
Lecture #5 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture # 5

Programming Languages • MISHRA 2008



Lecture #5 • 1

—Slide 1—

PASCAL
Language Survey 1

• Invented by Nicklaus Wirth between 1969
and 1970

• Motivation:
—Language for teaching programming
—Reliable and Efficient Language

• Characterized by simplicity
—“Streamlined” Algol
(Simpler Data Structure)
—Added User-defined data types

• Algol-like (Declarations and Imperative)

Programming Languages • MISHRA 2008



Lecture #5 • 2

—Slide 2—

Syntax (Declarations)

• Variables:

var x, y, z: integer;

• Procedure:

procedure foo(x, y: char; var z: real);

var

begin

...

end;

• Function:

function bar(a, b: integer): integer;

var x, y: real;

begin

...

end;

Programming Languages • MISHRA 2008



Lecture #5 • 3

—Slide 3—

Imperative Statements

• Assignment:

a := b + c

• Control Structure:

for i := 1 to N do ...

while (i = 0) do ...

repeat ... until (i = 0)

case i of

1: ...;

2: ...;

end;

• Like Algol, the body of each control struc-
ture can be only one (simple or compound)
statement.

Programming Languages • MISHRA 2008



Lecture #5 • 4

—Slide 4—

Compound Statements

• Syntax:

begin

x := y;

y := y * 3;

end;

• Any where a single statement can go, a com-
pound statement can go (like Algol)

Programming Languages • MISHRA 2008



Lecture #5 • 5

—Slide 5—

Block Structure

• Pascal is Block Structured

—(Procedures are nested)

• ...And statically scoped

—(Procedures are evaluated in the environ-
ment of their definition).

• Compound statements in Pascal do not de-
fine blocks—Blocks are only defined by pro-
cedure declaration

• Following is not valid

begin

...

var x, y: integer;

...

end;

Programming Languages • MISHRA 2008



Lecture #5 • 6

—Slide 6—

Example:Pascal

procedure foo(var x, y: integer);

var a, b, c, d: integer;

begin

...

end;

Programming Languages • MISHRA 2008



Lecture #5 • 7

—Slide 7—

Compound Statement: Contd

• A compound statement serves only one pur-
pose in Pascal
— Greater orthogonality

• But

1. Not as space efficient
—All local variables stay in activation
record
—Because they are allocated for the life
of the procedure while they may be only
needed for the life of the block

2. Makes program modification difficult
—Cannot insert blocks

Programming Languages • MISHRA 2008



Lecture #5 • 8

—Slide 8—

Example

procedure foo(x, y: integer;

var z: real);

var a, b: integer

procedure bar(var c: real);

var d: integer

begin

d := a;

...

end;

begin

a := x;

bar(z);

...

end;

Programming Languages • MISHRA 2008



Lecture #5 • 9

—Slide 9—

Parameter Passing

• Pascal gives you a choice of

– Call by value (val)

– Call by reference (var)

procedure foo(x, y: integer;

var z: real);

—x, y are val parameters
—z is var parameter

Programming Languages • MISHRA 2008



Lecture #5 • 10

—Slide 10—

Parameter Passing: Examples

• Call-by-Value:

procedure foo(x, y: integer);

begin

x := 1;

y := x * 3;

end;

foo has no effect on the program that calls
it

• Call-by-Reference:

function foo(var x: integer): integer;

begin

x := 6;

foo := x;

end;

foo is not a pure function; x changes as a
result of the side effect

Programming Languages • MISHRA 2008



Lecture #5 • 11

—Slide 11—

Side Effects

• A side effect is an assignment in a procedure
or function call that is not obvious to the
caller.

• A function call is only expected to affect the
arguments.

• A pure function (e.g., sin(x) or sqrt(x))
is expected to return a value and not change
any other variable

• With proper care, side effect can be useful

Programming Languages • MISHRA 2008



Lecture #5 • 12

—Slide 12—

Example

program StackManip;

integer stack[20], index;

procedure push(x);

integer x;

begin

stack[index] := x;

index := index + 1;

end

function pop(): integer;

begin

index := index - 1;

pop := stack[index];

end;

begin

y := pop();

push(3);

end.

Programming Languages • MISHRA 2008



Lecture #5 • 13

—Slide 13—

User Defined Types

• Pascal’s big advance:
— Hierarchical Type Structure
— Type composed of other types

• Defining types in Pascal

type <type-name> = <type-definition>

—<type-definition> describes a type
—<type-name> gives the type a name

Programming Languages • MISHRA 2008



Lecture #5 • 14

—Slide 14—

Types

• Type has two components
—A set, S of elements
—A set of operations on S

• Language-defined types:
integer: {−231..231}, {+, −, ∗, /, . . ., };
boolean: {T, F}, { not, and, or, . . ., }
real: {r|r is real }, {+, −, ∗, /, sqrt, . . ., };

• Larger domain constructs: Array, Product,
Union,...

Programming Languages • MISHRA 2008



Lecture #5 • 15

—Slide 15—

Type Abstraction

• A problem may require representations, that
cannot be properly abstracted by integers,
reals etc.
—Simulating the behavior of a car

• Pascal provides type abstractions to create
abstract data types
— Information Hiding
— Machine independent

• Pascal provides primitive data types and or-
thogonal mechanisms for composing new com-
posite types from the primitive types.

Programming Languages • MISHRA 2008



Lecture #5 • 16

—Slide 16—

Primitive Types

• The primitive types supplied by Pascal:
— Real, Integer, Character, Boolean

• User-defined primitive type: Enumerated
type

Programming Languages • MISHRA 2008



Lecture #5 • 17

—Slide 17—

Primitive Types: Enumerated Types

• Enumerated Types:

type shortweek = (Monday, Tuesday, Wednesday);

• Describe whole set S of elements

• Operations
— Enumerated types have ordered set of el-
ements:

=, <, <=, >, >=, <>, :=, succ, pred, ord

• Other Operations:
—Other user-defined operations on the type
are also allowed

Programming Languages • MISHRA 2008



Lecture #5 • 18

—Slide 18—

Primitive Types: Subrange Types

• Allows one to specify a subset S ′ ⊂ S of
another set S, without explicitly listing all
the elements of S.

• Example

type DayOfMonth = 1 .. 31;

—The subset is specified by giving the min and the max

elements.

type week = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

type weekdays = Mon..Fri;

• Operations on the derived type: Same as the base types

var x : DayOfMonth;

One can apply the same operations as the ones defined for

the integers: {+, −, ∗, /, . . ., };

Programming Languages • MISHRA 2008



Lecture #5 • 19

—Slide 19—

Subrange Types

• Which Type is DoWop derived from?

type foo: (bar, baz, bop, bif)

boo: (baz, baf, bir, bop)

DoWop: baz..bop;

—Ambiguous

• In Pascal, the enumerated types must be
disjoint. Thus, foo and boo are illegal.

• Thus there is no ambiguity.

• Ada 95 resolves this problem in a completely
different manner.

[End of Lecture #5]

Programming Languages • MISHRA 2008


