
Lecture #3 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture # 3

Programming Languages • MISHRA 2008

Lecture #3 • 1

—Slide 1—

Formal Syntax

• Syntax and semantics of a language is de-
scribed by a meta-language

• Abstract Syntax lists all possible forms for each

of the syntactic classes. It lists the syntactic classes

along with the symbols that stand for arbitrary ele-

ments of the classes.

• Concrete Syntax tells us the phrase structure of

a well-formed sentence in the grammar.

• Example Abstract syntax tells us that following state-

ments are well-formed

if a then p

if a then p else q

if a then if b then p else q

Concrete syntax tells us which then the else-part matches

to.

Programming Languages • MISHRA 2008

Lecture #3 • 2

—Slide 2—

Meta-Languages for Concrete Syntax

• Variants of CFG
(Context-Free Grammar)

– BNF (Backus-Naur Form)
(Also called PBF—Panini-Backus Form)

– EBNF (Extended BNF)

– Syntax Diagrams (or Syntax Charts)

Programming Languages • MISHRA 2008

Lecture #3 • 3

—Slide 3—

Backus-Naur Formalisms

• Terminal Symbols (Tokens):

Atomic Symbols in a language: a, b, . . ., 1, 2, . . .,

+, *, . . ., or, div, . . .

• Non-terminal Symbols (Syntactic Constructs):

<expression>, <term>, <literal>, . . .

• Starting Nonterminal:

A distinguished non-terminal representing the main-

construct.

• Production Rules:

Rules specifying components of a construct.

1. LHS = Non-terminal

2. RHS = A string of terminals & non terminals

LHS ::= RHS

<expression> ::= <term>

| <expression> <addop> <term>

<term> ::= <factor> | <term> <multop> <factor>

Programming Languages • MISHRA 2008

Lecture #3 • 4

—Slide 4—

Example: Grammar for Expression

<expression> ::= <term>

| <expression> <addop> <term>

<term> ::= <factor>

| <term> <multop> <factor>

<factor> ::= <identifier>

| <literal>

| <expression>

<identifier> ::= a | b | c | ... | z

<literal> ::= 1 | 2 | 3 | ... | 9

<addop> ::= + | - | or

<multop> ::= * | / | div | mod | and

Programming Languages • MISHRA 2008

Lecture #3 • 5

—Slide 5—

Phrase Structure

• The grammar specifies the phrase structure
(i.e., expression, terms, factors, etc.) of the
valid text...Not merely what text is recog-
nizable.

• The phrase structure disambiguates in the following
example, by assigning higher precedence to <multop>
than <addop>.

a + b*c a*b + c

<expression><addop><term>

• The phrase structure also disambiguates by making
both <multop> and <addop> associate to the left.

a / b / c a - b - c

<term><multop><factor> <expression><addop><term>

• In general, there is no way of testing whether a syntax

is ambiguous.

Programming Languages • MISHRA 2008

Lecture #3 • 6

—Slide 6—

Extended BNF

• Nonterminals begin with capital letters

• Terminals are quoted

• Metalanguage

...|... = choice, (...) = grouping

{...} = repetition (zero or more)

[...] = optional construct

• Example

<expression> ::= <term> {<addop> <term>}

<term> ::= <factor> {<multop> <factor>}

<factor> ::= <identifier> | <literal> | <expression>

<identifier> ::= a | b | c | ... | z

<literal> ::= 1 | 2 | 3 | ... | 9

<addop> ::= + | - | or

<multop> ::= * | / | div | mod | and

Programming Languages • MISHRA 2008

Lecture #3 • 7

—Slide 7—

Syntax Charts

• A graphical way of writing the productions (grammar)

• Nonterminal ⇒ Sub-Charts

• Productions ⇒ Paths through the charts

expression

term

term addop term

factor multop factor

factor

expression

identifier

literal

Programming Languages • MISHRA 2008

Lecture #3 • 8

—Slide 8—

Syntax Charts (contd)

+

-

or

addop

*

/
multop

div

mod

and

identifier

. . .

literal

. . .

b

1

2

9

a

z

Programming Languages • MISHRA 2008

Lecture #3 • 9

—Slide 9—

Formal Semantics

• A formal description of the semantics of a
programming language is a precise specifi-
cation of the meaning of programs.

• To be used by

Programmers, Language Designers & Im-

plementers, Theoreticians—investigating language

properties.

• Denotational Semantics
A Semantic Function: mapping Syntactic Struc-

tures into Mathematical Objects.

Denotational: Meaning of any composite phrase
is expressed in terms of the meanings of its
immediate constituents.

Programming Languages • MISHRA 2008

Lecture #3 • 10

—Slide 10—

Example: Binary Numerals

• Abstract Syntax

N ∈ Nml Binary Numerals

N ::= 0 | 1 | N0 | N1

• Semantic Domain

N = {zero} + N natural numbers

= {0, 1, 2, . . .}

• Semantic Function

N : Nml → N

N [[0]] = 0

N [[1]] = 1

N [[N0]] = 2 ×N [[N]]

N [[N1]] = 2 ×N [[N]] + 1

Programming Languages • MISHRA 2008

Lecture #3 • 11

—Slide 11—

Semantic Domains

• Basic Values, B: E.g., Truth Values, Integers, . . .

• Stores, s ∈ S = Ide → (B + {unused})

Maps an identifier I ∈ Ide to its value s[[I]].

• Expressions, E ∈ E : Exp → S → (B + {error})

E [[E]]s is the value of E relative to store s.

• Commands, C ∈ C : Com → S → (S + {error})

C[[C]]s is the result of executing C relative to store s.

• Thus, we have semantics of ;

C[[C1; C2]]s =



























C[[C2]]g, if g ∈ S

where g = C[[C1]]s

error, otherwise.

• Other domains: Environments, Continuations,

. . .

Programming Languages • MISHRA 2008

Lecture #3 • 12

—Slide 12—

Hierarchy of Languages

High Level

Low Level

Microcode

Object(Binary)

Assembly

Fortaran, Bliss & C

Algol, Pascal, Modula, Ada

LISP

Scheme

Prolog Smalltalk

Functional Language

Imperative

Logic Programming

Declarative

Object-Oriented

Applicative

• “Low Level” means close to machine language

• “High Level” means away from machine language
—Closer to natural description of an algorithm.

Programming Languages • MISHRA 2008

Lecture #3 • 13

—Slide 13—

Classes of Language

• Imperative (procedural), Applicative (func-
tional) & Declarative

• Imperative:

– A program is a sequence of commands changing

state/store.

– Objects are constructed by these statements.

• Applicative:

– A program is a sequence of function definitions

and applications.

• Declarative:

– Objects are described rather than constructed.

[End of Lecture #3]

Programming Languages • MISHRA 2008

