
Lecture #2 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture #2.5

Programming Languages • MISHRA 2008



Lecture #2 • 1

—Slide 1—

Recapitulation

• Computers work in machine language, which
is difficult for human understanding; Assem-
bly languages were invented to provide mnemonic
abbreviations;

• Originally, assembly language was designed
with a one-to-one correspondence with ma-
chine language; Translating from assembly
language to machine language was done with
an assembler ;

• Higher level machine-independent languages
(starting with numerical computation): For-
tran (1950s)

• Other high-level languages like Lisp and Al-
gol.

Programming Languages • MISHRA 2008



Lecture #2 • 2

—Slide 2—

Compilation and Interpretation

• Compilers were devised to translate high-
level languages to assembly- or machine-languages

• Source program is translated by a compiler
into a target program (at compile time); when
the user runs the target program, it takes an
input and computes the output.

• The compiler is the locus of control during
compilation; the target program is the locus
of control during its own execution.

• An interpreter takes a source program and
the input, and interprets each program state-
ment one at a time to produce the computed
output.

• Interpreter is the locus of control during ex-
ecution.

Programming Languages • MISHRA 2008



Lecture #2 • 3

—Slide 3—

Virtual machine

• Most language implementations include a
mixture of both compilation and interpre-
tation;

• A source program is translated (by a Trans-
lator) into an intermediate program; the in-
termediate program together with an input
is executed on a virtual machine (by an In-
terpreter) to produce an output.

Programming Languages • MISHRA 2008



Lecture #2 • 4

—Slide 4—

•

• Implementation of Java: The Java lan-
guage definition defines a machine indepen-
dent intermediate form: byte code

• Byte code is the standard format for distri-
bution of Java programs; it allows program
to be transferred easily over the inter-net
and then run on any platform.

• Java implementations used to be based on
byte-code interpreters; but more recent faster
implementations employ just-in-time com-
piler that translates byte-codes into machine
language immediately before each execution
of the program.

Programming Languages • MISHRA 2008



Lecture #2 • 5

—Slide 5—

Additional Tools

• Linker: A compiler (as in Fortran) may
translate the source program to a machine
language, but cannot execute it without aux-
iliary library of subroutines; the compiler
relies on a separate program, known as a
linker to merge the appropriate library rou-
tines into the final program.

• Assembler: Many compilers generate as-
sembly language code instead of machine
language. It needs an assembler to trans-
late the assembly code to machine language.
It isolates the compilers from changes in the
format of the machine language (usually man-
dated by the operating system)

Programming Languages • MISHRA 2008



Lecture #2 • 6

—Slide 6—

• •

• Preprocessor: A preprocessor may be
used to create a “modified source program”
that can easily/efficiently compiled into as-
sembly language: It may remove comments,
expand macros, aid conditional compila-
tion, etc.

• There are other variations to these themes...

Programming Languages • MISHRA 2008



Lecture #2 • 7

—Slide 7—

• • •

• Compiler compiler: From the specifica-
tion of a programming language semantics,
and of a computer machine architecture, it
generates a complier automatically; it usu-
ally works on the front-end and back-end
separately. The front end consists of pre-
processor, syntax and semantics analyzer,
etc. and generates machine-independent in-
termediate code; the back end consists of
code generator, optimizer, linker, assembler,
etc. and generates the machine language
code from intermediate code.

Programming Languages • MISHRA 2008



Lecture #2 • 8

—Slide 8—

Programming Environments

• Editors: Cross-referencing facilities; syntax-
directed editing, etc.

• Pretty Printers: Enforce formatting con-
ventions;

• Style Checkers: Enforce syntactic or se-
mantic conventions (often more stringent than
that required by the compiler);

• Configuration Management Tools: Track
dependence among the (many versions of)
separately compiled modules;

• Perusal Tools:

• Debuggers:

• Profilers and other Performance Anal-

ysis Tools:

Programming Languages • MISHRA 2008



Lecture #2 • 9

—Slide 9—

The Programming Language Spectrum

• Declarative

– Functional: Lisp, Scheme, ML, Haskell

– Data Flow: Id, Val

– Logic, Constraint-based: Prolog, (spread-
sheet)

– Template-Based: XSLT

• Imperative

– von Neumann: C, Ada, Fortran, etc.

– Scripting: Perl, Python, PHP, Ruby, etc.

– Object-Oriented: Smalltalk, Eiffel, C++,
Java, etc.

Programming Languages • MISHRA 2008



Lecture #2 • 10

—Slide 10—

•

• Functional Languages: Use a computational
model based on the recursive definition of
functions. Based on λ-calculus, that for-
malizes operations on function: Developed
by Alonzo Church (1930). Examples: Lisp,
ML, Haskell.

• Data Flow Languages: Use a computational
model based n the flow of information (to-
kens) among primitive functional nodes. An
inherently parallel (distributed, concurrent)
model... Examples: Id, Val, Sisal.

Programming Languages • MISHRA 2008



Lecture #2 • 11

—Slide 11—

•

• Logic or Constraint-Based Languages: Use
a computational model based on predicate
logic. A specified relationship is described;
an inference engine attempts to find values
that satisfy the specification. Example: Pro-
log, Excel, VisiCalc or Lotus 1-2-3.

• von Neumann Languages: Use a compu-
tational model (Turing Machine) based on
configurations and commands to transform
configuration. (“Stuff doing stuff to other
stuff.”) Primarily, based on statements (as-
signments, etc.) that influence subsequent
computations via the side effects of chang-
ing the value of memory. Examples: For-
tran, Ada 83, C, etc.

Programming Languages • MISHRA 2008



Lecture #2 • 12

—Slide 12—

•

• Object Oriented Languages: Closely related
to vN languages, but have a much more
structured and distributed model of both
memory and computation. They use a model
involving semi-independent objects, each of
which has both its internal states and meth-
ods/subroutines to manage those states. Ex-
ample: Smalltalk, C++, Java, CLOS (Com-
mon Lisp Object Systems), etc.

• Scripting Languages: A subset of vN lan-
guages; work by “gluing together” compo-
nents originally developed as independent
programs. Examples: csh, bash, Awk, Java
Script, PHP, Perl, Python, Ruby, Tcl, etc.

Programming Languages • MISHRA 2008



Lecture #2 • 13

—Slide 13—

Criteria for Selecting a Language

• Expressive Power : Church-Turing Thesis:
All languages are equally powerful; however,
each one may give an advantage in describ-
ing a language over another; Ability to write
clear, concise, readable, maintainable code
for large systems... Examples of features in
Common Lisp or Ada.

• Ease of Use (by a novice): Learnability.
Created out of few orthogonal set of facili-
ties that can be combined in a powerful way.
Example: Java is much simpler than C++,
and is almost as easy to learn as Pascal.

Programming Languages • MISHRA 2008



Lecture #2 • 14

—Slide 14—

•

• Ease of Implementation : Certain languages
are designed to be very close to machine
level and can be implemented very easily;
Examples: C, Bliss, Pascal (through P-code),
Scheme, etc.

• Efficiency/ Excellent Compilers : Ability
to design good, portable, optimizing com-
pilers; Examples: Java, Common Lisp, etc.

Programming Languages • MISHRA 2008



Lecture #2 • 15

—Slide 15—

•

• Open Source: Existence of a user commu-
nity that contribute to evolve the language
to suite the changing needs of the commu-
nity. Examples: C/Unix,

• Inertia, Economics, Patronage, etc.: Com-
mercially backed to achieve market monopoly.
Examples: Ada(DoD), PL1 (IBM), Bliss (DEC),
C# (Microsoft), etc.

Programming Languages • MISHRA 2008



Lecture #2 • 16

—Slide 16—

Why study languages?

• See a common theme running through the
language design landscape: Despite appar-
ent differences, all languages are put together
out of few common features!

• Understand obscure features : Languages
have obscure features (rendezvous in Ada
with certain communication features), but
they make sense in certain contexts!

• Choose among alternative ways to express
things : Languages allow you to develop pat-
terns, idioms and styles depending on how
you wish your code to be understood by
other users (readability) or by the compiler
(efficiency)!

Programming Languages • MISHRA 2008



Lecture #2 • 17

—Slide 17—

•

• Make good use of debuggers, assemblers,
linkers and other tools : Understanding the
implementation details may help you to avoid
or correct a bug!

• Simulate useful features in languages that
lack them : An algorithm may have a nat-
ural structure that has to be tailored to fit
the features of a language in as natural a
way as possible! Writing Quicksort in an
early Fortran!

• Make better of language technology wher-
ever they appears : You may need to use
a language technology to describe a specific
set of ideas! Designing a XML specification
for bioinformatics microarray data.

Programming Languages • MISHRA 2008



Lecture #2 • 18

—Slide 18—

Rationale

Do not forget that languages are not designed
rationally! Most of the languages one studies
are flawed, ad hoc, put together by committees,
and left neglected! So, in them, do not look for
any sign of “intelligent design.”

Programming languages may have hindered
the intellectual growth of computer science as a
discipline more than anything else.

Programming Languages • MISHRA 2008



Lecture #2 • 19

—Slide 19—

•

Historical forces that have affected program-
ming languages...

• Evolution: Computer science is still a young
field, and is experimenting with new ideas:
structured programming, object oriented pro-
gramming, etc.

• Special Purposes: Some languages were
designed to solve a specific problem, but
then influenced unrelated sub-disciplines. Sim-
ula was designed to simulate real objects
and their interactions, but gave rise to OOP!

• Personal Preference: Language as the-
ology. Different people like different things,
but often most vocal people win!

[End of Lecture #2.5]

Programming Languages • MISHRA 2008


