problems, and so present opportunities for researchers to create
explicit models that will result in better (albeit computationally more complex) features to exploit
in the general pursuit of modeling systematic error.

5.1 AFM data

5.1.1 Use phase shift data to quantify softness

All the approaches under review, including ours, make use of half of the AFM data available. For
each point (x, y) in the area under inspection, the AFM instrument in tapping mode takes two
measurements: the displacement in the z-direction for height (the typical AFM “image”), and the
change in oscillation frequency for softness. Making use of this data could significantly improve the
resolution of fine structures in the objects, and lead to the development of new model features.

5.2 Problems implicit to AFM

5.2.1 Tip convolution

As the AFM scans the surface, the tip makes contact with, or taps with high frequency in close
proximity to, the sample being measured. The geometric interaction between tip and sample
results in a profile that is a convolution of the two geometries. In AFM images of biomlecules,
their ends appear longer than they should be, and their widths appear thicker than they should
be. Deconvolving the image requires a special kind of algorithm, because the space of all possible
tip-sample geometry combinations that can produce the same profile is large, and must be selected
with care. Further complicating the problem, since tips are brittle, they get deformed in irregular
ways, or simply break off. Experimental protocol should dictate tip calibration, to model its shape
for post-process deconvolution.

Moreover, this is an example of the problem of Wittgenstein’s Ruler:

“Unless you have confidence in the ruler’s reliability, if you use a ruler to measure a
table, you may also be using the table to measure the ruler. The less you trust the
ruler’s reliability (in probability called the prior), the more information you are getting
about the ruler and the less about the table.” [36]

So is the tip measuring the sample, or is the sample measuring the tip?
None of the approaches under review, including ours, attempt to model tip convolution effects

directly and appropriately deconvolve the image, though the problem is widely acknowledged [22,
38, 7, 37, 40] and algorithms designed precisely for this purpose exist [39]. In our experiments, we
have consistently observed 5 nm added to each backbone end, and 5 nm added to the thickness, of
biomolecules we measure.

5.2.2 Thermal drift

Each component of the AFM instrument — tip, cantilever arm, photodiode, stage, piezoelectronics,
sample, substrate, etc. — has its own coefficient of thermal expansion. Even minute fluctuations
in ambient temperature lead to an aggregate displacement of the materials with respect to each
other, and hence drift. Experimenters observe drift vectors that range from unidirectional to
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random walks. Some observe the drift reaches an equilibrium within minutes, others hours. Since
environmental fluctuations may occur during a single scan period (say 30 minutes), drift may vary
across a single image, resulting in local rather than global distortions, and to varying degrees.

None of the approaches under review, including ours, attempt to model thermal drift directly
and perform the appropriate deblurring of the image (locally or globally) though this problem too
is widely acknowledged [4, 41, 27, 44] and an assortment of well-suited algorithms for this exist,
namely Carasso’s SECB algorithm [2, 3]. Another approach that we have considered is to use
calibrating molecules as local rulers — the subject of a follow-up paper.

To illustrate and empirically quantify the thermal drift effects present in our experiments, we
took 8 top-to-bottom scans in succession over a period of 404 minutes (Figure 12). Overlaying the
first two scans, we saw the drift is local and nonlinear (Figure 13). The displacement vector from
the first to the second scan gave a drift rate of 3.3 nm

min (Figure 14). A more accurate average drift
rate was computed from the displacement vector from the first to the last scan, which gave a drift
rate of 2.1 nm

min (Figure 15).

(a) Time t + 0 min. (b) Time t + 34 min. (c) Time t + 67 min. (d) Time t + 135 min.

(e) Time t + 202 min. (f) Time t + 270 min. (g) Time t + 337 min. (h) Time t + 404 min.

Figure 12: Thermal drift over 404 minutes in repeated AFM top-to-bottom scans of a 2000 × 2000 nm area. The yellow
crosshairs track a single anchored position across the 8 images.

5.2.3 Non-closed-loop scanning

Experimenters can use closed-loop scanning settings in their protocols, to reduce the effects of
thermal drift by spending the majority of scan time on just the objects of interest. We have
observed non-closed-loop scanning to give between 2 and 5 percent error in sizing the microscopic
area. Since this area measure is used to calculate the nm

pixel ratio at the outset of experimentation,
this error propagates through all downstream computations.
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Figure 13: Alignment of the first two AFM top-to-bottom scans (at t + 0 min and t + 34 min), demonstrating the local and
nonlinear character of the thermal drift .
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Figure 14: Alignment of the first two AFM top-to-bottom scans (at t+ 0 min and t+ 34 min), with displacement vector (red)
added. The vector magnitude is 80 pixels, which, at 1.42 nm

pixel
resolution, gives a displacement of 113 nm, at a rate of 3.3 nm

min
.
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Figure 15: Alignment of the first and last AFM top-to-bottom scans (at t+ 0 min and t+ 404 min), with displacement vector
(red) added. The vector magnitude is 593 pixels, which, at 1.42 nm

pixel
resolution, gives a displacement of 842 nm, at a rate of

2.1 nm
min

, representing the average drift rate over the net displacement in 404 min.
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5.3 Problems implicit to chemistry

5.3.1 3-D to 2-D conformation during adsorption

It is not well understood how a three-dimensional DNA or RNA molecule adsorbs onto a substrate
like mica, and under what conditions uniform binding to the surface occurs, let alone how to ensure
this. We expect better models will emerge that will eventually lead to reduction in these kinds of
experimental error.
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