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Power and Randomness

From the 14th century to the 16th century, Florence dominated
Europe as one of the most important cities – economically, po-
litically, scientifically and culturally. The Medici Bank of Flo-
rence was one of the earliest financial institutions created by the
Medici family in Italy during the 15th century. Machiavelli, a son
of Florence, wrote his famous book “The Prince” there, which he
thought described the Medici’s goals; the book was dedicated to
the Medicis, though not particularly favored by them. Galileo,
under the patronage of the Medicis, discovered the moons of
Jupiter (which he called Cosimo Sidera) and named these moons
after Cosimo de’ Medici’s four children (Io, Europa, Ganymede
and Callisto). The European Renaissance (Rinascimento in Ital-
ian, meaning rebirth) began in Tuscany (Central Italy), and was
centered in the cities of Florence and Siena. Cosimo de’ Medici
played an important role in this renaissance through his support
for education, establishing the Platonic Academy for the study
of ancient works and spending more than 600,000 gold florins in
support of architecture, scholarly learning, and other arts.

It is has been puzzling why the Medicis emerged as the most
influential family in 15th century Florence. Even more interest-
ingly, it is not immediately obvious why Cosimo de’ Medici was
ultimately able to form the most politically powerful and econom-
ically prosperous family in Florence, dominating Mediterranean
trade. The Medicis started from an humble origin, coming from
an agricultural region and were less powerful than most other
important families in Florence, both politically and economically.

One explanation for their rise to power is provided in a paper
by Padgett and Ansell (1993) “Robust Action and the Rise of the
Medici,” where the authors argue that Medicis’ power derived
from their situation in the social network of Florence. They sug-
gested a new measure of power to take into account the “location”
of the family with the network is the “betweenness” measure, as
defined below.

Betweenness: Let P(i, j) be the number of shortest paths (geodesics)
connecting vertex i to vertex j. Let Pk(i, j) be the number of
shortest paths (geodesics) connecting the same two vertices i
and j that include vertex k. The measure of betweenness (for
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a network with n nodes) is then defined as

Bk ≡ ∑
(i,j)∈E,i 6=j,k 6∈{i,j}

Pk(i, j)/P(i, j)

(n−1
2 )

,

(with the convention that Pk(i, j)/P(i, j) = 0 if P(i, j) = 0
(i.e., i and j are two distinct connected components).

Intuitively, this measure gives, for each pair of families,
the fraction of the shortest paths that go through family k,
suitably normalized.

It turns out that

BMedici = 0.522, and Bk ≤ 0.255, ∀k 6= Medici.

So the Medicis (in particular Cosimo) may be argued to have
derived their unprecedented power simply by playing a
central role in the social network of influential families in
Florence.

The arguments above seem to indicate that the “bridge” per-
sons, who connect two different cohesive societies and can operate
in both the social networks relatively easily, may accrues a signifi-
cant advantage.

Properties of Networks

So far, we have focused our attention on the graph structures in-
duced by a social network, and various statistical properties (e.g.,
summary statistics or quantitative performance measures). Thus
we can now compare two networks and make guess about which
one is more effective. Furthermore, we can also tell what posi-
tion in the network-topology is more advantageous. A critical
component of designing a good social network would be those
mechanisms (e.g., recommendations, discovery processes, abil-
ity to perform preferential attachments, etc.) that induce better
topologies and allow a “motivated” individual to situate himself
advantageously.

A short list of desirable properties:

1. Degree distributions (hubbiness) and Densities

2. Clustering (Cliques, Clans and Clubs)

3. Diameter (degrees-of-separation) and average path length

4. Centrality (Betweenness)
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For instance, we may focus on just the degree distribution,
P(d), of a network, which quantifies relative frequencies of nodes
that have different degrees 0 ≤ d < n. For instance, given a
graph, we may describe its P(d) by a histogram, i.e., P(d) is just
the fraction of nodes with degree d. For a random graph model
(to be described shortly), P(d) is a probability distribution. We
will focus on two types of degree distributions:

1. P(d) ≤ ce−λd, for some λ > 0 and c > 0: The tail of the
distribution falls off faster than an exponential (thus large
degrees are unlikely).

2. P(d) = cd−α, for some α > 0 and c > 0: Power-law distri-
bution: The tail of the distribution is fat, (thus there will be
many more nodes with very large degrees).

Power-laws appear in a wide variety of settings including net-
works describing incomes, city populations, WWW, and the In-
ternet – it is also known as a scale-free distribution: a distribution
that is unchanged (within a multiplicative factor) under a rescal-
ing of the variable. Power laws are often interpreted in a log-log
plot, where it appears linear:

ln freq(d) = k − α ln d.

Random Graphs

There are two ways of describing random graphs, and are closely
related variants of the Erdös-Rényi (ER) random graphs.

G(n, M) Model: In the G(n, M) model, a graph G = (V, E) is cho-
sen uniformly at random from the collection of all graphs,
which have |V| = n nodes and |E| = M edges. For example,
in the G(3, 2) model, there are exactly three possible graphs
on three vertices and two edges, each assigned a probability
1
3 .

G(n, p) Model: In the G(n, p) model, a graph G = (V, E), is con-
structed by connecting every pair of nodes uniformly ran-
domly. For every pair of vertices u, v ∈ V, an edge (u, v) ∈ E
is included in the graph with probability p independent
from every other edge.

Equivalently, all graphs with n nodes and M edges have
equal probability of

p =
M

(n
2)

.

The parameter p in this model is exactly the density of the
graph; as p increases from 0 to 1, the model produces denser
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graphs with higher likelihood than sparser graphs. Thus,

at p = 1
2 , all graphs on n vertices are chosen with equal

probability (no bias for any density).

Random graphs are often studied in the asymptotic case, as
|V| = n, the number of vertices, tends to infinity.

The expected number of edges in G(n, p) is

〈|E|〉 =

(

n

2

)

p,

and the expected degree is

d̄ = 〈d〉 = density(n − 1) = (n − 1)p.

The degree of a vertex in a graph G ∈ G(n, p) is distributed as a
Binomial: d(v) ∼ Bin(n − 1, p).

Pr[d(v) = k] =

(

n − 1

k

)

pk(1 − p)n−1−k.

A Poisson approximation (for large n and np = const) is given as
d(v) ∼ Poisson(np)

Pr[d(v) = k] → (np)k exp[−np]

k!
, n → ∞, np = const.

In their original pair, Erdös and Rényi showed how “connected-
ness” properties of G(n, p) can change dramatically sharply as p
crosses certain precise threshold values. For instance:

Small p: If p <
(1−ǫ) ln n

n , then a graph in G(n, p) will almost
surely contain isolated vertices, and thus disconnected.

Large p: If p >
(1+ǫ) ln n

n , then a graph in G(n, p) will almost
surely be connected.

§§§

Next, we will briefly talk about the so-called 0-1 Laws, which
describes a phenomena where an event either occurs or does
not occur – almost surely. These are also seen as tipping points or
phase transitions, as with a small increase in a critical parameter,
the event of interest very quickly goes from probability 0 (almost
never) to probability 1 (almost sure).

Imagine sending a friend-request randomly to n other
individuals in the network. We make the assumption
(rather ideal) that if the recipient is already a friend, he
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simply ignores the request, but otherwise (he received
your message for the first time), he accepts you as a
friend – never ignores, declines or unfriends you.

It turns out that after Θ(n ln n) requests, one will have
a.s. (almost surely) befriended all the n individuals.
This bound is rather sharp, in the sense that with fewer
(by a small constant) requests one would have missed
someone; with more (also, by a small constant) re-
quests one would have wasted requests.

Of course, if everyone in the network does this with
only Θ(n2 ln n) the social network would be complete
(Kn) achieving the maximum density of 1.

To understand this phenomenon, we will look at a classical
problem, called “Coupon Collectors’ Problem” – which is related to
the following “Collect All Coupons and Win” contest.

Coupon Collector’s Problem:

Problem Statement: Suppose there are n coupons, from which
coupons ae being collected with replacement.

What is the probability that more than t sample trials are
needed to collect all coupons.

More precisely, given n coupons, how many coupons are ex-
pected to be drawn with replacement, before each coupon has been
drawn at least once.

An Example: If n = 52, a sharp bound occurs at t = 225. That is,
if you draw a card randomly (with replacement) from a deck
of cards, after 225 draws you would have seen every card at
least one almost surely.

In general t = Θ(n ln n). WHY?

Let

ti = time to collect ith coupon after collecting (i − 1)th coupon.

T =
n

∑
i=1

ti = time to collect all coupons

ti’s are independent

E(T) =
n

∑
i=1

E(ti)

Var(T) =
n

∑
i=1

Var(ti)
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Note that the probability of collecting a new coupon after the
(i − 1)th is:

pi =
n − i + 1

n
,

and thus ti ∼ Geometric( 1
pi

). That is,

Pr[ti = k] = (1 − pi)
k pi :

First k attempts fail to get the “new” coupon with the (k + 1)th
succeeding.

E(ti) =
1

pi
=

n

n − i + 1

Var(ti) =
1 − pi

p2
i

=
(i − 1)n

(n − i + 1)2

Thus

E(T) =
n

n
+

n

n − 1
+ · · ·+ n

1
= nHn

= n ln n + γn +
1

2
+ o(n)

γ = 0.577 = Euler’s Const.

Var(T) ≤ n2

n2
+

n2

(n − 1)2
+ · · ·+ n2

1
≤ π2

6
n2

σ(T) ≤ πn√
6

.

By Chebyshev Inequality:

Pr[|T − µT | ≥ kσT ] ≤ 1

k2
.

Thus

Pr[|T − nHn| ≥ c · n]

≤ Pr[|T − nHn| ≥
c
√

6

π
· πn√

6
]

≤ π2

6c2
.

Thus we have the fopllowing 0-1 Law:

• If the number attempts so far, T < (1 − ǫ)nHn, then you are
almost surely missing some coupons.
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• If the number attempts so far, T > (1 + ǫ)nHn, then you
almost surely have all the coupons.

The following is a nice generalization: Tk = First time k copies
of each coupon has been collected. Tk also has a 0-1 Law (a phase
transition) at its expected value:

Tk = n ln n + (k − 1)n ln ln n + O(n), as n → ∞.

Threshold Function for Conectivity: Erdös-Rényi 1961

Theorem: A threshold funstion for the connectivity of Erdös-Renyi
model G(n, p) occurs at

p(n) =
ln n

n
.

That is for a graph G(n, λ ln n
n ),

• if λ < 1, Pr(connectivity) = 0;

• if λ > 1, Pr(connectivity) = 1.

Proof: Consider the following indicator random variable Ii ∼
Bernoulli(π)

Ii =

{

1, if node i is isolated;

0, otherwise.

Thus

π = Pr[Ii = 1]

= (1 − p)n = e−pn = e−λ ln n = n−λ.

The total number of isolated nodes is thus

X = ∑ Ii, where Ii = Bernoulli(n−λ).

We claim that

E(X) ≈ Var(X) = n · n−λ.

But note that since

Var(X) ≥ (0 − E(X))2Pr[X = 0],

we have
Pr[X = 0] ≤ E(X)−1 = nλ−1.

If λ < 1, then
lim

n→∞
Pr[X = 0] → 0,
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and ∃i Ii 6= 0, and the graph is a.s. disconnected.

Note however, when λ > 1, we cannot conclude from the
fact that Pr[X = 0] 6= 0 that the graph is in fact connected.
TOO BAD.

Going back to our claim:

E(X) =
n

∑
i=1

E(Ii) = nπ = n · n−λ.

But since Ii’s are not indepemdent,

Var(X) =
n

∑
i=1

Var(Ii) +
n

∑
i=1

n

∑
j 6=i

Cov(Ii, Ij)

= nVar(I1) + 2

(

n

2

)

Cov(I1, I2)

= n[E(I2
1 ) − E(I1)

2] + n(n − 1)[E(I1 I2) − E(I1)E(I2)]

= n[π − π2] + n(n − 1)[(1 − p)2n−3 − π2]

= nπ(1 − π) + n(n − 1)

[

π2

1 − p
− π2

]

≈ nπ + n2π2 p

≈ n · n−λ = E(X).

Graph is Disconnected: We will describe this property as follows:

∃V ′⊂V,|V ′|≤n/2CUT[V′, V \ V′];

that is, the graph has been “cut” with no edge going from V′

to its complement V \ V′. Let |V′| = k, then

Pr[Graph Disconnected]

≡ Pr[∃k≤n/2∃V ′,|V ′|=kCUT[V′, V \ V′]]

≤
n/2

∑
k=1

(

n

k

)

(1 − p)k(n−k)

A tedious calculaion reveals that

Pr[Graph Disconnected] → 0, lim n → ∞,

when p = λ ln n
n , λ > 1. �


