
BIGDATA: Collaborative Research:F: Manifold Hypotheses and Foundations of
Data Science with Applications

It is often said that progress in science is characterized by successive steps of measurement,
arithmetization, algorithmization, and algebraization – each step representing in a succinct manner
the intuitions collected in the earlier step. In sciences, various breakthrough in technology, e.g., se-
quencing, high-throughput measurement of DNA/RNA abundance, electron and scanning tunneling
microscopy, astronomical studies, space telescopes, collection of social-media data, on-line observa-
tions of human interactions, etc., have made it possible to obtain a quantitative arithmetic picture
of the “states” of a complex structure (cell, organism, population, social groups, universe) at a cer-
tain instant and under certain conditions. As the complexity of the systems studied have scaled, the
“bigness” of the data has grown spectacularly; many scalable exact and approximate algorithms have
been proposed; a unifying foundational study of the emerging “data science” has become prominent,
and yet, it shies away from the final step of the algebraization of data sciences. Such an approach
could center around the so-called “Manifold Hypothesis,” that seeks a differential algebraic structure
in the state-space – to be inferred from the sampled data point clouds.

We wish to build on “Manifold Hypothesis” to create an algebraic (geometric/topological) inves-
tigation of existing and emerging Big Data approaches in computer science, statistics, computational
science, and mathematics, along with innovative applications in domain sciences, namely, cancer bi-
ology, linguistics and the physical sciences that lead towards the further development of the field of
data science. Thus, the main emphasis of our study is “Foundational” (F): focusing on fundamental
theories, techniques, methodologies, technologies of broad applicability to Big Data problems.

Intellectual Merit: The vision for this project rests on the growing importance of data science and
its multifaceted impacts, such as on genomics, Internet, society, astronomy and cosmology, where
the engineered system’s ability to generate quantitative data far supersedes the algorithmic and
computational resources, and on the belief that the most efficient and effective means for engineering
more powerful domain-agnostic analysis must build on a geometric (or topological) foundation of
data science. The current project will introduce new paradigms, theories and tools for “Manifold
Hypothesis,” connect it to related efforts in topological data analysis (TDA), machine learning, deep
learning neural nets, etc., and study its suitability by applying the framework to cancer biology
(somatic evolution), linguistics (creolization) and cryo-EM (structural biology). It will build on new
algorithmic techniques for geometric and topologic reasoning about an ensemble of data points as
they arise in different contexts. The proposed solution will aim to seamlessly combine formalisms
and techniques from differential and algebraic geometry, computational geometry, computational
topology, information-theory, machine learning and statistical estimation theories.

Broader Impact: The research in this project is devoted to providing computer scientists with
powerful new tools for designing and understanding the Big Data they create and deploy. Solving this
problem alone will have immediate economic and scientific benefits. At the same time, this challenge
is intended to illustrate the deeper level of scientific inquiry that the combination of techniques from
mathematics, information theory, machine learning and statistical estimation theory is expected to
enable. The proposal calls for the training and mentoring of undergraduate, graduate students and
post doctoral researchers. Outreach includes the development of new course material in Data Science
to be deployed at Cornell, MIT, NYU, and University of Washington.
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BIGDATA: Collaborative Research:F: Manifold Hypotheses and Foundations of
Data Science with Applications

1 Objectives

Theme of the proposal: A Unified Algorithmic Framework for for Data Science The
proposal seeks to create a mathematical framework to unify diverse algorithmic techniques in data
science to approach various issues raised by Big Data Problems coming from many different fields of
applications. Our approach is founded on “Manifold Hypothesis,” which claims that

“High dimensional data tend to lie in the vicinity of a low dimensional manifold, thus
providing the basis of manifold learning . The goal of data science is then to develop algo-
rithms (with accompanying complexity guarantees) for fitting a manifold to an unknown
probability distribution supported in a separable Hilbert space, only using i.i.d samples
from that distribution. More precisely, our setting is the following. Suppose that data
are drawn independently at random from a probability distribution P supported on the
unit ball of a separable Hilbert space H. Let G(d, V, τ) be the set of submanifolds of the
unit ball of H whose volume is at most V and reach (which is the supremum of all r
such that any point at a distance less than r has a unique nearest point on the manifold)
is at least τ . Let L(M,P ) denote mean-squared distance of a random point from the
probability distribution P to M .

We wish to obtain algorithms that test the manifold hypothesis in the following sense.
Any such algorithm takes i.i.d random samples from P as input, and determines which
of the following two is true (at least one must be):

1. There exists M ∈ G(d,CV,Cτ) such that L(M,P ) ≤ Cε.
2. There exists no M ∈ G(d, V/C,Cτ) such that L(M,P ) ≤ ε/C.

The answer is correct with probability at least 1− δ.”

Examples of low-dimensional manifolds embedded in high-dimensional spaces include: image
vectors representing 3D objects under different illumination conditions, camera views, phonemes in
speech signals, mutational data from tumors from multiple patients, measurements from Cryo-EM or
vectorized representations of words in language/dialect belonging to a speech community. The low-
dimensional structure typically arises due to constraints arising from certain dynamics: determined
by physical laws or the evolutionary processes. A recent empirical study [1] of a large number of
3× 3 images represented as points in R9 revealed that they approximately lie on a two-dimensional
manifold known as the Klein bottle.

One of the characteristics of high-dimensional data of the type studied by data scientists is that
the number of dimensions is comparable, or larger than, the number of samples. This has the
consequence that the sample complexity of function approximation can grow exponentially. On the
positive side, the data exhibits the phenomenon of “concentration of measure” [2,3] and asymptotic
analysis of statistical techniques are possible.

Standard dimensional reduction techniques such as Principal Component Analysis and Factor
Analysis, work well when the data lies near a linear subspace of high-dimensional space. They do
not work well when the data obey more complex dynamics, as is the case in many applications
that are beginning to be tackled. Among many other approaches proposed, two relatively successful
competing approaches that are commonly used to handle complex data science problems are: (i)
Topological Data Analysis (based on Persistent Homology) and (ii) Deep Neural Networks (based on
Multiple Levels of Abstraction). How are these techniques related to each other? How can successful
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theories, theorems and techniques developed in one framework be translated to the others? How can
they be unified into one generalized framework? How can one select the most successful framework
to a particular instance of data science for a specific application? What are the scopes and limits of
each of these frameworks?

We also build a bridge to the future by investigating each of these framework’s algorithmic com-
plexity and feasibility when faced with data sets obeying certain assumptions. These considerations
bring into focus various mathematical and theoretical computer science techniques that underpin
these frameworks.

The work proposed here builds on our collective experience in the areas of differential/algebraic
geometric, topological, algorithmic and information theoretic expertise. The team consists of applied
and theoretical computer scientists as well as mathematicians, many of whom are also involved
in domain specific data sciences and possess considerable experience in applied physical sciences,
systems, computational biology and linguistics.

Practical Applications: Cancer, Linguistics and Cryo-EM data The research proposed
here overlaps with the several research themes previously and currently being developed in various
applied data science areas such as computational biology, astronomy, social media (e.g., natural
language processing), image processing and physical sciences. There are voluminous data sets in
problems addressing cancer genomics (e.g., TCGA, the Cancer Genome Atlas), linguistics (e.g., text
corpora) and microscopy (e.g., cryo-EM). We believe that by studying these data through the lenses
of manifold hypothesis, we will have new insights on the underlying dynamics: somatic evolution
in cancer (e.g., evolution-by-duplication (EBD) and various selective pressures related to cancer
hallmarks), creolization (e.g., parametrization of a universal language) or processes affecting viral
populations. The research here, though not immediately, connects these issues to other areas in
computer science: algorithmic complexity, analysis of temporal data, and design of supervisory
controllers (e.g., therapy design for cancer).

The PI is a computer scientist with a theoretical training (formal methods, algorithms and com-
plexity), but with an extensive practical experience in many applied computational areas: business,
finance, control theory, robotics, genomics, and systems biology. Thus, the PI has a broad view of
the ways various multidisciplinary issues are interrelated, possess capabilities to develop the theory
to abstract the details and enjoys direct access to scientists, technologists and business leaders from
constituent fields, who would be needed to build the most suitable realizetions.

Impact of the proposal: A Unified Framework for Data Science The mission of the pro-
posed Center for Algorithms in Data Sciences (CADS) is to lead the development of a cross-cutting
and transformative algebraic framework for data science capable of dealing with far more complex
data in a domain-agnostic manner that will equip mathematicians, information scientists and applied
scientists with the tools and conceptual frameworks to better understand the mechanisms driving the
data-generating processes. We are motivated by the successful usage of data sciences in social media
applications (e.g., ad targeting and optimizing return on investment (ROI)), computational systems
biology (e.g., discovery of cancer bio-markers), astronomy (e.g., detection of exoplanets from Kepler
data), and many more. While computer science, both in academia and industry, has attempted
various engineering approaches to address each of these problems separately, there is lacking a more
unified theory to understand and alleviate the challenges, which if left unsolved, could have a crip-
pling effect on scientific progress.

The results of this research are expected to have applications far beyond Computer Science. We
believe that the research produced by this proposal will lead to a significantly improved analysis of
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Figure 1: The Center for Algorithms in Data Sciences (CADS): An Overview. While the proposal ultimately
aims to build to a bridge to the future (a unified algorithmic framework for data science), the current proposal
only focuses on unifying currently successful theories and models to shape the framework. The architectural
research and its implementation is outside the scope of the current proposal.

Big Data produced by government, and scientific institutions, thus paving the way for new systems
focusing on healthcare systems, internet applications, law enforcement, financial systems career and
skill markets, education and justice systems. Motivated by our own backgrounds and immediate
needs, we plan to focus our impacts on three specific areas: Cancer Therapy, Natural Language
Processing, and Structural Biology. However, the overarching goal of the Center is to develop the
mathematical and algorithmic machinery necessary to make this vision a reality.

As stated before, and to bring focus to the research, educational and outreach efforts of CADS,
and to serve as instruments that both drive and evaluate the theoretical (algorithmic and mathe-
matical) research, we have identified the following challenge problems in the three specific applied
areas. These challenge problems, and the underlying integrative research theme, are intended to
foster a research climate that nurtures scientific excitement and creativity, informed risk taking, and
a true team-building, collaborative effort: in other words, a far-reaching effort whose goal would
be to train the next generation of computer science researchers. The focus on challenge problems
also introduces flexibility into the research efforts of the Center: as progress is made on a particular
challenge problem, more resources will be devoted to it as other researchers in team are attracted.

The PI’s and their collaborators are uniquely positioned to address the research and educational
challenges inherent in a Center-level activity. The PI Mishra has devoted a significant portion of his
career in trying to understand and improve complex systems: Systems and Evolutionary Biology,
Modeling Tumorigenesis Processes, Financial Markets, Social Networks and Cyber Security, where his
research has built upon a synthesis of mathematical, algorithmic and game theoretic techniques. The
collaborator Mitter is a highly regarded world-class leader in information theory; Berwick is an expert
linguist working closely with Chomsky; Doerschuk is a well respected computational biomedical
scientist; and Narayanan is a rising star focusing on mathematical aspects of data science.
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Management The management structure of the proposed Center will involve the PI Mishra and
all the collaborators Berwick, Doerschuk, Mitter, and Narayanan. In particular, Narayanan and
Mitter will collaborate with the PI on the questions related to Manifold Learning, whereas, similarly,
Berwick and Doerschuk will collaborate on Linguistics and Cryo-EM, respectively. In addition, since
Berwick has significant background on Linguistics and Doerschuk on Cryo-EM, they will also pay
attention to the proposal’s long-term practical feasibility. Professors Mitter and Narayanan will
oversee the research on mathematical and information theoretic aspects of this research.

The center will primarily train graduate students in the basic data science and analysis areas, but
also through exposure to local industry and applications, make them skilled in effectively developing
and transferring the technology to the real-world applications.

2 Research Directions

Motivation, described informally: We are intrigued by a plethora of competing data science
frameworks, whose interrelations, we poorly understand, at present. We wish to explore how these
methods can be organized and interconnected on the foundations of the “Manifold Hypothesis,” as
described earlier. We also wish to examine the underlying generative processes, which will contribute
to creation of better phenomenological and/or mechanistic models, thus providing new scientific
insights.

We consider a number of methods for each of these frameworks. These methods have a topological
or geometric flavor. By topological methods, we generally mean methods whose qualitative behavior
is invariant under homeomorphisms of the data. By geometric methods we mean methods that
involve distances in an essential way.

2.1 Methods

The first method, persistent homology can be considered to be a general topological method, while
the others should be considered geometric.

1. Persistent Homology : The idea here is to look for features that are invariant under a range of
scales. A reasonable assumption would be that such features would be robust with respect to
noise. Taking as input a finite metric space with n points, for each element di in a set of

(
n
2

)
distances, we connect all pairs within di of each other, and consider the homology groups of
the resulting clique complexes. The inclusion maps of the simplicial complexes translate into
homomorphisms of the homology groups. The image of such a homomorphism is a persistent
homology group. We would like to learn the persistent homology groups of data. Please
see [4–8].

2. Manifold Learning : This is a subfield of machine learning based on the hypothesis that data lies
in the vicinity of a low dimensional manifold. We would like to learn the underlying manifold
from data, as described in more detail earlier. Please see [9–12].

3. Spectral Analysis: PCA and ICA are two exemplar methods in this category. PCA can be
viewed as a special case of manifold learning wherein a linear subspace is learnt that is the best
fit in terms of mean squared loss with respect to the data. Please see [13–17].

4. SVMs and Large Margin Classifiers: These are ways of classifying data by a separating hy-
perplane or regressing data by a linear function respectively. In the case of classification, the
margin between the positive and negative samples is often maximized – thus giving rise to a
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large margin classifier. In the case of regression, Drucker et al. [18] describe a scheme (SVR)
wherein one learns a linear hyperplane with `∞ loss ε and minimizes the magnitude of the
gradient of the linear function among all candidates. Please see [19–22].

5. Kernel Methods: Given two points x and y, we denote a kernel function by k(x, y). The hy-
perplane in a kernel SVM is defined using this kernel function k(x, y), and thus is, generally
speaking, not a linear hyperplane in Rn with respect to the canonical inner product. This ap-
proach gives additional flexibility and power, but involves only a subclass of general manifolds.
Please see [23].

6. Deep learning : In deep learning one starts with defining a function that extracts features called
the encoder fθ. For each x from a data set X, let c = fθ(x) be the code constructed from x.
A decoder gθ maps a representation c onto an element r of the input space. The encoder and
decoder are trained to minimize the reconstruction error dist(x, r) over training samples. In
order to constrain gθfθ away from the identity, the range of fθ is forced to be low dimensional.
In the framework of denoising auto-encoders, the objective of the decoder, when composed
with the encoder, is to map a corrupted input back to the original.

Suppose that data is drawn from a distribution supported on a low dimensional manifold M
embedded in high dimensional Euclidean space Rn. Suppose that i.i.d N(0, σ2I) gaussian noise
is added to the data. We would like to design a denoising auto-encoder that takes x̃ = x+ ζ,
x ∈M being a data point and ζ ∈ Rn being a noise vector, and maps it onto a point r, where
E[(x − r)2] is small. One way to accomplish this goal is by considering r(x̃) − x̃ as half the
gradient of the log-density of the noisy data. More sophisticated variants may be explored,
such as a gradient path following approach, rather than taking the gradient in one shot.

A natural question for further investigation is how manifold learning can aid deep learning .
Please see [24].

2.2 Research Questions

The questions below should be answered using the analysis of real-world data.

For what problems are the above methods suitable? The suitability of manifold learning
for a particular set of data is related to the generating process underlying the data. One reason
for data to lie near a manifold might be the presence of a low dimensional Lie group acting on the
data. Another might be that it lies on the invariant manifold of a dynamical system, for example
submanifolds in oceanographic data. Stochastic stable manifolds also exist for noisy dynamical
systems. When data consists of digits or images of faces, there are a few basic transformations which
can be used to go from one data point to another. This structure results in data lying close to a
manifold.

Manifold learning generally assumes some form of smoothness everywhere. If data does not
possess smoothness everywhere, it might be modeled not as lying on a single manifold, but as lying
on the union of several intersecting manifolds.

Persistent Homology works with a data set as a whole rather than the points themselves. It
is an unsupervised method and hence is seemingly unsuited to classification tasks. However, in
applications it is possible for the points themselves to have additional structure by virtue of their
position. For example, points might correspond to medical images. In fact [8] have used it to classify
medical images by performing persistent homology calculations on the images themselves.
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How effective are the above methods in practice, e.g. in the context of applied problems
discussed later? While we are excited by the possibility of new theoretical results connecting
various algebraic and algorithmic ideas currently flourishing within the machine learning community,
it still remains unclear how our research would influence practitioners, who also need to derive
mechanistic insights. For example, a deep neural net model of cancer progression only provides
a machinery that is phenomenologically accurate (and likely to be successful in creating advanced
diagnostic and prognostic tools), and yet it does not connect to mechanistic processes, necessary for
finding drug-targets, rational drug-design and therapy design. Thus, we wish to pay equal attention
to domain-specific applications, where Big Data and their analysis must be tied to domain-expertise
in understanding how best tangible utilities can be derived from Data Science.

More specifically, we focus on questions of the following kind.

1. How can we find the dynamics governing somatic evolution and driving cancer progression by
using a variant of least squares fitting, built on the foundation of “Manifold Hypothesis?” How
much improvement does it produce, when compared to models derived from SVM or graphical
model-based analysis?

2. How best can we map words spatially onto a manifold, and then use this embedding to predict
the variable scope’s influence on words in a sequence? Could we have arrived at similar insights
by just using persistent homology here?

3. When we fit a manifold to the different views of a 3D molecule obtained through Cryo-EM, what
insight can we get from such a manifold? Can one identify the manifold up to homeomorphism
using Persistent homology?

We provide illustrative examples of the far-reaching research we plan to pursue (Section 2.3).
Research in these areas will play a cross-cutting and fundamental role in the research pertaining to
the Challenge Problems (Section 2.4).

2.3 Core Open Problems

Algorithmic Questions for Manifold Learning. One of the primary obstacles to learning a
manifold from data is the absence of an obvious way of describing a manifold having high (even
infinite) co-dimension. This was overcome in (Fefferman et al., “Testing the Manifold Hypothesis”,
2013) [11] by approximating a manifold with bounded reach, dimension and volume by another
manifold that is contained in a finite dimensional affine subspace. (The reach ofM is the supremum
over all r such that any point at a distance r from M has a unique nearest point on M. ) This
latter manifold was then expressed as a section of a vector bundle over another putative manifold.
This putative manifold was described as the set of zeroes of a section of a vector bundle whose base
space was a neighbourhood of the data.

The techniques introduced in the above paper make the questions below amenable to analysis.

• Manifold fitting: Assume that data is drawn i.i.d from a probability measure supported near a
manifold. Fit a manifold of bounded reach to this data. Obtain bounds on the computational
complexity of this task.

• Mapping: Given prescribed data points, and an abstract manifold in terms of charts, find a
map from the abstract manifold to a Hilbert space, such that the reach of the image of the
map is bounded below and sum of the squares of the distances of the data points to the image
is minimized under the reach constraint.
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Example: In the case of Cryo-EM there are 2D projection images of a 3D object taken in
various projection directions. These projection directions can be associated with the abstract
Lie group SO3. Therefore the views may be labeled by points in SO3. The images taken from
these views may be represented as points in the Hilbert space L2([0, 1]× [0, 1]). Thus we would
like to to fit a copy of SO3 to data in a Hilbert space.

• Going from one representation of a manifold to another:

One representation of an embedded manifold could be as the set of zeroes of a section of a
vector bundle whose base space is a neighborhood of the data. We might like to construct
a “distance oracle” for a neighborhood of the manifold, which when presented with a point,
outputs the distance of the point to the manifold. This would be a second representation. The
gradient of the squared distance can be used to find the nearest point on the manifold to the
presented point.

• Sampling: How to sample from an interpolated manifold. We would like to perform this step
by constructing a Markov chain using charts that mixes within a prescribed time. This chain
could be used to generate additional random samples synthetically. Rejection sampling may
be used for manifolds with boundary.

• Using samples to infer characteristics of manifolds: Random samples can be used to construct
a fine net, which can be in turn used for a variety of purposes such as homology computations
and volume computation.

• Integration of forms over a manifold: The volume and the Euler characteristic of a Riemannian
manifold without boundary can be respectively expressed as integrals of the volume form and
the Gaussian curvature respectively. The tangential Delaunay complex of Boissonnat et al. [25]
could be useful for this purpose.

• Regression on data from a manifold: Consider a Cm submanifold of a Hilbert space with
boundary whose reach is greater than 0. Assume that the boundary is a Cm submanifold
whose boundary is greater than 0 as well. Suppose f : M → R is an unknown Ck function
corrupted with additive gaussian noise, what are the optimal rates of estimatingM? We would
like to draw a parallel with the literature on compressed sensing, in particular, the Dantzig
selector of Candes and Tao [26] . Results of Fefferman [27, 28] allow us to write the minimum
Ck− norm of any function satisfying equality constraints corresponding to some data points
as the minimum of the objective in a finite dimensional convex program.

• All of the above in the presence of noise.

An alternative way of stating the problem of estimating a manifold from noisy samples involves
parametrizing the manifolds using reach τ and covering number at a scale of τ . We can infer
the dimension from the projection map.

2.4 Research in the Challenge Problem Areas

• Cancer Data:

In the near future, cancer research is likely to become much more data-centric, primarily
because of the rapid growth and ready availability of vast amount of cancer patient genomic
data, as well as because of advances in single-molecule single-cell technologies. Nonetheless,
it remains impossible to track the tumor progression in any single patient over time, though
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emerging technology for noninvasive analysis of circulating tumor cells and cell free DNA (in
blood and urine) is beginning to paint an incomplete, but useful, picture. Motivated by these
possibilities, we seek to use the currently available aggregated data from multiple patients to
infer an approximate phenomenological “shape” of cancer progression, which will ultimately
build on the similarities among data-points at different scales and encoding them as “barcodes”
(e.g., in terms of persistent homologies). Less intensely studied but of equal importance would
be an analysis of these data in light of the “Manifold Hypothesis,” which could shed important
light on the underlying dynamics governing the somatic evolution. In particular, we wish
to infer causal relations among various mutational events occurring in the course of cancer
progression, organizing them in terms of “variational” and “selectivity” relations, and linking
them to our understanding of various intra- and inter-cellular pathways.

Thus, we seek to understand initiation and progression of cancer in terms of “chronological”
and “causal/selectivity” relations among somatic alterations as they occur in the genomes and
manifest as point mutations, structural alterations, DNA methylation and histone modification
changes. For example, if through some initial mutations (e.g. in EGFR) a cell acquires the
ability to ignore anti-growth signals, this cell-type may enjoy a clonal expansion (modeled as
a discrete state of the cancers progression and marked by the acquisition of a set of genetic
events). However, such a state of affairs may result in a Malthusian pressure on the population
of all the cell-types in terms of deregulation of glutamine metabolism and thus, set the stage
for clonal expansion of a new cell-type that can disable G1-S checkpoint (e.g., a “selected”
mutation in CDK). Such causal structures is likely to be implicit in the genomic data from
multiple patients, some involving tumor populations with just EGFR-cell-types and some others
with a heterogeneous population with EGFR+CDK-cell-types, etc.

Such a structure can be summarized in terms of a directed acyclic graph, G = (V,E), where
the vertices V encode the mutational events and the edges E describe the “selectivity” rela-
tions among the effected vertex and its selective parent vertices (mutations). When a vertex is
connected to multiple parents, the selectivity structure may need to be described by a logical
relation: e.g., singular (only one parent), conjunctive (all parent events are necessary), disjunc-
tive (any parent event is sufficient), or even more complex relations (but limited to propositional
or modal logic expressions). Such a graph, of course, ignores the exact geometry of the time
and only expresses the “temporal priorities” in a topological sense. A selectivity graph (SBCN:
Suppes Bayes Causal Network), as described here, can construct a temporal possible-world
model, which is amenable to temporal logic analysis (via model checking), thus allowing the
data-scientists to propose more complex hypotheses describing various evolutionary forces in
cancer progression. See [29,30].

Nonetheless, rigorous algorithmic tools to infer such selectivity and temporal relations from
the topology of the data, which is induced by these genetic events and drives cancer progres-
sion, have remained largely elusive. The main reason for this state of affairs is that informa-
tion directly revealed in the data lacks direct temporal measurements but also contains large
amount of irrelevant structures, complicated by heterogeneity in cell-types and non-selective
“bystander/passenger” mutations. See [31], and reference therein.

As a proof-of-concept, we wish to reanalyze the patient data for glioblastoma (GBM). In
particular, we will create tree and DAG cancer progression models for glioblastoma and relate
our inferred prima facie causes to the shapes inferred by persistent homologies and also to the
moduli space behavior of the GBM evolution. In addition, we will develop new model checking
algorithms to incorporate the topological properties available from the algebraic analysis (e.g.,
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moduli space behavior and persistent homologies) to improve our classification algorithms (e.g.,
the module to separate genuine causes from spurious causes).

The selectivity relations inferred from the phenomenological models are obtained from the pa-
tient data and require mechanistic explanation in terms of various biochemical pathways, if they
have to be used in therapy design or drug discovery. For this purpose, we will create in silico
models of a population of tumor cells, where the behavior of individual cells can be simulated
in terms of the known regulatory and signaling pathways, and evolved over time to validate (or
refute) our inferred selectivity relations. In order for efficient simulation, cell-autonomous pro-
cesses, involved in cancer progression, will be abstracted (simplified/approximated) by using
“approximate-bisimulation” relations and can be utilized efficiently in population-level simu-
lation. At the population level, each cell could be viewed as an agent interacting strategically
with the other cells in a game-theoretic setting. The therapy design algorithms we have devel-
oped earlier can then be implemented on the resulting cancer hybrid automata (CHA) model
using techniques from supervisory control theory and theories of games against nature. See [32].

• Linguistic Data:

With the growing ubiquity of social media, there now exist a very large number of massive text
corpora in multiple languages and being shaped by diverse groups of speech communities. The
basic building blocks of these linguistic Big Data are words. SVD and tensor word encodings
have been found to be very useful in mapping n-gram type word associations in the form of
latent variables. However, this linear analysis does not deal with the hierarchical, compositional
structure of language. Much information in language exists in the form of operator-variable
structures that resemble the application of functions to arguments in the lambda calculus, or
the hierarchical environment frames of a programming language like Scheme. See [33–35].

Thus an important subject of study could be based on the notion of variable scopes, akin to the
scope-rules of a programming language. Just as in programming languages, proper scope cannot
always be ignored. For example, even if we have the precisely corrected bigram probabilities for
the word sequence what who bought, this does not suffice to fix its meaning, because when the
“operator” John knows is hierarchically composed with this sequence, it yields only an ill-formed
structure, John knows what who bought. Replacing John with the typed operator who rescues
the meaning structure, correctly so in this case even though the bigram probabilities have not
been altered from the ill-formed example because the linear sequence what who bought is fixed.
Many other examples in human languages follow this pattern of drawing on hierarchical, rather
than linear structure, to fix meaning. Also, see [34,36].

While deep learning methods have been applied to certain of these problems in language pro-
cessing, they have not had close to the same success as in visual object recognition. In part
this anomaly is due to the fact that such approaches have not exploited the notion of scope
within the known manifold structure of natural languages. Based on the foundations suggested
by “Manifold Hypothesis,” we propose to study this problem more rigorously in this project:
exploit the known, empirically verified high-dimensional structure of composed phrases. In
addition to suggesting better NLP (Natural Language Processing) algorithm, this approach
will also clarify the connections between manifold learning and deep learning.

Revisiting our example, in the case of simple “noun phrases” such as the multidimensional aspect
of learning, it is possible to specify a 56-dimensional space that spans all possible variation
in the several hundred contemporary Indo-European languages, including English, Spanish,
Russian,French, Hindi, Farsi, etc. We aim to investigate whether we can use this manifold
structure to quickly move from analysis in one language to another, approximating the very
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low sample complexity that native language learners exhibit. Existing methods that use MCMC
sampling or EM within a Bayesian framework build on formulations that are provably NP-hard
with respect to sample’s embedding dimension, and remain intractable, even when approximate
solutions are sought. Recent proposals suggesting that small scale sampling will suffice to
resolve this difficulty all rely on onerous i.i.d. assumptions of perfect knowledge of posterior
distributions that cannot be met in practice. Additional references can be found in [36].

Here we take a different approach. We will apply the manifold learning method to resolve this
complexity problem. We will also exploit a second recently discovered constraint regarding
natural languages. It turns out that the “operator” that assembles hierarchical structure and
so the scope/environment frames in natural language, can be represented simply as set union.
This has implications for recovering hierarchical structure from linear word strings, because this
new reformulation not only covers typical compositions where two hierarchical structures are
assembled into one, e.g., John and saw the radio into a larger hierarchical object sentence, John
saw the radio, but also the ubiquitous and more difficult appearance of displaced syntactic units,
e.g., The radio, John saw. Specifically, we will examine how the usual matrix-like composition
operation that comprises the basis of virtually all current statistical parsing methods trained
on corpora (e.g., the CKY algorithm) could be modified to use this more empirically accurate
operator. See also [35,37].

• Cryo-EM Data:

An important approach to studying biological nanomachines is structural biology, which focuses
on the geometric shape of the object at resolutions as small as atomic resolution and on the
relationship between biological function and geometry. A technique of increasing importance
is single-particle cryo electron microscopy (cryo EM). In cryo EM, a aqueous film containing
thousands of unoriented objects is flash frozen to cryogenic temperatures and imaged. The
image is basically a 2-D projection of the 3-D electron scattering intensity distribution of the
specimen. Primarily because of damage by the electron beam, two choices are made in high
spatial-resolution studies. First, the electron microscope beam current is minimized leading
to highly-noisy (SNR < 0.1) images. Second, only one projection image is recorded and, due
to the low SNR and the unoriented nature of the objects in the film, the projection direction
for any particular instance of the object is not known and cannot be determined from the
image. So, instead of reconstructing based on a full set of oriented projection images of a single
object, as is done in x-ray computed tomography in medical imaging, many images each of
different instances of the object and with different and unknown projection directions must be
computationally combined to compute the reconstruction [38].

There are three problems of increasing difficulty that we propose to address with the manifold
learning ideas at the core of this proposal. Suppose that the electron scattering intensity
distribution (ρ(x), x ∈ R3) of an individual instance of the object is represented by a weighted
(cα) sum of basis functions (ψα(x)):

ρ(x) =
∑
α

cαψα(x). (1)

The goal of 3-D reconstruction is then characterization of the weights cα. For χ ∈ R2, let the
ith image be denoted by σi(χ). Because of the projection-slice theorem, it is natural to work
with Fourier transforms: σi(χ) ↔ Σi(κ), ρ(x) ↔ P (k), and ψα(x) ↔ Ψα(k). Using standard
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first-order image formation theory [39–41], Σi(κ) can be expressed in the form

Σi(κ) = exp(−i2πκTχ0,i)G(|κ|)P
(
R−1αi,βi,γi

[
κ
0

])
(2)

where the electron microscope’s optics are described by the contrast transfer functionG, the fact
that the image is not centered is described by the complex exponential of the offset χ0,i ∈ R2,
and the projection-slice theory is used in the form of a z-directed projection of the object after
a rotation by R ∈ R3×3 (RT = R−1, detR = +1) parameterized by Euler angles (αi, βi, γi)
though other parameterizations (e.g., quaternions) are equally useful.

For noise-free pixelized images arrayed as a vector si with the weights cα also arrayed as a
vector c, Eqs. 1 and 2 imply

si = L(αi, βi, γi,χ0,i)c (3)

where the elements of L are exp(−i2πκTχ0,i)G(|κ|)Ψα(R−1αi,βi,γi
(κT , 0)T ) where (discretized)

κ indexes rows and α indexes columns. A typical size of problem is 103–105 images, 200× 200
pixels per image (so si ∈ R40,000), and c ∈ RNc with Nc as small as 103 [42] or as large as
100× 100× 100 = 106 (a voxel representation of a object of size 200Å at 4Å spatial resolution

using voxels of size 2× 2× 2Å
3
).

Eq. 3 displays the manifold explicitly: each image si is related to a constant unknown vector c
by a matrix L whose structure is known but whose parameters are unknown. In the simplest
case of no offsets (χ0,i = 0), the explicit parameterization is just SO3. If the manifold can be
learned from the noisy data and a map constructed to SO3, then the reconstruction problem
can be solved by many methods since the projection orientation of each image is known.

A more challenging problem adds discrete classes representing the fact that biological-chemical-
physical methods are sometimes unable to distinguish between classes of objects and so the
images are an unlabeled mixture of images showing instances of all classes. Reasons for such
heterogeneity include relatively discrete steps in the maturation pathway of virus particles such
as the bacteriophage Hong Kong 97. Let ηi be the class of the ith instance. Then Eq. 3 is
replaced by

si = L(αi, βi, γi,χ0,i)c
(ηi). (4)

In this case, learning the manifold described by the si vectors mixes classes and it is necessary
to describe that manifold as the union of a set of manifolds, one manifold for each class. The
basic approach is that the underlying manifolds should be smoother, e.g., in the approach of
Fefferman-Mitter-Narayanan [11], the confidence is greater (δ is smaller), the reach τ is greater,
or the error e is smaller.

A yet more challenging problem is continuous heterogeneity within each class. Reasons for
such heterogeneity include the fact that such huge multicomponent objects such as viruses,
ribosomes, or nuclear pore complexes are flexible. Then Eq. 4 is replaced by

si = L(αi, βi, γi,χ0,i)c
(i) (5)

where the set of c vectors corresponding to a single class η0, i.e., Cη0 = {c(i)|η(i) = η0} is
somehow “clustered” around a nominal vector c̄(η0). In this case the tradeoff between the
accuracy with which the manifold fits the experimental data and the rapidity of fluctuation
in the manifold in comparison with the fluctuation expected based on the resolution of the
experimental data may provide insight into the size of the set containing Cη0 , e.g., the sample
covariance of the vectors in Cη0 .
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In Refs. [43–45] the PIs describe a model-based statistical estimation approach to these three
problems that is based on Gaussian measurement noise and Gaussian mixtures to describe
the continuous heterogeneity present in multiple classes. The approach has been used, e.g.,
Ref. [42, 46, 47]. The estimators are computed via an expectation maximization algorithm
where the nuisance parameters are the parameters of L and the expectations are computed
numerically which is a large computational burden. The Gaussian assumptions, especially in
the third problem, are crucial. However, they are poorly justified. For example, some recent
“direct electron detectors” [48] act as digital counters of incident electrons in each pixel so that
at least the part of the measurement noise due to low beam current is probably better described
by a counting process. What is probably the most popular software system, Relion [49, 50],
uses the estimation formulation described in Ref. [45] and therefore has these challenges. The
potential of the methods described in this proposal is two fold: First, at a practical level,
they provide an entirely different tradeoff between computational complexity and performance.
Second, at the level of principle, they do not require the Gaussian assumptions and therefore
offer the hope of more robust performance in the presence of realistic large noise signals.

3 Summary of Research Component
The research component of this project pursues an ambitious but manageable agenda that integrates
algorithmic and experimental methods to create a comprehensive theory to advance data sciences; it
is based on a framework building upon Manifold Hypothesis. Our approach, focusing on geometric
(differential/algebraic) and topological techniques, will lay the foundations for complex, and yet,
readily applicable engineering systems of the future.

Deliverables and Dissemination Plans
The following lists our deliverables and estimated man-years (MY) of effort, to be divided amongst
the investigators, collaborators and their research teams.

• A Theory for Manifold Learning : 1 MY

• Connections to Topological Data Analysis: 1 MY

• Connections to Deep Learning: 1 MY

• Devising Generalized Learning Algorithms: 1 MY

• Feasibility Analysis (in the oncogenomic setting): 1 MY

• Feasibility Analysis (in the linguistic setting): 1 MY

• Feasibility Analysis (in the cryo-EM setting): 1 MY

4 Broader Impacts of the Proposed Work:

Intellectual Contributions:
The proposed research will make contributions to Computer Science and Mathematics, leading fur-
ther to a symbiotic application to data science, in the context of cancer, linguistics and physical
sciences. The foundational basis provided by Manifold Hypothesis will introduce many new al-
gorithmic questions for solving Big Data Analysis problems by combining, for the first time, our
understanding of complex topological and geometric constraints imposed by manifold hypothesis.
The proposed approach to tame algorithmic complexity and data overfitting will be the first to com-
bine differential algebraic features such as curvature, reach, and volume, topological features such as
Betti numbers and deep learning features such depth and hierarchy. Finally, we will demonstrate
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these methods to design new domain-specific informatics solutions, for instance, to develop improved
cancer therapy, linguistic creolization and cryo-EM analysis, aimed at public health, social media
and engineering.

Broader Impacts:
The proposed research will create a new algorithmic sub-discipline within the fields of data science and
pave the way for new tools for practitioners. Potential applications of our research include the design
of systems applied to healthcare, social networks, and physical sciences. Our governing philosophy
— that the design of more sophisticated and data science algorithms – can be formulated and solved
in the context of Manifold Hypothesis, with applications that exemplify the use of Computational
Thinking. Finally, our research will lay the groundwork for testing novel hypotheses about learning
and evolution and for exploring the Shared Principles Between the Computing, Social and Biological
Sciences [51].

5 Education and Outreach

Our goals are to integrate education and entrepreneurship activities for this project with our research
activities and to blur the line among them. Toward this end, our proposed plan includes not only
traditional activities like new courses and outreach to K-12 programs but also coordinated efforts
to merge graduate and undergraduate education and research opportunities through workshops; ded-
icated education research to develop new approaches to teaching complex skills like domain-specific
modeling; and outreach to underrepresented groups, the general public, and industry through high-
impact mechanisms. Our plan also will build on and extend the highly successful education and
outreach program from the CMACS Expeditions in Computing (EiC) award with which the PI of
the current proposal was very closely involved.

Berwick has developed software for both secondary school and university use, combined with dis-
tance learning which touches on the themes of the proposal. In the main evolutionary biology course
for MIT, Berwick’s software captures visually the complex dynamical system effects in populations
undergoing stochastic selection, migration, and drift. This software is in the process of being made
available as part of the widely-used text by Prof. Matthew Hamilton at Georgetown, as a website
application. A suitably modified version of this software is being tested as part of the AP Biology
program at Boston and Cambridge area public schools. This follows on from Berwick’s STEM ex-
pertise in developing a physics distance learning program for secondary school women, based on the
simulated construction of Ferris Wheels.

A highlighted feature of our educational initiatives is multiple meetings, meet ups and seminars
at different levels. As part of these activities, a large number of members of the Silicon Alley
Community met regularly in a Tuesday Spamhaus meetings where they had opportunity to discuss
data science applications to Ad-exchanges, attribution analysis, illiquid markets, market defaults
(and prepayments), securitization, natural language processing, data in clinical genomics, onco-
genomics, data markets, clinical trials, job and skill markets, causality theory, graph theory (random
graphs, diffusion on graphs, agony-based distances), game theory, but much more specifically, data
science, especially the ones with need for advanced machine learning. At NYU, the PI taught a
graduate-level course on Social Networks describing the applications of data science to social media
data and collaborators. The PI Mishra also taught a 10-days course at SEI/CMU on data science
applications to cyber security.

Our educational activities also will have strong ties to new degree programs. The group can
provide support and infrastructure for new Masters programs in Data Science (Courant/NYU) and
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Boot Camps for young technologists in New York Area.

6 Description of Team Members

Bob Berwick: with expertise in Computational linguistics, computational complexity theory, and
parameterized learning will focus on the integration of current linguistic theory into manifold learning
and the topological structure of high dimensional linguistic descriptions. Peter Doerschuk: with
expertise in computational biophysics, biomedical research and biophysical data science will focus
on Cryo-EM data analysis using manifold learning. Bud Mishra: with expertise in statistics,
data science, systems biology and cancer biology will focus on Manifold Hypotheses, algorithms for
topological data analysis and manifold learning and applications to cancer biology. Sanjoy Mitter:
with expertise in control and information theory will focus on Manifold Learning, bio-physical data
science and linguistic applications. Hari Narayanan: with expertise in Manifold Learning, Convex
Optimization, MCMC and Complexity will focus on Manifold Learning, Deep learning and Cryo-EM
applications.

7 Results from prior NSF support

PI Mishra has a long and successful history of NSF funding. He has been a PI on following re-
cent awards (NSF CCF-0836649, 09/15/08-08/31/12, ‘Collaborative Research: CDI-Type II: Discov-
ery of Succinct Dynamical Relationships in Large-Scale Biological Data Sets’; NSF CCF-0926166,
09/01/09-08/31/14, ‘Collaborative Research: Next Generation Model Checking and Abstract Inter-
pretation with a Focus on Embedded Control and Systems Biology’; NSF IGERT-0333389,10/01/03-
09/30/12 ‘IGERT: Program in Computational Biology (COB)’). These awards have resulted in more
than 15 publications [52–68], 12 Ph.D. dissertations, and several new courses (Computational Sys-
tems Biology (GWAS), BioInformatics (Signals and Cancer), Computational Systems Biology (Model
Checking and Systems Biology), Heuristic Problem Solving (HPS) and Social Networks (Signaling
Games)).
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Project Coordination Plan

Bud Mishra (NYU) is the PI and coordinator of the research. The PI Mishra and his collaborators
have been assigned primary and secondary roles according to the research and educational tasks (see
table below). Additionally, we have requested funds to support graduate students who will assist in
the execution of the research plan. Undergraduate researchers will also be recruited using REU and
similar sources of funding. The following coordination mechanisms will be put into place to ensure
the successful coordination of all project activities.

• Project personnel (PIs, co-PIs, students, etc.) will participate in bi-weekly video confer-
ences/online meetings (with shared workspace/desktop using e.g. www.gotomeeting.com).

• We will host annual project meetings for project personnel and other interested parties, with
the meeting location rotating between New York and Boston. Travel funds have been allocated
in the budget to support these activities.

• We will have graduate student (possibly, postdocs, not funded by this project) exchanges
between the participating institutions. Travel funds have been allocated in the budget to
support these activities.

• We will use the Subversion (SVN) version control system as an inter-institutional shared repos-
itory for source code, web pages, and documentation.

• We will establish a Manifold Hypothesis Web Site where project personnel can find (and post)
project-relevant documents, collaborative Wikis, timetables, blogs, links to relevant web sites,
etc.

The following is our anticipated time line:

A Theory for Manifold Learning : P: HN, S: BM & SM 2016–2017
Connections to Topological Data Analysis: P: BM, S: HN 2016–2017
Connections to Deep Learning: P: HN, S: BM 2016–2017
Devising Generalized Learning Algorithms: P: BM, S: ALL 2017–2018
Feasibility Analysis (in the oncogenomic setting): P: BM, S: SM 2016–2020
Feasibility Analysis (in the linguistic setting): P: RB, S: BM 2016–2020
Feasibility Analysis (in the cryo-EM setting): P: PD, S: SM 2016–2020
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Data Management Plan

This project is foundational in nature, but may lead to the following kinds of data (as defined in
OMB Circular A-110) :

• Original data (observations, measurements etc.) aggregated from multiple sources.

• Metadata, including experimental protocols and software code for implementing the algorithms.

• Curriculum materials, including lecture notes, slides, assignments, and exam questions.

The original data, experimental protocols, and samples will be documented according to the guide-
lines specified in “Sharing Publication-Related Data and Materials: Responsibilities of Authorship
in the Life Sciences (2003)” http://www.nap.edu to ensure reproducibility of the results. Software
will be documented for use by end-users. Software tools will be freely distributed via a common
web-site that will be created and maintained by the personnel on this project. Curriculum materials
will be freely distributed via web-sites for the respective courses.

Our policy for access and sharing of data with other researchers will be to provide it at no
more than incremental cost and within a reasonable time after publication and, when appropriate,
after patent applications have been filed. All data will be retained for at least five years from the
end of the project. Experimental data will be archived at NYU on local file systems. Software
(and documentation) will be replicated and archived at NYU, MIT, Cornell and UW on local file
systems. Obligatory semi-annual exchanges will ensure that all PIs have access to updated software.
A publicly accessible website for the project will be hosted at one of the partner institutions, or on
free alternatives (e.g., GoogleSites). Requests for data will be made by contacting the PI (Mishra)
and/or corresponding authors on publications resulting from this research. Such requests will be
reviewed by the PI as part of regular collaboration meetings and/or informal discussions via phone
or email.

All participants of this project will have access to all data, and all will be responsible for ensuring
that the data they generate is available, both internally and for external researchers for a period at
least five years from the end of the project. Should any PI leave the project, the remaining PIs will
take responsibility for archiving, managing, and disseminating the departing PI’s data.
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