
Lectures #7 & #8 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lectures # 7 & # 8

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 1

—Slide 1—

The C Programming Language
Language Survey 2

• General Purpose “High-Level” Programming
Language.
Not ‘very’ high-level : Has many features allowing

access to low-level operations. Similar to Bliss, in

this regard.

• Originally designed by Dennis Ritchie.
First implementation on the UNIX operating
system on the DEC PDP-11.

• Short History

– BCPL, Martin Richards . Late 60’s.

– B, Ken Thompson . 1970, First UNIX implemen-

tation on PDP 7.

– BCPL & B = “typeless”

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 2

—Slide 2—

History of C

• C, designed by Dennis Ritchie.

• Typed (A hierarchy of derived data-types.)

• ANSI C, (1983-1988)
(Syntax of Function Declaration, Elaborate
Preprocessor, Arithmetic, Standard Library.)

• “Algol Like”
Similar to Algol, PL/1, Bliss, Pascal, Ada,
Modula, . . .

Features : Variable Declarations, Impera-
tive, Block-Structured, ...

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 3

—Slide 3—

SYNTAX

• Declarations: Variables

<type-name> <name> { ’,’ <name> } ’;’

Sequence of <name>s separated by commas and ter-
minated by a semicolon.

int i,j;

int A[3], B[5][7];

int *p; /* pointer to an integer*/

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 4

—Slide 4—

SYNTAX

• Declarations: Functions

<result-type> <name>(<formal-pars>){

<declaration-list>

<statement-list>

}

Function Procedure:
<formal-pars> 7→ <result-type>
Default Result Type = int

main(){} === int main(void){

return 0;

}

• True Procedures

A result type ‘void’ indicates that a “func-
tion” is a proper procedure with no result.

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 5

—Slide 5—

Assignment Operator

• Assignment statement is a C expression.

<expression-1> = <expression-2>

R-Value of <expression-2> is put in the location

given by the L-Value of <expression-1>.

• Example

c = getchar();

while((c = getchar()) != EOF)

putchar(c);

for(A[0] = X, i = n; X != A[i]; --i);

return i;

Linear Search with a sentinel!

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 6

—Slide 6—

Syntax of Statements

<stmt-list> ::= <empty> | <stmt-list> <statement>

<statement> ::=

;

| <expression> ;

| {<stmt-list>}

| if(<expression>)<statement>

| if(<expression>)<statement> else <statement>

| while(<expression>) <statement>

| do <statement> while (<expression>)

| for(<opt-exp>;<opt-exp>;<opt-exp>)<statement>

| switch (<expression>) <statement>

| case <const-exp> : <statement>

| default : <statement>

| break;

| continue;

| return;

| return <expression>;

| goto <label-name>;

| <label-name> : <statement>;

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 7

—Slide 7—

Control Structure

• Compound Statement

{

x = y = z = 0;

i++;

printf(...);

i = x;

}

1. Semicolon is a statement terminator, not separator.

2. Braces { and } group declarations and statements into

a block.

• Conditional Statement

if(n > 0)

if(a > b)

z = a;

else

z = b;

Dangling else is resolved by associating the
else with the closest previous else-less if.

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 8

—Slide 8—

Control Structure

• Conditional Statement: else if

if(x == 0)

y = ’a’;

else if(x == 1)

y = ’b’;

else if(x == 2)

y = ’c’;

else if(x == 3)

y = ’d’;

else

y = ’z’;

• Conditional Statement: switch

c = getchar();

switch(c){

case ’0’: case ’1’: case ’2’: case ’3’: case ’4’:

case ’5’: case ’6’: case ’7’: case ’8’: case ’9’:

ndigit[c - ’0’]++;

break;

case ’ ’: case ’\n’: case ’\t’:

nwhite++;

break;

default:

nother++;

break;

}

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 9

—Slide 9—

Iterative Statement

• while & for

A[0] = X; for(A[0] = X, i =n;

i = n; X != A[i]; --i)

while(X != A[i]) ;

--i; return i;

return i;

A[0] = x;

i = n;

for(;;){

if(X == A[i]){

return i; break;

}

--i;

}

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 10

—Slide 10—

break, continue & goto

• A break causes the innermost enclosing loop
or switch to be exited immediately.

• A continue statement causes the next it-
eration of the innermost enclosing loop to
begin

1. while & do: The test part is executed
immediately.

2. for: The increment step is executed im-
mediately.

• A goto interrupts normal control flow. goto
L causes the control to go to the statement
labeled L.

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 11

—Slide 11—

Examples of break & continue

for(i = 0; i < n; i++){ for(i = 0; i < n; i++){

if(a[i] < 0) if(a[i] < 0)

break; continue;

... ...

} }

for(;;c = getchar()){

if(c == ’ ’||c == ’\t’)

continue;

if(c != ’\n’)

break;

++lineno;

}

Skips over blanks, tabs & newlines, while keeping

track of line numbers.

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 12

—Slide 12—

Program Structure

• C is Block-Structured

• Local declarations can appear within any block
(Grouping of statements).
Compound Statement

{

<declaration-list>

<statement-list>

}

• A C program consists of global declarations of:

procedures , types and variables

• Types and variables can be declared local to a pro-

cedure.

• A procedure cannot be declared local to another.

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 13

—Slide 13—

Scope in C

• C is statically scoped
Scope of a declaration of X in a block is i) that block
+ ii) all its nested blocks − iii) all the nested
blocks in which X is redeclared .

int main(void)

|{

| int i; /* Scope of i = */

| for(...) /* A + B - C - D */

| | {

| | int c;

| | if(...)

| | |{

| B| C | int i; /* Scope of i = */

A | | | ... /* C */

| | |}

| | ...

| | }

| while(...)

| | {

| D| int i; /* Scope of i = */

| | ... /* D */

| | }

| ...

|}

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 14

—Slide 14—

Automatic and External Variables

• Variables declared in a function are local to that func-

tion.

• Other functions can have access to them indirectly,

if they are passed as parameters.

Or directly by name, if they are explicitly redefined

as extern’s.

• extern variables are globally accessible and remain
in existence permanently.

int getline(char line[], int maxline);

main(){...

char line[MAXLINE];

...

getline(line, MAXLINE);

}

int getline(char s[], int lim){

...

}

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 15

—Slide 15—

Usage of extern: Example

char line[MAXLINE];

...

int getline(void);

main(){...

extern char line[];

...

getline();

...

}

int getline(void){...

extern char line[];

...

}

• Note: Usually all extern declarations are
collected in a “header” file, and included by
“#include” (compiler declarative) in each
source file.

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 16

—Slide 16—

Static Variables

• External Static

A static declaration, applied to an external
variable, limits its scope only to the rest of
its source file.
Provides a way to hide information

static char buf[BUFSIZE];

static int bufp = 0;

int getch(void{...}

void ungetch(int c){...}

• buf & bufp can be shared by getch &
ungetch. But not visible to the user

of getch & ungetch

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 17

—Slide 17—

Static Variables

• Internal Static

Like automatic variables, they are local to a
particular function.

But they remain in existence from one
activation to the next.

• Provide permanent private storage within
a single function.

[End of Lecture #7]

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 18

—Slide 18—

The C Programming Language
Types

• A type has two components:

1. A set, S of elements

2. A set of operation on S

• Basic Data Types:

char A single byte, holds one character

(signed or unsigned.)

int Integers. Qualifiers: short & long.

Also, signed & unsigned.

float Single precision floating point.

double Double precision floating point.

long double Extended precision floating point.

(The size of Integers and floating points are imple-

mentation-defined.)

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 19

—Slide 19—

Types (contd)

• Arithmetic Operators:
+ (Addition), - (Subtraction),
* (Multiplication), / (Division),
% (Modulus)—Cannot be applied to float

or double.

• Relational and Logical Operators:
>, >=, <, <=,
==, !=, . . .

• Constants:
◦ Integers 1234 Type = int

123456789L Type = long

123U Type = unsigned

◦ Doubles 123.4 Type = double

1e-2 Type = double

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 20

—Slide 20—

Types: Constants

• Constants:
◦ Characters ’X’ Type = char

’\n’ Type = char

◦ Strings "Hello, World!" Type = char*

"X" Type = char*

• Enumeration Constants:

enum boolean {NO, YES};

enum escapes {BELL = ’\a’, BACKSPACE = ’\b’,

TAB = ’\t’, NEWLINE = ’\n’,

VTAB = ’\v’, RETURN = ’\r’};

enum months {JAN = 1, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC};

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 21

—Slide 21—

TYPE CONVERSION

• “Narrow-To-Wide” Rule
If an operator has operands of different types, then
they are converted into a common type, automati-
cally, by interpreting the “narrower” operand as a
“wider” one.

float f; int i;

f + i /* converted into float */

• Information Loss:
Longer integers are converted to shorter ones by drop-
ping excess higher order bits.

char c; int i;

i = c; c = i; /* No information loss */

c = i; i = c; /* Higher order bits--lost */

• Explicit Conversion Type Casting

(<type-name>)<expression>

int n; double a;

a = sqrt((double) n);

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 22

—Slide 22—

Composite Types: Arrays & Pointers

• Array

<type> <name>[<size>]

Defines an array (<name>) of size = <size> with

entries of type = <type>.

Entries are numbered from 0 to <size>− 1.

int a[10]; * a[0], a[1], ..., a[9] *\

• Pointer
A group of cells (2 or 4) that can hold an address.

& = referencing operator, and * = dereferencing op-
erator

int x, y, a[10];

int *ip, *pa;

ip = &x; y = *ip; pa = &a[0];

y = *(pa + 3);

Note: *(pa + 3) ≡ a[3]

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 23

—Slide 23—

Multidimensional Arrays

• Multidimensional arrays are defined as arrays of ar-
rays.

int daytab[2][13] = {

{0,31,28,31,30,31,30,31,31,30,31,30,31},

{0,31,28,31,30,31,30,31,31,30,31,30,31}

};

int leap; int days;

leap = year%4 == 0;

days = daytab[leap][i];/* Not daytab[leap,i] */

A two-dimensional array is really a one dimensional array,

each of whose element is an array .

• Pointer Array

int a[10][20];

int *b[10];

Note: a[3][4] and b[3][4] are syntactically legal.

• a = a true 2D array: 200 int-sized locations have been set

aside.

• b = a 1D array of pointers: the pointers are not initialized.

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 24

—Slide 24—

Strings

• An array of chars

• A String Constant:

"I am a string" "A"

• Definition

char amessage[] = "now is the time";

char *pmessage = "now is the time";

Note: pmessage is a pointer to a character array.

• String Copy: copy t to s

void strcpy(char *s, char *t){

while((*s++ = *t++) != ’\0’);

}

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 25

—Slide 25—

Structures

• struct = A heterogeneous collection of one or

more variables, possibly of different types.

Similar to PASCAL record.

struct point{ /* point is a structure tag */

int x;

int y;

}; /* x, y = members */

struct point maxpt = {320, 320};

• Structure may be copied and assigned to, passed to

functions and returned by functions.

• Structure Selector:
A member of a particular structure.

<structure-name>.<member>

dist = sqrt((double) pt.x * pt.x

+ (double) pt.y * pt.y);

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 26

—Slide 26—

Union

• A union may hold objects of different types and

sizes.

• similar to variant records in PASCAL.

union u-tag{

int ival;

float fval;

char *sval;

} u;

• u can be of type int, float or a char-pointer.

• The usage must be consistent : The type received

must be the type most recently stored.

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 27

—Slide 27—

Type Abstraction

• Just as subroutines provide procedural abstraction, abstract

data types provide type abstraction.

• C provides a facility called typedef for creating new
data type names.

typedef int Length;

typedef char *String;

Length len; String lineptr[MAXLINES];

• Type Equivalence

1. Name Equivalence: Two objects have same

types if they have same type names.

2. Structural Equivalence: Two objects have

same types if they have the same structures.

• C uses structural equivalence—
However, structs, unions and enums with distinct

tags are distinct .

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 28

—Slide 28—

Procedure Declarations

<result-type> <name> (<formal-pars>){

<declaration-list>

<statement-list>

}

int succ(int i){

return (i+1)%size;

}

• Missing result-type is by default int.

• A result-type void indicates a proper procedure with

no result.

• C uses call-by-value for parameter passing.

Call-by-reference can be simulated by call-
ing with pointers.

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 29

—Slide 29—

Parameter Passing in C

• Call-by-Value:
The R-values of actual parameters are computed and

assigned to formal parameters just before activating

the function call.

• The following program has no effect:

void bad-swap(int x, int y){

int z;

z = x; x = y; y = z;

}

int a = 0; int b = 1;

bad-swap(a, b);

• Simulating call-by-reference:

void swap(int *px, int *py){

int z;

z = *px; *px = *py; *py = z;

}

int a = 0; int b = 1;

swap(&a, &b);

Programming Languages • MISHRA 2008

Lectures #7 & #8 • 30

—Last Slide—

Summary

◦ C Design

• GOOD

1. Simple, Versatile

2. Block-Structured (Algol-like Syntax)

3. Rich type structure

4. Powerful environments

(UNIX, Debugger, Separate Compilation, ...)

• BAD

1. Too simple for large applications

2. Quirky Syntax, Poor Readability

3. Weakly-typed, Error-Prone

(NO Array Bound Checking, etc.)

4. No module structure to organize the programs.

[End of Lecture #8]

Programming Languages • MISHRA 2008

