Assignment 4

Linear Algebra and Page Rank

Due: November 13th, 2019 at the end of class.
For any doubts or queries regarding assignment please attend office hours on Monday 9:30-10:30 in CIWW 412. The assignment can we written or typed. Please write your name and netID on the assignment.

1. If you are given a system of equations in n variables then it can be solved using matrices. The coefficients of the variables can be written in a Matrix denoted by A. The variables can be written as a vector denoted by x and constants can be written as a vector denoted by b .

So the equations:

$$
\begin{aligned}
& 2 y+3 z=1 \\
& 4 y+2 z=2
\end{aligned}
$$

Can be rewritten as
$\mathrm{Ax}=\mathrm{b}$ where

$$
\mathrm{A}=\left[\begin{array}{ll}
2 & 3 \\
4 & 2
\end{array}\right] \quad \mathrm{x}=\left[\begin{array}{l}
y \\
z
\end{array}\right] \quad \mathrm{b}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

And solved by

$$
\begin{aligned}
\mathrm{x} & =A^{-1} b \\
\mathrm{~A}^{-1} & =\left[\begin{array}{cc}
-0.25 & 0.375 \\
0.5 & -0.25
\end{array}\right] \\
\mathrm{x} & =\left[\begin{array}{cc}
-0.25 & 0.375 \\
0.5 & -0.25
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
0
\end{array}\right]
\end{aligned}
$$

Solve the following by converting into a system of equations and solving using matrices: A chocolatier is making 5 identical boxes. She has $\$ 610$ to spend (including tax) and wants 24 chocolates for each bouquet. Roches cost $\$ 6$ each, Toblerone cost $\$ 4$ each, and Lindor cost $\$ 3$ each. She wants to have twice as many Roches as the other 2 chocolates combined in each box. How many Roches, Toblerones, and Lindors are in each box?
2. Write the matrix obtained by the chocolate equations in question 1 as a sum of a symmetric and skew symmetric matrix. Find such matrices.
Hint: Any matrix can be written as a sum of symmetric and skew-symmetric matrix. (Google it)
3. Consider the following graph:

The page rank algorithm will initialize each node with a rank of $1 / \mathrm{N}$ where N is the number of nodes (5). Compute the page rank of each node after one iteration.

