
Chapter 6 Notes

Jonathan D Lima

1 Machine Learning Basics

Here we’ll quickly recap a few basic ideas from the previous section, so that
we can observe the role that they play in the design of Artificial Neural
Networks (ANN).

• Parametrize a Family of Functions: fθ(x).

– θ: An (often vectorized) parametrization of the family.

– x: An element from our input space.

• Define a Loss Function: L(y, ŷ).

– L: Often the Negative Log-Likelihood (NLL) for some probabilis-
tic model.

– ŷ: The predicted value fθ(x).

– y: An element from our output space (corresponding to x).

• Define a Training Criterion (plus Regularizer): C(θ)

– First term approximates EP (x,y)[L(y, fθ(x))] ≈ 1
N

∑
i L(yi, fθ(xi)).

– Ω(θ): Regularizer enforces prior belief or preferences about θ,
(e.g. linear combination of L1 and L2 norm).

• Define an Optimization Procedure:

– Procedure to determine θ∗ = argminθC(θ)

– Optimization can be analytic (OLS), convex (Logistic Regres-
sion), or non-convex (most ANNs).

1

2 Feedforward Deep Networks

A graphical network of nodes, representing a computation from input nodes
(x) to output nodes (y). Each node is a simple function most often comprised
of an affine transformation (a → b + wT · a) composed with a non-
linear transformation (examples to follow). A whole layer of nodes can
be represented as

hk = gk(bk +W kh(k−1)), (1)

where hk is the output of the kth layer, gk is the nonlinear transformation
occuring at the kth layer applied elementwise, and bk and W k are weights
which parameterize the kth layer of the learned predictor. The layers be-
tween input and output are referred to as hidden. The depth of the net-
work (which coincides with the notion for partially ordered sets) is equal to
the number of hidden layers plus one.

• Advantages of Deep Networks

– A general framework (such as GLM) with flexibility to handle
many different types of data generating mechanics, using different
node functions and loss functions (discussed below).

– Comes with a similarly general gradient computation procedure
(back-propogation) to assist gradient optimization methods.

– As a function, can theoretically approximate arbitrarily complex
smooth functions with only one hidden layer.

– In practice, can efficiently (in data and computation) represent
complex relationships using more hidden layers.

• Disadvantages of Deep Networks

– Typically non-convex optimization makes result highly dependent
on initialization of parameters.

– Somewhat limited interpretability.

• Kicker

– Can do better than random initialization! (Future chapter)

2

3 Node Functions

Below we introduce several common node functions, giving definition for
future discussion or reference. It should be noted that there is ambigu-
ity regarding what is considered the work of one node, as opposed to the
composition of two or more. Below we simply discuss building blocks.

• Many common node functions are evaluated on a scalar which is often
the result of an affine transformation: h(a) = g(b+ wT · a) = g(z).

– Rectifier, Rectified Linear Unit: g(z) = max(0, z).

– Hyperbolic Tangent: g(z) = tanh(z) = e2z−1
e2z+1

.

– Sigmoid: g(z) = 1
1+e−z .

– Hard Tanh: g(z) = max(−1,min(1, z)).

– Absolute Value Rectification: g(z) = |z|.
– Soft-Plus: Smooth version of rectifier

– Max-Out: g(z) = maxi(bi + wi · z)

• Other node functions require a full input vector, a, rather than just a
scalar (such as z above).

– Soft-Max: h(a) = p, if pi = eai∑
eaj

– Radial Basis Function: h(a) = e−‖w−a‖
2/σ2

The factors that effect the choice of hidden node functions are different
from those that effect the decision of output node functions. Hidden node
functions are often bounded (tanh, sigmoid, ...) which give an internal clus-
tering or classification behaviour even if the end goal is regression. Some
asymetrically take on a value of 0 part of the time and a positive value the
other (rectifier), simulating the biological phenomenon of sparse activa-
tion, allowing certain mechanisms to act on some inputs, x, and not on
others.

On the other hand output nodes must be constrained to fit the nature of
the desired result, which differs in classification, regression, and other appli-
cations. A good way to think about this is through the lens of generalized
linear models (GLM), which is essentially depth one ANN. GLM is general
regression technique that applies to exponential families. The output layer
of ANN roughly corresponds with the (inverse) link in GLM, which has a
canonical choice for each distribution in the exponential family.

3

4 Training Criterion and Regularizer

4.1 Loss Function

Just as we discussed above with the output layer, the loss function should
be taylored to the machine learning task, and accompanying probabilistic
model. It is mentioned in 6.0.4 that using mean-squared-error (MSE) yields
an estimator for EP (x,y)[y|x], (if this function can be approximated by a
function in the parametrized family).

That being said, with data which is conditionally Bernoulli with rare
events MSE can overstate accuracy, whereas the negative-log-likelihood (NLL)
of the Bernoulli model will correctly handle such errors. For this reason the
appropriate NLL is often the loss function used. This again, is reminiscent
of GLM, in which the loss function varies canonically with the probabilistic
model.

4.2 Regularizers

Just as in most Bayesian methods, regularization of ANN can be viewed
as prior on the effects of (input or internal) variables, the most common
prior being that the variables have no effect. Common and simple forms of
regularization for ANN are linear combinations of L1 and L2 norms. The
L2 norm penalizes substantial deviation from 0, and the L1 norm penalizes
all deviation from 0 equally. For this reason the L1 norm tends to lead to
a sparse network, with many of the internal weights approximately equal to
0. Regularization can also be achieved by limiting the edges between layers,
as opposed to allowing full connectivity between layers.

5 Optimization Procedure

As mentioned above ANN are equipped with a general gradient procedure,
which make them suitable for gradient based optimization protocol’s such as
gradient descent. While the number of variables typically makes Newton’s
method (which requires a Hessian) infeasible, quasi-Newton methods such
as BFGS (more prominently limited memory LBFGS), which are known
to exploit the curvature of the function without requiring a Hessian, are
commonly used. Because batch learning requires using the full set of data,
which is often infeasible due to size, or impractical in the case of many
applications in which the data is constantly growing, most training of ANN
is done online in mini-batches (sometimes indicidual training examples).

4

5.1 Gradient Procedure: Backpropogation

The gradient procedure mentioned above is referred to as backpropoga-
tion. In its most general form, backpropogation is referred to as automatic
differentiation and applies to any acyclic flow graph, a directed graph-
ical decomposition of a computation into simpler node computations, and
edges carrying results. Equipped with partial derivatives formulae for each
(node function, node input), as one executes the flow graph, one can simul-
taneously compute partial derivatives of node functions with respect to its
inputs (parent nodes).

Applications of the chain rules, allow one to use these partial derivatives
to compute the partial derivative of any node function with respect to any
ancestor. With this in mind, we can add one additional layer to the end of
our ANN which takes the output, ŷ, and the training output, y, and executes
the loss L(y, ŷ) (because the regularizer is typically independent of training
data and has a simple gradient calculated using the weight parameters alone,
it is left out here). With this addition the network is now a flow graph
for the computation of L(y, ŷ). The procedure of backpropogation can be
applied to obtain ∇θL(y, ŷ), or more frequently 1

n

∑
i∇θL(yi, ŷi) (over some

minibatch).

5

