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Giant Components in Erdös-Rényi Random Graphs

Recall from the last lecture, that a very important phase transition
occurs in an Erdös-Rényi (ER) random graphs G(n, p), when

p(n) = ln n
n . That is, when p(n) ≪ ln n

n , the ER graph in G(n, p(n)
is almost surely disconnected. But even in this regime, some very
interesting phenomenon occur: for instance, the phase transitions
associated with the so-called Giant Components.

In this regime – when p(n) ≪ ln n
n – we will see that for the

random variable X = ∑
n
i=1 Ii=isolated, we have

E[X] = n(1 − p(n))n−1 ≈ n · exp[−p(n)n] → ∞, lim
n→∞

.

Thus, when p(n) ≪ ln n
n , the graph has an arbitrarily large

number of connected components. We will consider two regimes:

p(n) =
λ

n
,











λ < 1

vs.

λ > 1.

For λ < 1, all components of the graph are “small;” for λ > 1,
the graph has a unique giant component.

A component that contains a constant fraction of individuals in the
social network, with a local degree ≈ (1 + ǫ)/n.

Consider a breadth-first search of the graph starting with the
node i, and collect all the nodes in the kth stage (i.e., at a distance
k from the node i). We compare two similar processes: Graph
Process (the one discussed above) and Branching Process (at each
stage an individual of stage k gets some number of “new” friends
– individuals in stage k + 1).

ZG
k = # of individuals at stage k of the graph

ZB
k = # of individuals at stage k in a branching process

ZG
k ≤ ZB

k ;

– If there is no triadic closure graph process keeps discovering
“new” friends.
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Expected number of friends for a node = n · p(n) = λ.

E[ZB
k ] = λ

k.

Let S1 be the number of nodes in the Erdös-Rényi graph con-
nected to individual 1.

E[S1] =
∆

∑
k=1

E[ZG
k ] < ∑

k

λ
k =

1

1 − λ
.

Theorem: Let p(n) = λ

n (λ < 1). For all sufficiently large a > 0,
we have

Pr

[

max
1≤i≤n

|Si| ≥ a ln n

]

→ 0, n → ∞.

where |Si| = size of the component containing individual i.

Proof omitted. �

Giant component with p(n) = λ

n (λ > 1).
The trick is to first get a good estimate of the expected number

of “conflicts” at stage (k + 1). Note that when two of the “friends”
at stage k have a common friend at stage k + 1, we count it as one
“conflict.”

E[Number of conflicts at stage k + 1]

= E

[(

Zk

2

)(

Zk

1

)

p2

]

≤ np2E[Z2
k ]

= np2{Var[Zk] + E[Zk]
2}

= np2(λ
k + λ

2k) Zk ∼ Poisson(λ
k)

≤ n · λ
2

n2
· λ

2k.

Thus the effects of “conflicts” become nonnegligible, when λ
k ≈√

n.

Theorem: Let p(n) = λ

n (λ > 1). Then there exists some c > 0 such
that

Pr[∃ a component C, |C| > c
√

n] → 1, lim
n→∞

. �

Between any two components of size
√

n, the probability of hav-
ing a link is a positive constant (independent of n).

Pr[∃ a link between components C1, C2, |Ci| >

√
n]

= 1 − (1 − p(n))|C1||C2|

≤ 1 − (1 − λ

n
)n ≈ 1 − e−λ.
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Claim: Components of size ≤ √
n connect to each other forming a

connected component of size qn for some 0 < q < 1. Such a
component is our “Giant Component.”

Contagion and Diffusion

We next examine how gossips (or an epidemics) diffuse in a social
network of n individuals. We will first consider a social network
that is described by an Erdös-Rényi random graph G(n, p(n) with
link probability p(n). In this network any individual is immune to
a virus (of a specific kind) with probability π.

Let us assume that in this network an individual (chosen ran-
domly among the ones without immunity) gets infected with
this contagious virus. To model this process, we can proceed as
follows: First, delete πn of the noes at random, and identify the
component containing the individual who was infected first.

Such a graph can be described by another ER graph:

G

(

(1 − π)n,

(

n

2

)

p(n)/

(

(1 − π)n

2

))

.

We can now estimate the size of epidemic (as a fraction of the
society): S.

E[S]

=



















O( ln n
n ) if p(1 − π)n < 1

1
n q2(1 − π)n + (1 − q) ln((1 − π)n)

= q2(1 − π)n if 1 < p(1 − π)n < ln((1 − π)n)

(1 − π) if ln((1 − π)n) < p(1 − π)n

where q denotes the fraction of nodes in the giant component of
the graph with (1 − π)n nodes, i.e., it is a solution to the following
fixed-point equation:

q = 1 − exp[−q(1 − π)np].

§§§

Ranking in a Social Network

Originally, Kleinberg proposed a simple structure to think about
ranking in a directed graph by giving each node a value either as
an authority or as a hub.

Directed Graph: A directed graph or digraph is a pair G = (V, E),
E ⊆ V × V consisting of:
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• a set V, whose elements are vertices (as before),

• a set E of ordered pairs of vertices, called arcs or directed
edges.

It differs from an undirected graph, in that the latter is defined
in terms of unordered pairs of vertices, which are usually
called edges. Thus we assume that the binary relation im-
plied by E is still irreflexive, but no longer symmetric. Thus
its adjacency matrix A ∈ {0, 1}n×n is also not symmetric:

auv =

{

1, if (u, v) ∈ E;

0, otherwise.

Authorities: Nodes pointed to by highly ranked nodes.

Hubs: Nodes pointing to highly ranked nodes.

For each node (or page in a hyperlinked web of pages), estimate
its value as a potential authority ( b(p) = Authority Weight
and as a potential hub (h(p) = Hub Weight.

Thus

∀ih(i) = ∑
j

Aijb(j)

∀jb(j) = ∑
i

Aijh(i)

In other words:

h = Ab and bT = hT A (≡ b = ATh).

Thus
b = AT Ab and h = AATh.

One could attempt to solve these two fixed-point equations itera-
tively as follows: At stage k + 1 compute

bk+1 = AT Abk and hk+1 = AAThk,

continuing the process until they converge (i.e., |bk+1 − bk| < ǫ as
well as |hk+1 − hk| < ǫ.) We will see later these two values b and h
are eignevectors of AT A and AAT , respectively.

A much simpler version of this process also occurs in the so-
called PageRank:

Each node is important if it is cited by other important
nodes.
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For each node j, we encode its impportance in its PageRank value:
w(j).

w(j) = ∑
i

w(i)

dout(i)
Aij,

where A is the adjacency matrix and dout is the out-degree of a
vertex. Thus, if we write

Pij =
Aij

dout(i)
,

then P ∈ Rn×n is a stochastic matrix.

wT = wTP,

and the iterative equation is

wk+1 = Pwk,

carried out until convergence: |wk+1 − wk| < ǫ.

Page’s Random Walk Model: Choose a starting node at random.
In each step, “walker” follows one of the outgoing link
selected uniformly randomly from the current node – and it
moves to the node pointed to by the link. Thus it goes from

the node i to j with a probability Pij =
Aij

dout(i)
.

PageRank of i is the limiting probability that the random walker will
end up in node i.

wT = wTP; solved iteratively: wT
k+1 = wT

k P.

Dangling Ends, Traps and Random Teleport: In order to avoid
getting trapped in an ergodic component: jump (or teleport)
to a random node with a probability (1 − s) (and otherwise
do the random walk with a probability s). Usually 0.8 ≤ s ≤
0.9.

wT = swT P +
1

n
(1− s)eT; solved iteratively: wT

k+1 = swT
k P +

1

n
(1− s)eT.

§§§


