
Lecture #4 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture # 4

Programming Languages • MISHRA 2008



Lecture #4 • 1

—Slide 1—

Principle of Orthogonality

• Orthogonal Design
Each component of a language should be indepen-

dent of other components.

• In a truly orthogonal design,

– There are a small number of separate basic con-

structs (e.g., data types, control structures, bind-

ings, abstractions, etc.)

– The constructs are combined according to regular

and systematic rules without arbitrary restric-

tions .

• Corollary
There should not be more than one way of expressing

any action in the language.

• Expressiveness vs. Complexity

The complexity of the language may increase without

a corresponding gain in facility.

Programming Languages • MISHRA 2008



Lecture #4 • 2

—Slide 2—

Control Structures

• Concatenation

begin

S0;

S1

end;

• Selection

if B0 then S0 case E of

else if B1 then S1 L0: S0;

... ...

else Sn; Ln: Sn

end;

• Iteration

while B do S; for I := I0 to In

do S;

• Termination/Escape

goto L; break;

return; continue;

exit; raise Exception

abort;

Programming Languages • MISHRA 2008



Lecture #4 • 3

—Slide 3—

Data Structures

• Scalar Types

– Predefined Types :

(numerals, characters, Booleans, reals)

– Enumerated Types : Discrete valued.

• Composite Types: Domain constructions:

– Products: A1 × A2 × · · · × An. (Cartesian Product)

Projection or Field Selection operation selects a com-
ponent. Examples: Pascal and Ada record, C struct.

– Sums: A1 + A2 + · · · + An. (Disjoint Union or Co-

product)

Injection operation constructs elements from the sum

by means of a “tag”. Examples: Pascal and Ada variant
record, C union.

– Function: A1 7→ A2 (Injective Map, Array)

Application or Subscription operation maps a value in
the domain (A1) to a unique value in the range (A2).

Examples: Pascal, Ada & C array

• Anonymous Types:
Access types in Ada, Pointers in C and Pascal.

Programming Languages • MISHRA 2008



Lecture #4 • 4

—Slide 4—

Examples of Domain Constructions

• Products of Domains

record

i: integer;

c: char

end;

All ordered pairs whose first components are integers and

the second components are characters.

• Sums of Domains

record case tag: Boolean of

true: (i: integer);

false: (c: char)

end;

Either an integer or a character, together with a Boolean

component to differentiate the two possibilities.

• Function Domains

array[char] of integer;

Describes a function mapping characters into integers. Each

array determines a unique integer ‘component’ for every

character ‘subscript.’

Programming Languages • MISHRA 2008



Lecture #4 • 5

—Slide 5—

Principle of Abstraction

• An abstraction facility may be provided for any se-

mantically meaningful category of syntactic con-

structs.

• Goals:

– No new syntactic category

– Simple compiler–Parameter passing, type checking

– Safety

• Abstraction is a process of extracting general struc-

tural properties in order to allow inessential details

to be disregarded.

• Examples

– Functions : Abstraction of expression.

– Procedures : Abstraction of statements.

– Macros & Inline Expansion: Abstraction of lexical struc-
ture.

– Classes & Packages : Abstraction of domains.

– Monitors, Tasks : Abstraction of processes.

Programming Languages • MISHRA 2008



Lecture #4 • 6

—Slide 6—

Examples of Abstractions

• Abstraction of an Expression

var F, G: real; function Convert(F: real):real;

G := (F-32.0)*5.0/9.0; begin

Convert := (F-32.0)*5.0/9.0

end;

• Abstraction of a Statement

begin procedure Swap(var U: real;

var U, V, Temp: real; var V: real);

var Temp: real;

Temp := U; begin

U := V; Temp := U;

V := Temp U := V;

end; V := Temp

end;

• Abstraction of a Type

const n: integer; type function

type String = String(const n: integer);

array[1..n] of char; begin

String = array[1..n] of char

end;

Programming Languages • MISHRA 2008



Lecture #4 • 7

—Slide 7—

Imperative Language: Assignment

• Objects in a program have two attributes:

– Location : L-value

– Value : R-value

X := X + 1; (* Pascal *)

X := .X + 1; (* BLISS *)

X := !X + 1; (* ML *)

• In Pascal, X in LHS is the L-value of X and X in RHS

is the R-value of X.

• In BLISS, X refers to the L-value and .X, the R-

value. BLISS allows arithmetic on L-values (pointer

arithmetic). . is an explicit dereferencing operator

in BLISS.

• In ML, X refers to the L-value and !X, the R-value.

! is an explicit dereferencing operator in ML.

Programming Languages • MISHRA 2008



Lecture #4 • 8

—Slide 8—

L-values

• Some languages allow L-valued expression: E.g., in
C++:

int a[10];

int& f(int i){return (a[i]);}

f(5) = 17;

f is an L-valued function

• If two L-valued expressions denote the same location,

they are called aliases for that location.

• FORTRAN allows explicit aliasing via EQUIVALENCE

construct.

• Every L-valued expression has an R-value; but not

the converse .

Programming Languages • MISHRA 2008



Lecture #4 • 9

—Slide 9—

Variations on Assignment

• Update Operation

L +:= E; (* ALGOL 68 *)

L += E; /* C */

L-value of L contains the sum of R-values of L and

E. R-value of L is obtained from a single evaluation

of its L-value.

• Multiple Targets:

L1 := L2 := ... := Ln := E;

(* ALOGOL 60 *)

All the L-values of L-expressions L1, L2, . . ., Ln, and

the R-value of E are evaluated. Then all the L-values

are updated.

Programming Languages • MISHRA 2008



Lecture #4 • 10

—Slide 10—

Variations on Assignment (contd)

• Multiple Assignments:

L1, L2, ..., Ln := E1, E2, ..., En;

(* ALOGOL 60 *)

All the L-values of L-expressions L1, L2, . . ., Ln, and

then all the R-values of E1, E2, . . ., En are evaluated.

Then all the L-values are updated, while maintaining

positional correspondence.

• Assignment Expression:

L := E (* ALOGOL 68 *)

L = E /* C */

The expression’s value is the R-value of L. The ex-
pression updates L as a side effect.

if((n += a) > 0) n--; /* C */

a = b = c = d = e;

/* C, = is right-associative */

Programming Languages • MISHRA 2008



Lecture #4 • 11

—Slide 11—

Pointer

• Pointer (Access, Anonymous Variable)
A variable E whose R-value is an L-valued expression
(or a special value null). Its L-value is a location
giving access to a storage indirectly. The L-value of
E^ is an anonymous variable which can be updated
as any other L-valued expression

E^ := E^ + 1;

• Allocation & Disposal
As pointers allow storage to be addressed indirectly, it may
be allocated and disposed of at arbitrary execution points.

In some languages, allocated locations are subsequently dis-

posed of explicitly by the user. In others, inaccessible loca-

tions are automatically searched for and disposed—garbage

collection.

• Inaccessible Locations

new(p); p := nil;

Programming Languages • MISHRA 2008



Lecture #4 • 12

—Slide 12—

Storage Insecurities

• Storage Insecurities
Dangling reference is a pointer to a location

that has potentially been used for another pur-

pose—

Extent (lifetime) of the location ended before all ways

of accessing the location have ended.

• Dangling reference can be created by alias-
ing and by implicit release of storage in
an activation record , with a pointer point-
ing to that storage.

var p, q: ^integer; var p: ^integer;

begin procedure q;

new(p); var i: integer;

q := p; begin

dispose(p) p := ADDR(i)

end; end;

Programming Languages • MISHRA 2008



Lecture #4 • 13

—Slide 13—

Binding

• Binding
Association of a name to an attribute . Following

are examples of some of the attributes:

– L-value—Location.

– Type—The set of possible R-values allowing a set

of allowable operations on them.

– Miscellaneous Constraints—Assertions, array bounds,

discriminant or tag values.

• Binding Points:
Binding is done by declarations & happens at dif-

ferent and invisible points after the program is sub-

mitted for execution.

The later the binding, the more flexible is the lan-

guage.

Programming Languages • MISHRA 2008



Lecture #4 • 14

—Slide 14—

Referential Transparency

• Scope
Scope of a name or a declaration =

The section of a program text in which the name has

the attributes established by declaration

• Referential transparency .
Thus scope corresponds to a local name space . Bound
occurrences of a variable can be renamed without
changing the meaning.

function succ(x:integer):integer;

begin

succ := x + 1;

end;

function succ(y:integer):integer;

begin

succ := y + 1;

end;

Programming Languages • MISHRA 2008



Lecture #4 • 15

—Slide 15—

Types

• Static Type-Checking

The type of an expression is known at the compile

time .

A language is strongly-typed, if all type checking

can be done at compile time.

—Fewer programming errors

—Better compiled code.

• A language is type complete if all the objects in

the language have equal status (first class citizens).

• Type Insecurities

A domain incompatibility cannot be determined at

compile time.

• Domain incompatibility is handled either by invoking

an exception that aborts the program with an error

message or by type coercion .

Programming Languages • MISHRA 2008



Lecture #4 • 16

—Slide 16—

Type Insecurities & Coercion

• Example

var (* PASCAL *)

wide:1..100; narrow:10..20; farout:150..300;

begin

narrow:=farout; wide:=narrow; narrow:=wide

end;

–Compiler cannot determine whether the last assign-

ment is illegal.

–Ada solves this by assigning a new compile-time

type for every subrange constraint.

• Type Coercion

If the operation and its arguments are incompatible
then convert the argument or the operation , so that
the types are compatible.

var (* PASCAL *)

x: real; i: integer;

x := i;

Programming Languages • MISHRA 2008



Lecture #4 • 17

—Slide 17—

Type Equivalence

• In the presence of structured types and user-defined

types, it is necessary to determine if two types are

equivalent.

• Two categories:

– Name Equivalence : Types with same name.

– Structural Equivalence :

Types with same structure.

• Example

declare

type BLACK is INTEGER;

type WHITE is INTEGER;

B:BLACK; W:WHITE; I:INTEGER;

begin W := 5; B := W; I := B; end;

–All assignments are legal under structural equiva-

lence;

–All assignments are illegal under name equivalence.

Programming Languages • MISHRA 2008



Lecture #4 • 18

—Last Slide—

Type Equivalence (Contd)

• Structural equivalence is hard to determine:

--Ada

type T1 is record type T2 is record

X:INTEGER; X:INTEGER;

N:access T1 N:access T2

end record; end record;

type T3 is record type T4 is record

X:INTEGER; X:INTEGER;

N:access T2 N:access record

end record; X: INTEGER;

N: access T4

end record;

end record;

• Examples

C Structural Equivalence

C++ Name Equivalence

PASCAL Declaration/Name Equivalence

Ada Name Equivalence

[End of Lecture #4]

Programming Languages • MISHRA 2008


