
Lecture #2 • 0

V22.0490.001
Special Topics: Programming Languages

B. Mishra

New York University.

Lecture #2

Programming Languages • MISHRA 2008

Lecture #2 • 1

—Slide 1—

What Constitutes a Programming
Language?

• Desiderata

1. Every ‘computable function ’ can be ex-
pressed.
Note: “Application Level” language 6= Full Pro-

gramming Language. E.g., Job Control Lan-

guage , Database Language .

2. Every program is unambiguous and im-
plementable.
E.g., English 6= a Programming Language

• Turing Computable
A function can be computed by a Universal
Turing Machine.

Programming Languages • MISHRA 2008

Lecture #2 • 2

—Slide 2—

Church-Turing Thesis

Any function that can be described finitely
and computed in finite time is Turing-
computable.

Every computable function is Turing-
computable.

• Examples
1) Turing Machine, 2) Church’s λ-calculus

3) Thue System 4) Post Correspondence Process

5) Markov Systems

6) Fredkin’s Billiard Ball Machine

7) Feynmann’s Quantum Computers

8) Adleman’s DNA Computer . . .

• Human Brain + infinite supply of ink and
papers

Programming Languages • MISHRA 2008

Lecture #2 • 3

—Slide 3—

Unsolvable Problems!

• Note:
There are “countably” many computable func-
tions. But there are “uncountably” many
functions,
N 7→ {0, 1}.

• Diagonalization argument:
Alan Turing showed that

There are functions that are not Turing-
computable.

• Halting Problem:
Is a given program in an “highly expressive
language” (e.g., Pascal) nonterminating?

Programming Languages • MISHRA 2008

Lecture #2 • 4

—Slide 4—

Turing Machine

s

...
1 0 1 0 0 1 1 0 0 1

....

Infinite Tape

Finite State Control

Current state

Input /output "head"

• According to its “program” (i.e., Finite State Control) and

“input” (i.e., initial string on the tape)

– Read the current symbol on the cell on the

tape under the head.

– Check the current state

– Write a new symbol on the tape

– Move the head left or right one cell

– Go to the next state

• The next state is a function of the current state and the

current symbol.

Programming Languages • MISHRA 2008

Lecture #2 • 5

—Slide 5—

Turing Machine

• A Turing Machine is equivalent to a pro-
gram.

• Universal Turing Machine

Given any Turing machine M and
some inputW , a universal Turing ma-
chine U will mimic (i.e., simulate) the
behavior of M on W .

U(M,W) ≡ M(W)

• Virtual Machine

PROGRAM ≡ TURING MACHINE

PROGRAMMING

LANGUAGE

≡ UNIVERSAL T.M.

Programming Languages • MISHRA 2008

Lecture #2 • 6

—Slide 6—

von Neumann Architecture

• John von Neumann

(1940’s, Burks, Goldstein & von Neumann)

Central Processing Unit (CPU)

Control

Unit

Arithmetic
Unit

I/O

Unit

von Neumann Bottleneck

Memory

A R

• “Dance-Hall Architecture”

• Original Design

1. CPU: 2 registers:

A = Accumulator, R = Register

2. MEMORY: 4096 Words (40 bits)

Data or Instructions

Programming Languages • MISHRA 2008

Lecture #2 • 7

—Slide 7—

Instruction Set Architecture

• Data: Only integers

• Arithmetic Operations:

Add, Subtract, Multiply, Divide, Absolute Value

• Add & Subtract:
result was held in an accumulator.

A := A + M[i]; A := A - M[i];

A := A + |M[i]|; A := A - |M[i]|;

A := - M[i]; A := |M[i]|; A := -|M[i]|;

A := A * 2; A := A div 2;

{A, R} := { (M[i]*R) div 2^39, (M[i]*R) mod 2^39 };

{A, R} := { A mod M[i], A div M[i] };

• Assignment to Memory Location

A := M[i]; M[i] := A; R := M[i]; A := R;

• Control Flow

goto M[i].left; goto M[i].right;

if A >= 0 if A >= 0

goto M[i].left; goto M[i].right;

Programming Languages • MISHRA 2008

Lecture #2 • 8

—Slide 8—

Modifiable Statements

• Since data & instructions are treated the same way,

the instructions can be manipulated just as data.

• Modifiable statements

– Modify the address in M[i].left from A

– Modify the address in M[i].right from A

• Usage: Array indexing in von Neumann’s machine.

In the modern architectures, index registers solve this

problem.

• Amenable to misuse, as control structure of a pro-
gram can be modified dynamically.

9.left) A := <address>;

9.right) Modify M[10].left from A;

10.left) goto M[3].left

Question: Where does the control transfer?

Programming Languages • MISHRA 2008

Lecture #2 • 9

—Slide 9—

Machine Language

• Binary Code: Each Instruction is coded in
binary.
Machine operations, Values & Storage Lo-
cations

• RISC (Reduced Instruction Set Computer)

CISC (Complex Instruction Set Computer)

• Depends upon

1. Register Structure

2. Data & Control Paths

3. Pipelining, Prefetching

4. Microprogramming

Programming Languages • MISHRA 2008

Lecture #2 • 10

—Slide 10—

Assembly Language

• Symbolic Names are assigned to opera-
tions, values and locations.

• Assembler: 2-pass

Pass I: Locations are assigned addresses.

Pass II: Symbolic Names 7→ Codes

Programming Languages • MISHRA 2008

Lecture #2 • 11

—Slide 11—

Translators

• Compiler:
Translates source code into target code (in machine

language) at compile time.

The target code takes input data and produces out-

put data at run time

• Interpreter:
Interprets an instruction in the language in terms

of the equivalent sets of operations in the machine

language.

Takes instructions and input data and produces out-
put data.

K := I + J; LOAD I; 1001 0000;

ADD J; 0001 0001;

STORE K; 1010 0010;

(High-Level) (Assembly) (Machine)

Programming Languages • MISHRA 2008

Lecture #2 • 12

—Slide 12—

Description of a Programming Language

• Syntax: The grammatical structure.

• Semantics: The meaning of the constructs.

• Pragmatics: Practicality

– Implementation Issues

– Efficiency

– Portability

– Interactive/ Static

• Aesthetics: Appeal or usability based on the

design principles.

– Reasoning about programs

– Program Synthesis

– Verification

– Analysis

Programming Languages • MISHRA 2008

Lecture #2 • 13

—Slide 13—

Syntax

• A set of rules governing the organization of “sym-

bols” in a program.

• Formalisms: PBF/ BNF (Panini-Backus Form, Backus-
Naur Form, Backus Normal Form), EBNF (Extended
BNF), Syntax Chart

<sentence> ::= <noun> <verb>

<noun> ::= bud | sam | tom

<verb> ::= hacks | builds | proves

• Syntax restricts

– Names: variables, procedures

– Expressions: Identifiers, their order & opera-

tors

– Statements

– Definitions: Procedures, declarations

– Programs: Groups of all of above

Programming Languages • MISHRA 2008

Lecture #2 • 14

—Slide 14—

Syntax (contd)

• Examples of Syntactic Errors

"Illegal variable name"

"Missing semicolon"

• Compiler uses lexer & parser to deter-
mine the structure (parse tree). Relatively
easy, for most programming languages.

Programming Languages • MISHRA 2008

Lecture #2 • 15

—Slide 15—

Semantics

• Semantics defines the behavior of the con-
structs in a programming language.

• Gives meanings to a program.

Allows precise interpretation of a program.

1. Compilers use it for “syntax-driven semantics

analysis”

2. Semantics definition of language. Eliminating se-

mantics ambiguities.

3. Helps users in reasoning/pondering about pro-

grams.

Programming Languages • MISHRA 2008

Lecture #2 • 16

—Slide 16—

Types of Semantics

• Operational Semantics
Language is defined by its implementation on an “ab-
stract” machine.

– VAX compiler for C on UNIX

– VDL (Vienna Definition Language) for PL/1

• Axiomatic Semantics
Axioms are defined for statements specifying post-
conditions given their pre-conditions

– Post-condition: what must be true after executing a

statement ,

– Pre-condition: what was true before the statement

was executed .

• Denotational Semantics

– Semantics Valuation Functions: Map syntactic con-

structs to abstract values they denote—e.g., numbers,
truth values, functions, etc.

– Value denoted by a construct is specified in terms of
the values denoted by its syntactic subcomponent .

[End of Lecture #2]

Programming Languages • MISHRA 2008

